

The sales of these products are limited for China and Hong Kong.

R7F0C001G/L, R7F0C002G/L

User's Manual: Hardware

16-Bit Single-Chip Microcontrollers

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
 does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
 incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

How to Use This Manual

Readers

This manual is intended for user engineers who wish to understand the functions of the R7F0C001G/L, R7F0C002G/L and design and develop application systems and programs for these devices.

The target products are as follows.

- R7F0C001G2DFB
- R7F0C002G2DFB

- R7F0C001L2DFB
- R7F0C002L2DFB

Purpose

This manual is intended to give users an understanding of the functions described in the **Organization** below.

Organization

The R7F0C001G/L, R7F0C002G/L manual is separated into two parts: this manual and the software edition (common to the RL78 family).

R7F0C001G/L, R7F0C002G/L User's Manual Hardware

RL78 Family User's Manual Software

- Pin functions
- Internal block functions
- Interrupts
- Other on-chip peripheral functions
- Electrical specifications

- · CPU functions
- · Instruction set
- · Explanation of each instruction

How to Read This Manual

It is assumed that the readers of this manual have general knowledge of electrical engineering, logic circuits, and microcontrollers.

- To gain a general understanding of functions:
 - → Read this manual in the order of the **CONTENTS**. The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.
- How to interpret the register format:
 - → For a bit number enclosed in angle brackets, the bit name is defined as a reserved word in the assembler, and is defined as an sfr variable using the #pragma sfr directive in the compiler.
- To know details of the R7F0C001G/L, R7F0C002G/L instructions:
 - → Refer to the separate document RL78 Family User's Manual: Software (R01US0015E).

Conventions Data significance: Higher digits on the left and lower digits on the right

Active low representations:

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numerical representations: Binary ····×××× or ××××B

 $\begin{array}{ll} \text{Decimal} & \cdots \times \times \times \\ \text{Hexadecimal} & \cdots \times \times \times \text{H} \end{array}$

However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
R7F0C001G/L, R7F0C002G/L User's Manual: Hardware	This manual
RL78 Family User's Manual: Software	R01US0015E

Documents Related to Flash Memory Programming

Document Name	Document No.
PG-FP5 Flash Memory Programmer User's Manual	R20UT0008E

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

Other Documents

Document Name	Document No.
Renesas MPUs & MCUs RL78 Family	R01CP0003E
Semiconductor Package Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E
Semiconductor Reliability Handbook	R51ZZ0001E

Note See the "Semiconductor Package Mount Manual" website (http://www.renesas.com/products/package/manual/index.jsp).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

All trademarks and registered trademarks are the property of their respective owners.

EEPROM is a trademark of Renesas Electronics Corporation.

Windows, Windows NT and Windows XP are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

PC/AT is a trademark of International Business Machines Corporation.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

CONTENTS

CHAPT	TER 1 OUTLINE	1
1.1	Features	1
1.2	Ordering Information	3
1.3	Pin Configuration (Top View)	4
	1.3.1 48-pin products	4
	1.3.2 64-pin products	5
1.4	Pin Identification	6
1.5	Block Diagram	7
	1.5.1 48-pin products	7
	1.5.2 64-pin products	8
1.6	Outline of Functions	9
CHAPT	TER 2 PIN FUNCTIONS	11
2.1	Port Function	11
	2.1.1 48-pin products	12
	2.1.2 64-pin products	14
2.2	Functions Other Than Port Pins	16
	2.2.1 Pins for each product (pins other than port pins)	16
	2.2.2 Description of Functions	21
2.3	Connection of Unused Pins	23
2.4	Block Diagrams of Pins	26
CHAPT	TER 3 CPU ARCHITECTURE	38
3.1	Memory Space	38
	3.1.1 Internal program memory space	42
	3.1.2 Mirror area	45
	3.1.3 Internal data memory space	47
	3.1.4 Special function register (SFR) area	47
	3.1.5 Extended special function register (2nd SFR: 2nd Special Function Register) area	47
	3.1.6 Data memory addressing	48
3.2	Processor Registers	49
	3.2.1 Control registers	49
	3.2.2 General-purpose registers	51
	3.2.3 ES and CS registers	52
	3.2.4 Special function registers (SFRs)	53
	3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers)	58
3.3	Instruction Address Addressing	65

3.3.	1 Relative addressing	65
3.3.	2 Immediate addressing	65
3.3.	3 Table indirect addressing	66
3.3.	4 Register direct addressing	66
3.4 Addr	essing for Processing Data Addresses	67
3.4.	1 Implied addressing	67
3.4.	2 Register addressing	67
3.4.	3 Direct addressing	68
3.4.	4 Short direct addressing	69
3.4.	5 SFR addressing	70
3.4.	6 Register indirect addressing	71
3.4.	7 Based addressing	72
3.4.	8 Based indexed addressing	76
3.4.	9 Stack addressing	77
CHAPTER 4	PORT FUNCTIONS	81
	Functions	
	Configuration	
	1 Port 1	
4.2.	2 Port 2	83
	3 Port 3	
4.2.	4 Port 4	84
4.2.	5 Port 5	84
4.2.	6 Port 6	84
	7 Port 7	
4.2.	8 Port 12	85
	9 Port 13	
4.2.	10 Port 14	85
•	sters Controlling Port Function	
4.3.	1 Port mode registers (PMxx)	89
4.3.	2 Port registers (Pxx)	90
4.3.	3 Pull-up resistor option registers (PUxx)	91
4.3.	4 Port input mode register (PIM1)	92
4.3.	5 Port output mode register (POM1)	92
4.3.	6 Port mode control registers (PMCxx)	93
4.3.	7 A/D port configuration register (ADPC)	94
4.3.	8 Peripheral I/O redirection register (PIOR)	95
4.3.	9 LCD port function registers 0 to 4 (PFSEG0 to PFSEG4)	96
4.3.	10 LCD input switch control register (ISCLCD)	98
4.4 Port	Function Operations	99
4.4.	1 Writing to I/O port	99

CHADTED & TIMED ADDAY LINIT	152
5.7 Resonator and Oscillator Constants	150
5.6.7 Conditions before clock oscillation is stopped	149
5.6.6 Time required for switchover of CPU clock and system clock	148
5.6.5 Condition before changing CPU clock and processing after changing CPU clock	146
5.6.4 CPU clock status transition diagram	140
5.6.3 Example of setting XT1 oscillation clock	139
5.6.2 Example of setting X1 oscillation clock	138
5.6.1 Example of setting high-speed on-chip oscillator	137
5.6 Controlling Clock	137
5.5 Clock Generator Operation	135
5.4.4 Low-speed on-chip oscillator	134
5.4.3 High-speed on-chip oscillator	134
5.4.2 XT1 oscillator	130
5.4.1 X1 oscillator	130
5.4 System Clock Oscillator	
5.3.8 High-speed on-chip oscillator frequency select register (HOCODIV)	
5.3.7 Subsystem clock supply mode control register (OSMC)	
5.3.6 Peripheral enable register 0 (PER0)	
5.3.5 Oscillation stabilization time select register (OSTS)	
5.3.4 Oscillation stabilization time counter status register (OSTC)	
5.3.3 Clock operation status control register (CSC)	
5.3.2 System clock control register (CKC)	
5.3.1 Clock operation mode control register (CMC)	
5.3 Registers Controlling Clock Generator	
5.2 Configuration of Clock Generator	
5.1 Functions of Clock Generator	113
CHAPTER 5 CLOCK GENERATOR	113
noi_ noio on spoonying the pin cominge minimum.	
4.6.2 Notes on specifying the pin settings	
4.6.1 Cautions on 1-Bit Manipulation Instruction for Port Register n (Pn)	
4.6 Cautions When Using Port Function	
4.5.2 Register setting examples for used port and alternate functions	
4.5.1 Basic concept when using alternate function	
4.5 Register Settings When Using Alternate Function	
4.4.5 Handling different potential (1.8 V, 2.5 V, 3 V) by using I/O buffers	
4.4.4 Connecting to external device with different potential (1.8 V, 2.5 V, 3 V)	
4.4.3 Operations on I/O port	
4.4.2 Reading from I/O port	

6.1	Functions of Timer Array Unit	155
	6.1.1 Independent channel operation function	155
	6.1.2 Simultaneous channel operation function	156
	6.1.3 8-bit timer operation function (channels 1 and 3 only)	157
6.2	Configuration of Timer Array Unit	158
	6.2.1 Timer count register mn (TCRmn)	163
	6.2.2 Timer data register mn (TDRmn)	165
6.3	Registers Controlling Timer Array Unit	166
	6.3.1 Peripheral enable register 0 (PER0)	167
	6.3.2 Timer clock select register m (TPSm)	168
	6.3.3 Timer mode register mn (TMRmn)	171
	6.3.4 Timer status register mn (TSRmn)	176
	6.3.5 Timer channel enable status register m (TEm)	177
	6.3.6 Timer channel start register m (TSm)	178
	6.3.7 Timer channel stop register m (TTm)	179
	6.3.8 Timer input select register 0 (TIS0)	180
	6.3.9 Timer output select register (TOS)	180
	6.3.10 Timer output enable register m (TOEm)	181
	6.3.11 Timer output register m (TOm)	182
	6.3.12 Timer output level register m (TOLm)	183
	6.3.13 Timer output mode register m (TOMm)	184
	6.3.14 Noise filter enable register 1 (NFEN1)	185
	6.3.15 Port mode registers 1, 3, 5, 14 (PM1, PM3, PM5, PM14)	186
6.4	Basic Rules of Timer Array Unit	188
	6.4.1 Basic rules of simultaneous channel operation function	188
	6.4.2 Basic rules of 8-bit timer operation function (channels 1 and 3 only)	190
6.5	Operation of Counter	191
	6.5.1 Count clock (fτclκ)	191
	6.5.2 Start timing of counter	193
	6.5.3 Operation of counter	194
6.6	Channel Output (TOmn pin) Control	199
	6.6.1 TOmn pin output circuit configuration	199
	6.6.2 TOmn Pin Output Setting	200
	6.6.3 Cautions on Channel Output Operation	201
	6.6.4 Collective manipulation of TOmn bit	206
	6.6.5 Timer Interrupt and TOmn Pin Output at Operation Start	207
6.7	Timer Input (TImn) Control	208
	6.7.1 Tlmn input circuit configuration	208
	6.7.2 Noise filter	208
	6.7.3 Cautions on channel input operation	209
6.8	Independent Channel Operation Function of Timer Array Unit	210

	6.8.1	Operation as interval timer/square wave output	210
	6.8.2	Operation as external event counter	216
	6.8.3	Operation as frequency divider (channel 0 only)	221
	6.8.4	Operation as input pulse interval measurement	225
	6.8.5	Operation as input signal high-/low-level width measurement	229
	6.8.6	Operation as delay counter	233
	6.9 Simul	taneous Channel Operation Function of Timer Array Unit	238
	6.9.1	Operation as one-shot pulse output function	238
	6.9.2	Operation as PWM function	245
	6.9.3	Operation as multiple PWM output function	252
	6.9.4	Remote control output function	260
СН	APTER 7	REAL-TIME CLOCK	263
		ions of Real-time Clock	
		guration of Real-time Clock	
	_	ters Controlling Real-time Clock Peripheral enable register 0 (PER0)	
		Subsystem clock supply mode control register (OSMC)	
		Real-time clock control register 1 (RTCC1)	
		Second count register (SEC)	
		Minute count register (MIN)	
		Hour count register (HOUR)	
		Day count register (DAY)	
		Week count register (WEEK)	
		0 Month count register (MONTH)	
	7.3.1	1 Year count register (YEAR)	277
	7.3.1	2 Watch error correction register (SUBCUD)	278
	7.3.1	3 Alarm minute register (ALARMWM)	279
	7.3.1	4 Alarm hour register (ALARMWH)	279
	7.3.1	5 Alarm week register (ALARMWW)	279
	7.3.1	6 Port mode register 3 (PM3)	280
	7.3.1	7 Port register 3 (P3)	280
	7.4 Real-t	ime Clock Operation	281
	7.4.1	Starting operation of real-time clock	281
	7.4.2	Shifting to HALT/STOP mode after starting operation	282
	7.4.3	Reading/writing real-time clock	283
	7.4.4	Setting alarm of real-time clock	285
	7.4.5	1 Hz output of real-time clock	286
	716	Example of watch error correction of real-time clock	297

CHAPTER 8 12-BIT INTERVAL TIMER	292
8.1 Functions of 12-bit Interval Timer	292
8.2 Configuration of 12-bit Interval Timer	292
8.3 Registers Controlling 12-bit Interval Timer	292
8.3.1 Peripheral enable register 0 (PER0)	293
8.3.2 Subsystem clock supply mode control register (OSMC)	294
8.3.3 Interval timer control register (ITMC)	295
8.4 12-bit Interval Timer Operation	296
8.4.1 12-bit interval timer operation timing	296
8.4.2 Start of count operation and re-enter to HALT/STOP mode after return	ed from
HALT/STOP mode	297
CHAPTER 9 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER	298
9.1 Functions of Clock Output/Buzzer Output Controller	298
9.2 Configuration of Clock Output/Buzzer Output Controller	300
9.3 Registers Controlling Clock Output/Buzzer Output Controller	300
9.3.1 Peripheral enable register 0 (PER0)	301
9.3.2 Clock output select registers n (CKSn)	301
9.3.3 Port mode registers 5, 14 (PM5, PM14)	304
9.4 Operations of Clock Output/Buzzer Output Controller	305
9.4.1 Operation as output pin	305
9.5 Cautions of clock output/buzzer output controller	305
CHAPTER 10 WATCHDOG TIMER	306
10.1 Functions of Watchdog Timer	306
10.2 Configuration of Watchdog Timer	307
10.3 Register Controlling Watchdog Timer	308
10.4 Operation of Watchdog Timer	309
10.4.1 Controlling operation of watchdog timer	309
10.4.2 Setting overflow time of watchdog timer	310
10.4.3 Setting window open period of watchdog timer	311
10.4.4 Setting watchdog timer interval interrupt	312
CHAPTER 11 A/D CONVERTER	313
11.1 Function of A/D Converter	
11.2 Configuration of A/D Converter	
11.3 Registers Used in A/D Converter	317
11.3.1 Peripheral enable register 0 (PER0)	318
11.3.2 A/D converter mode register 0 (ADM0)	319
11.3.3 A/D converter mode register 1 (ADM1)	328

	11.3.4 A/D converter mode register 2 (ADM2)	329
	11.3.5 10-bit A/D conversion result register (ADCR)	331
	11.3.6 8-bit A/D conversion result register (ADCRH)	332
	11.3.7 Analog input channel specification register (ADS)	333
	11.3.8 Conversion result comparison upper limit setting register (ADUL)	334
	11.3.9 Conversion result comparison lower limit setting register (ADLL)	334
	11.3.10 A/D test register (ADTES)	335
	11.3.11 Registers controlling port function of analog input pins	335
11.4	A/D Converter Conversion Operations	336
11.5	Input Voltage and Conversion Results	338
11.6	A/D Converter Operation Modes	339
	11.6.1 Software trigger mode (sequential conversion mode)	339
	11.6.2 Software trigger mode (one-shot conversion mode)	340
	11.6.3 Hardware trigger no-wait mode (sequential conversion mode)	341
	11.6.4 Hardware trigger no-wait mode (one-shot conversion mode)	342
	11.6.5 Hardware trigger wait mode (sequential conversion mode)	343
	11.6.6 Hardware trigger wait mode (one-shot conversion mode)	344
11.7	A/D Converter Setup Flowchart	345
	11.7.1 Setting up software trigger mode	345
	11.7.2 Setting up hardware trigger no-wait mode	346
	11.7.3 Setting up hardware trigger wait mode	347
	11.7.4 Setup when temperature sensor output/internal reference voltage output is selected	
	(example for software trigger mode and one-shot conversion mode)	348
	11.7.5 Setting up test mode	349
	SNOOZE Mode Function	
11.9	How to Read A/D Converter Characteristics Table	354
11.1	0 Cautions for A/D Converter	356
СНАРТ	ER 12 SERIAL ARRAY UNIT	360
12.1	Functions of Serial Array Unit	360
	12.1.1 3-wire serial I/O (CSI00, CSI01)	360
	12.1.2 UART (UART0)	361
12.2	Configuration of Serial Array Unit	362
	12.2.1 Shift register	364
	12.2.2 Lower 9 bits of the serial data register mn (SDRmn)	364
12.3	Registers Controlling Serial Array Unit	366
	12.3.1 Peripheral enable register 0 (PER0)	367
	12.3.2 Serial clock select register m (SPSm)	368
	12.3.3 Serial mode register mn (SMRmn)	369
	12.3.4 Serial communication operation setting register mn (SCRmn)	370
	12.3.5 Higher 7 bits of the serial data register mn (SDRmn)	373

	12.3.6 Serial flag clear trigger register mn (SIRmn)	374
	12.3.7 Serial status register mn (SSRmn)	375
	12.3.8 Serial channel start register m (SSm)	377
	12.3.9 Serial channel stop register m (STm)	378
	12.3.10 Serial channel enable status register m (SEm)	379
	12.3.11 Serial output enable register m (SOEm)	380
	12.3.12 Serial output register m (SOm)	381
	12.3.13 Serial output level register m (SOLm)	382
	12.3.14 Serial standby control register m (SSCm)	383
	12.3.15 Noise filter enable register 0 (NFEN0)	384
	12.3.16 Registers controlling port functions of serial input/output pins	385
12.4	Operation stop mode	386
	12.4.1 Stopping the operation by units	386
	12.4.2 Stopping the operation by channels	387
12.5	Operation of 3-Wire Serial I/O (CSI00, CSI01) Communication	388
	12.5.1 Master transmission	389
	12.5.2 Master reception	398
	12.5.3 Master transmission/reception	407
	12.5.4 Slave transmission	417
	12.5.5 Slave reception	427
	12.5.6 Slave transmission/reception	434
	12.5.7 SNOOZE mode function	444
	12.5.8 Calculating transfer clock frequency	449
	12.5.9 Procedure for processing errors that occurred during 3-wire serial I/O (CSI00, CSI01)	
	communication	451
12.6	Operation of UART (UART0) Communication	452
	12.6.1 UART transmission	453
	12.6.2 UART reception	463
	12.6.3 SNOOZE mode function	470
	12.6.4 Calculating baud rate	478
	12.6.5 Procedure for processing errors that occurred during UART (UART0) communication	482
CHAPTER	R 13 LCD CONTROLLER/DRIVER	483
13.1 F	Functions of LCD Controller/Driver	484
13.2 (Configuration of LCD Controller/Driver	486
13.3 F	Registers Controlling LCD Controller/Driver	488
	13.3.1 Peripheral enable register 0 (PER0)	489
	13.3.2 LCD mode register 0 (LCDM0)	490
	13.3.3 LCD mode register 1 (LCDM1)	492
	13.3.4 Subsystem clock supply mode control register (OSMC)	494
	13.3.5 LCD clock control register 0 (LCDC0)	495

13.3.6 LCD boost level control register (VLCD)	497
13.3.7 LCD input switch control register (ISCLCD)	498
13.3.8 LCD port function registers 0 to 4 (PFSEG0 to PFSEG4)	500
13.3.9 Port mode registers 1, 3 to 7, 12, 14 (PM1, PM3 to PM7, PM12, PM14)	504
13.4 LCD Display Data Registers	505
13.5 Selection of LCD Display Register	507
13.5.1 A-pattern area and B-pattern area data display	508
13.5.2 Blinking display (Alternately displaying A-pattern and B-pattern area data)	508
13.6 Setting the LCD Controller/Driver	
13.7 Operation stop procedure	512
13.8 Supplying LCD Drive Voltages VL1, VL2, VL3, and VL4	513
13.8.1 External resistance division method	513
13.8.2 Internal voltage boosting method	514
13.8.3 Capacitor split method	515
13.9 Common and Segment Signals	516
13.10 Display Modes	524
13.10.1 Static display example	524
13.10.2 Two-time-slice display example	527
13.10.3 Three-time-slice display example	530
13.10.4 Four-time-slice display example	
13.10.5 Eight-time-slice display example	
CHAPTER 14 INTERRUPT FUNCTIONS	542
14.1 Interrupt Function Types	542
14.2 Interrupt Sources and Configuration	542
14.3 Registers Controlling Interrupt Functions	548
14.3.1 Interrupt request flag registers (IF0L, IF0H, IF1L, IF1H, IF2L)	551
14.3.2 Interrupt mask flag registers (MK0L, MK0H, MK1L, MK1H, MK2L)	553
14.3.3 Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR10L,	
PR10H, PR11L, PR11H, PR12L)	554
14.3.4 External interrupt rising edge enable register (EGP0), external interrupt falling edge	
enable register (EGN0)	556
14.3.5 Program status word (PSW)	
14.4 Interrupt Servicing Operations	
14.4.1 Maskable interrupt request acknowledgment	
14.4.2 Software interrupt request acknowledgment	
14.4.3 Multiple interrupt servicing	
14.4.4 Interrupt request hold	
CHAPTER 15 KEY INTERRUPT FUNCTION	567

15.2	2 Configuration of Key Interrupt	568
15.3	3 Register Controlling Key Interrupt	569
	15.3.1 Key return control register (KRCTL)	569
	15.3.2 Key return mode register 0 (KRM0)	570
	15.3.3 Key return flag register (KRF)	570
	15.3.4 Port mode registers 3, 7 (PM3, PM7)	571
15.4	4 Key Interrupt Operation	572
	15.4.1 When not using the key interrupt flag (KRMD = 0)	572
	15.4.2 When using the key interrupt flag (KRMD = 1)	573
CHAPT	TER 16 STANDBY FUNCTION	575
16.1	1 Standby Function and Configuration	575
	16.1.1 Standby function	575
	2 Registers controlling standby function	
16.3	3 Standby Function Operation	576
	16.3.1 HALT mode	576
	16.3.2 STOP mode	581
	16.3.3 SNOOZE mode	586
CHAPT	TER 17 RESET FUNCTION	588
17.1	1 Timing of Reset Operation	590
17.2	2 States of Operation During Reset Periods	592
17.3	3 Register for Confirming Reset Source	594
	17.3.1 Reset Control Flag Register (RESF)	594
СНАРТ	TER 18 POWER-ON-RESET CIRCUIT	597
18.1	1 Functions of Power-on-reset Circuit	597
18.2	2 Configuration of Power-on-reset Circuit	598
18.3	3 Operation of Power-on-reset Circuit	598
CHAPT	TER 19 VOLTAGE DETECTOR	602
19.1	1 Functions of Voltage Detector	602
19.2	2 Configuration of Voltage Detector	603
19.3	3 Registers Controlling Voltage Detector	603
	19.3.1 Voltage detection register (LVIM)	604
	19.3.2 Voltage detection level register (LVIS)	605
19.4	4 Operation of Voltage Detector	608
	19.4.1 When used as reset mode	608
	19.4.2 When used as interrupt mode	610
	19.4.3 When used as interrupt and reset mode	612

19.5 Cautions for Voltage Detector	618
CHAPTER 20 SAFETY FUNCTIONS	620
20.1 Overview of Safety Functions	620
20.2 Registers Used by Safety Functions	
20.3 Operation of Safety Functions	621
20.3.1 Flash memory CRC operation function (high-speed CRC)	621
20.3.1.1 Flash memory CRC control register (CRC0CTL)	622
20.3.1.2 Flash memory CRC operation result register (PGCRCL)	623
20.3.2 CRC operation function (general-purpose CRC)	
20.3.2.1 CRC input register (CRCIN)	
20.3.2.2 CRC data register (CRCD)	
20.3.3 RAM parity error detection function	
20.3.3.1 RAM parity error control register (RPECTL)	
20.3.4 RAM guard function	
20.3.5 SFR guard function	
20.3.5.1 Invalid memory access detection control register (IAWCTL)	
20.3.6 Invalid memory access detection function	
20.3.6.1 Invalid memory access detection control register (IAWCTL)	
20.3.7 Frequency detection function	
20.3.7.1 Timer input select register 0 (TIS0)	
20.3.8 A/D test function	635
20.3.8.1 A/D test register (ADTES)	637
20.3.8.2 Analog input channel specification register (ADS)	638
CHAPTER 21 REGULATOR	640
21.1 Regulator Overview	640
CHAPTER 22 OPTION BYTE	641
22.1 Functions of Option Bytes	641
22.1.1 User option byte (000C0H to 000C2H)	641
22.1.2 On-chip debug option byte (000C3H)	642
22.2 Format of User Option Byte	643
22.3 Format of On-chip Debug Option Byte	647
22.4 Setting of Option Byte	648
CHAPTER 23 FLASH MEMORY	649
23.1 Writing to Flash Memory by Using Flash Memory Programmer	651
23.1.1 Programming Environment	653
23.1.2 Communication Mode	653
22.2 Writing to Flook Mamory, by Hoing Eytornal Davice (that Incorporated HADT)	654

	23.2.1 Programming Environment	654
	23.2.2 Communication Mode	655
23.3	Connection of Pins on Board	656
	23.3.1 P40/TOOL0 pin	656
	23.3.2 RESET pin	656
	23.3.3 Port pins	657
	23.3.4 REGC pin	657
	23.3.5 X1 and X2 pins	657
	23.3.6 Power supply	657
23.4	Serial Programming Method	658
	23.4.1 Serial programming procedure	658
	23.4.2 Flash memory programming mode	659
	23.4.3 Selecting communication mode	661
	23.4.4 Communication commands	
	Processing Time for Each Command When PG-FP5 Is in Use (Reference Value)	
23.6	Self-Programming	
	23.6.1 Self-programming procedure	
	23.6.2 Flash shield window function	
	Security Settings	
23.8	Data Flash	
	23.8.1 Data flash overview	
	23.8.2 Register controlling data flash memory	
	23.8.2.1 Data flash control register (DFLCTL)	
	23.8.3 Procedure for accessing data flash memory	670
СНАРТЕ	ER 24 ON-CHIP DEBUG FUNCTION	671
	Connecting E1 On-chip Debugging Emulator to R7F0C001G/L, R7F0C002G/L	
	On-Chip Debug Security ID	
24.3	Securing of User Resources	6/2
СНАРТЕ	ER 25 BCD CORRECTION CIRCUIT	674
25.1	BCD Correction Circuit Function	674
25.2	Registers Used by BCD Correction Circuit	674
	25.2.1 BCD correction result register (BCDADJ)	674
25.3	BCD Correction Circuit Operation	675
CHAPTE	ER 26 INSTRUCTION SET	677
26.1	Conventions Used in Operation List	678
	26.1.1 Operand identifiers and specification methods	678
	26.1.2 Description of operation column	679
	26.1.3 Description of flag operation column	680

26.1.4 PREFIX instruction	680
26.2 Operation List	681
CHAPTER 27 ELECTRICAL SPECIFICATIONS	698
27.1 Absolute Maximum Ratings	699
27.2 Oscillator Characteristics	702
27.2.1 X1, XT1 oscillator characteristics	702
27.2.2 On-chip oscillator characteristics	702
27.3 DC Characteristics	703
27.3.1 Pin characteristics	703
27.3.2 Supply current characteristics	708
27.4 AC Characteristics	714
27.4.1 Basic operation	714
27.5 Peripheral Functions Characteristics	718
27.5.1 Serial array unit	718
27.6 Analog Characteristics	738
27.6.1 A/D converter characteristics	738
27.6.2 Temperature sensor/internal reference voltage characteristics	742
27.6.3 POR circuit characteristics	743
27.6.4 LVD circuit characteristics	744
27.6.5 Supply voltage rise time	745
27.7 LCD Characteristics	746
27.7.1 Resistance division method	746
27.7.2 Internal voltage boosting method	747
27.7.3 Capacitor split method	749
27.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	750
27.9 Flash Memory Programming Characteristics	750
27.10 Dedicated Flash Memory Programmer Communication (UART)	750
27.11 Timing Specifications for Switching Flash Memory Programming Modes	751
CHAPTER 28 PACKAGE DRAWINGS	752
28.1 48-pin Products	752
28.2 64-pin Products	753
APPENDIX A REVISION HISTORY	754
A.1 Major Revisions in This Edition	754
A.2 Revision History of Preceding Editions	762

RL78/R7F0C001G/L, R7F0C002G/L RENESAS MCU

R01UH0350EJ0200 Rev.2.00 Mar 25, 2014

CHAPTER 1 OUTLINE

<R> 1.1 Features

Ultra-low power consumption technology

- VDD = single power supply voltage of 1.6 to 5.5 V which can operate a 1.8 V device at a low voltage
- HALT mode
- STOP mode
- SNOOZE mode

RL78 CPU core

- · CISC architecture with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.04167 μs: @ 24 MHz operation with high-speed on-chip oscillator) to ultra-low speed (30.5 μs: @ 32.768 kHz operation with subsystem clock)
- Address space: 1 MB
- General-purpose registers: (8-bit register × 8) × 4 banks
- On-chip RAM: 1/1.5 KB

Code flash memory

- Code flash memory: 16/32 KB
- · Block size: 1 KB
- · Prohibition of block erase and rewriting (security function)
- On-chip debug function
- · Self-programming (with flash shield window function)

Data flash memory

- Data flash memory: 2 KB
- Back ground operation (BGO): Instructions can be executed from the program memory while rewriting the data flash memory.
- Number of rewrites: 1,000,000 times (TYP.)
- Voltage of rewrites: V_{DD} = 1.8 to 5.5 V

High-speed on-chip oscillator

- Select from 24 MHz, 16 MHz, 12 MHz, 8 MHz, 6 MHz, 4 MHz, 3 MHz, 2 MHz, and 1 MHz
- High accuracy: $\pm 1.0 \%$ (VDD = 1.8 to 5.5 V, TA = -20 to +85°C)

Operating ambient temperature

• $T_A = -40 \text{ to } +85^{\circ}\text{C}$

Power management and reset function

- On-chip power-on-reset (POR) circuit
- On-chip voltage detector (LVD) (Select interrupt and reset from 14 levels)

LCD controller/driver (internal voltage boosting method, capacitor split method, and external resistance division method are switchable)

• Number of segment signal output: 39 (35) Note1 to 26 (22)

• Number of common signal output: 4 (8) Note1

Serial interface

CSI: 2 channelsUART: 1 channel

Timer

• 16-bit timer: 6 channels (remote control output available.)

• 12-bit interval timer: 1 channel

• Real-time clock: 1 channel (calendar for 99 years, alarm function, and clock correction function)

Watchdog timer: 1 channel (operable with the dedicated low-speed on-chip oscillator)

A/D converter

- 8/10-bit resolution A/D converter (VDD = 1.6 to 5.5 V)
- Analog input: 9 to 10 channels
- Internal reference voltage (1.45 V) and temperature sensor Note 2

I/O port

- I/O port: 33 to 47 (N-ch open drain I/O [EVDD withstand voltage]: 2)
- · Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3 V device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller

Others

• On-chip BCD (binary-coded decimal) correction circuit

Note 1 () indicates the number of signal output pins when 8 com is used.

2 Can be selected only in HS (high-speed main) mode

O ROM, RAM capacities

Flash ROM	Flash ROM Data flash		sh ROM Data flash RAM 48 pins		64 pins
32 KB	32 KB 2 KB 1.5 KB ^{Note}		R7F0C002G	R7F0C002L	
16 KB	IB 2 KB 1 KB ^{Note}		R7F0C001G	R7F0C001L	

Note In the case of the 1 KB, and 1.5 KB, this is 630 bytes when the self-programming function and data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE)

Remark The functions mounted depend on the product. See 1.6 Outline of Functions.

1.2 List of Part Numbers

<R>

Figure 1-1 Part Number, Memory Size, and Package of R7F0C001G/L, R7F0C002G/L

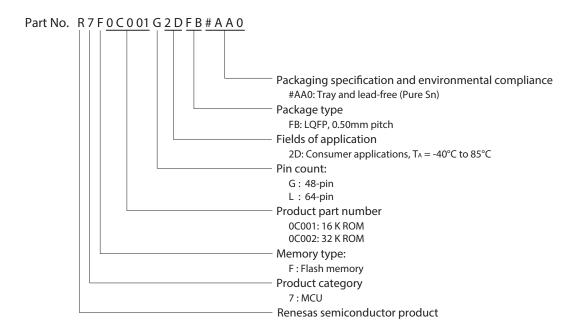
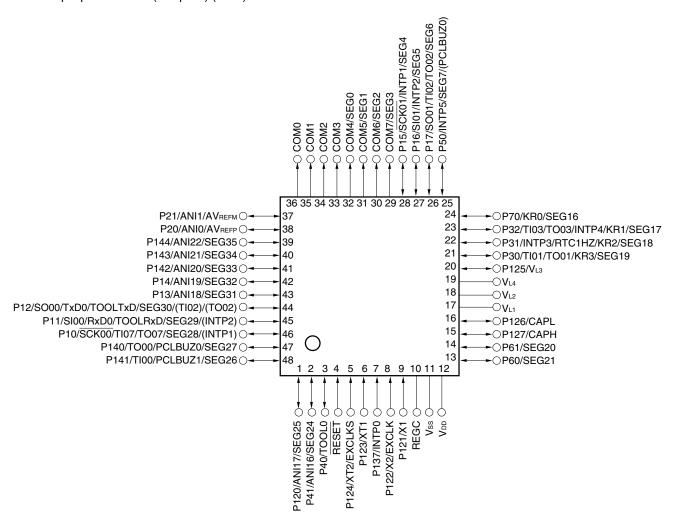


Table 1-1. List of Ordering Part Numbers

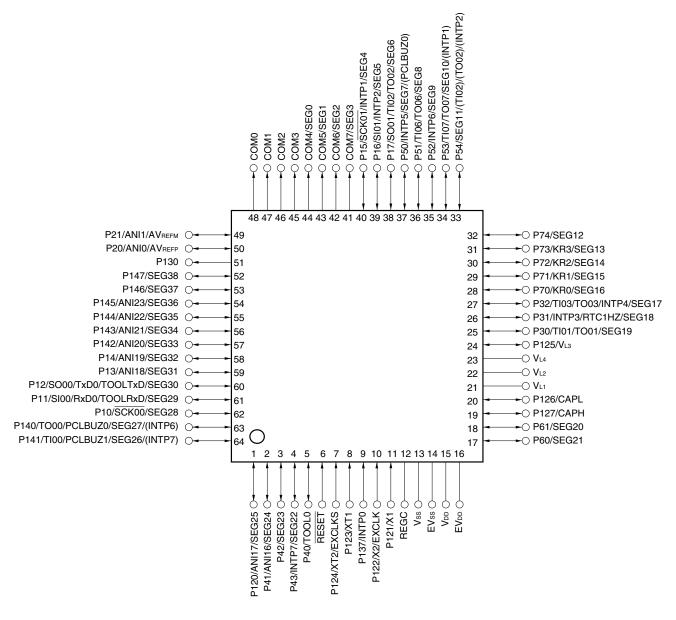

Pin count	Package	Flash ROM	Data flash	Package specification and	Ordering Part Number
				environmental compliance	
64	64-pin plastic LQFP	32KB	2KB	Tray and lead-free (pure Sn)	R7F0C002L2DFB#AA0
	(fine pitch)(10 x 10)	16KB			R7F0C001L2DFB#AA0
48	48-pin plastic LQFP	32KB			R7F0C002G2DFB#AA0
	(fine pitch) (7 x 7)	16KB			R7F0C001G2DFB#AA0

Caution The R7F0C001G/L, R7F0C002G/L have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

1.3 Pin Configuration (Top View)

1.3.1 48-pin products

• 48-pin plastic LQFP (fine pitch) (7 × 7)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8. Format of Peripheral I/O Redirection Register (PIOR).

1.3.2 64-pin products

• 64-pin plastic LQFP (fine pitch) (10 × 10)

- Cautions 1. Make EVss pin the same potential as Vss pin.
 - 2. Make EVDD pin the same potential as VDD pin.
 - 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the V_{DD} and EV_{DD} pins and connect the Vss and EVss pins to separate ground lines.
 - 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8. Format of Peripheral I/O Redirection Register (PIOR).

<R> 1.4 Pin Identification

AVREFP:

ANIO, ANI1,		P130, P137:	Port 13
ANI16 to ANI23:	Analog Input	P140 to P147:	Port 14
AVREFM:	Analog Reference	PCLBUZ0, PCLBUZ1:	Programmable Clock
	Voltage Minus		Output/Buzzer Output

Voltage Minus Output/Buzzer Output

Analog Reference REGC: Regulator Capacitance

Voltage Plus RESET: Reset

CAPH, CAPL: Capacitor for LCD RTC1HZ: Real-time Clock Correction Clock

COM0 to COM7,

EVDD: Power Supply for Port RxD0:

EVss: Ground for Port SCK00, SCK01: Serial Clock Input/Output

EXCLK: External Clock Input SEG0 to SEG38: LCD Segment Output

(Main System Clock) SI00, SI01: Serial Data Input EXCLKS: External Clock Input SO00, SO01: Serial Data Output

(Subsystem Clock) TI00 to TI03,

INTP0 to INTP7: Interrupt Request From TI06, TI07: Timer Input

Peripheral TO00 to TO03,

KR0 to KR3: Key Return TO06, TO07: Timer Output

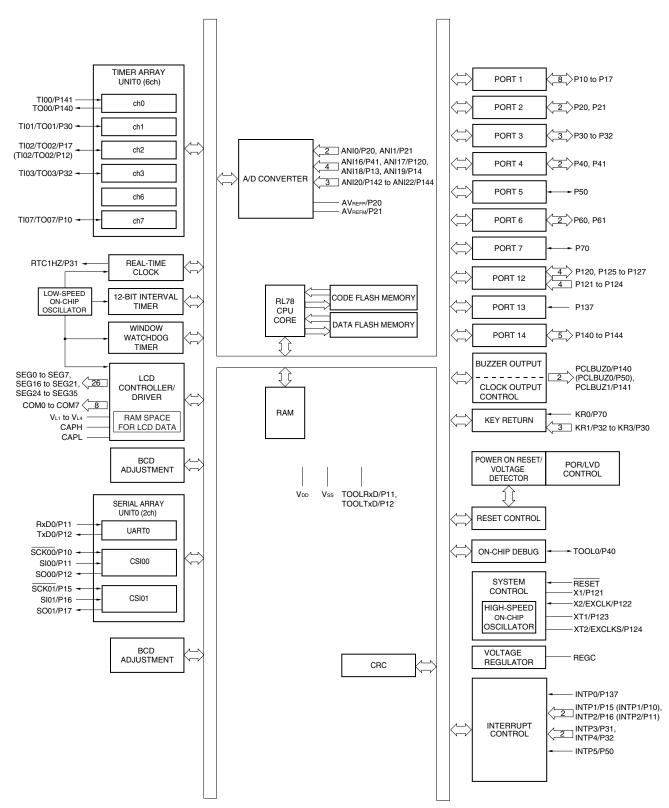
P10 to P17: Port 1 TOOL0: Data Input/Output for Tool

P20, P21: Port 2 TOOLRxD,

P30 to P32: Port 3 TOOLTxD: Data Input/Output for External Device

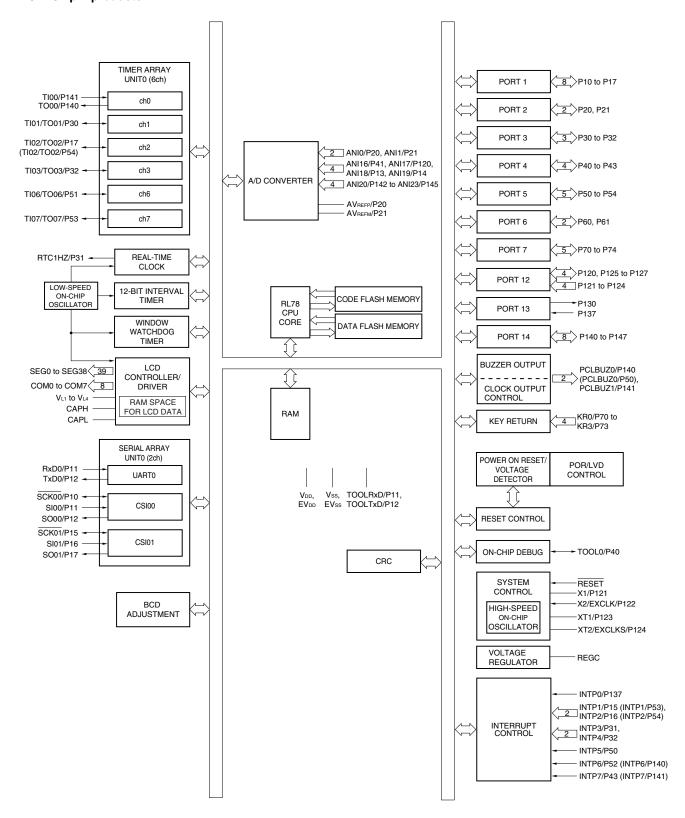
P70 to P74: Port 7 Vss: Ground

P120 to P127: Port 12 X1, X2: Crystal Oscillator (Main System Clock)


XT1, XT2: Crystal Oscillator (Subsystem Clock)

(1 Hz) Output

Receive Data


1.5 Block Diagram

1.5.1 48-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

1.5.2 64-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)Item 48-pin 64-pin R7F0C001G R7F0C002G R7F0C001L R7F0C002L Code flash memory (KB) 16 32 16 Data flash memory (KB) 2 2 1 Note 1 1 Note 1 1.5 Note 1 1.5 Note 1 RAM (KB) Memory space 1 MB Main system High-speed system X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) clock clock 1 to 20 MHz: $V_{DD} = 2.7$ to 5.5 V, 1 to 8 MHz: $V_{DD} = 1.8$ to 2.7 V, 1 to 4 MHz: $V_{DD} = 1.8$ 1.6 to 1.8 V High-speed on-chip HS (high-speed main) mode: 1 to 24 MHz ($V_{DD} = 2.7$ to 5.5 V), oscillator clock HS (high-speed main) mode: 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (V_{DD} = 1.6 to 5.5 V) Subsystem clock XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz (TYP.): $V_{DD} = 1.6 \text{ to } 5.5 \text{ V}$ Low-speed on-chip oscillator clock Internal oscillation 15 kHz (TYP.): $V_{DD} = 1.6 \text{ to } 5.5 \text{ V}$ General-purpose register 8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks) Minimum instruction execution time 0.04167 μ s (High-speed on-chip oscillator clock: fiH = 24 MHz operation) 0.05 μ s (High-speed system clock: f_{MX} = 20 MHz operation) 30.5 μ s (Subsystem clock: fsuB = 32.768 kHz operation) Instruction set • Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) • Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. I/O port Total 47 CMOS I/O 26 39 CMOS input 5 5 CMOS output 1 N-ch open-drain I/O (EV_{DD} tolerance) Timer 16-bit timer 6 channels (with 1 channel remote control output function) Watchdog timer 1 channel Real-time clock (RTC) 1 channel 12-bit interval timer (IT) 1 channel 5 channels (PWM outputs: 4 Note 2) 6 channels (PWM outputs: 5 Note 2) Timer output RTC output • 1 Hz (subsystem clock: fsuB = 32.768 kHz)

Notes 1. This is 630 bytes when the self-programming function and data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE)

2. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (see 6.9.3 Operation as multiple PWM output function)

(2/2)

Item		48-	-pin	64-pin			
		R7F0C001G	R7F0C002G	R7F0C001L	R7F0C002L		
Clock output/buzze	er output			2			
			Hz, 9.76 kHz, 1.25 Ml ck: fmain = 20 MHz op	Hz, 2.5 MHz, 5 MHz, peration)	10 MHz		
		32.768 kHz	• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation)				
8/10-bit resolution	A/D converter		annels		annels		
Serial interface		CSI: 2 channel/U.	ART: 1 channel				
LCD controller/driv	rer	Internal voltage boo		itor split method, and	external resistanc		
Segment sig	nal output	26 (2	(2) Note 1	39 (3	35) Note 1		
Common sig	gnal output	4 (8) Note 1					
Vectored interrupt	Internal	-	16		16		
sources	External		7	9			
Key interrupt		4					
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note 2 Internal reset by RAM parity error Internal reset by illegal-memory access 					
Power-on-reset cir	cuit	 Power-on-reset: 1.51 ±0.04V Power-down-reset: 1.50 ±0.04 V 					
Voltage detector		• Rising edge: 1.67 V to 4.06 V (14 stages) • Falling edge: 1.63 V to 3.98 V (14 stages)					
On-chip debug fun	ction	Provided					
Power supply volta	age	V _{DD} = 1.6 to 5.5 V					
Operating ambient	temperature	T _A = -40 to +85 °C					

Notes 1. The values in parentheses are the number of signal outputs when 8 com is used.

The illegal instruction is generated when instruction code FFH is executed.
 Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

CHAPTER 2 PIN FUNCTIONS

2.1 Port Function

Pin I/O buffer power supplies depend on the product. The relationship between these power supplies and the pins is shown below.

Table 2-1. Pin I/O Buffer Power Supplies

(1) 48-pin, products

Power Supply	Corresponding Pins
V _{DD}	All pins

(2) 64-pin products

Power Supply	Corresponding Pins				
EV _{DD}	Port pins other than P20, P21, P121 to P124, and P137				
V _{DD}	• P20, P21, P121 to P124, and P137				
	• RESET, REGC pin				

Set in each port I/O, buffer, pull-up resistor is also valid for alternate functions.

2.1.1 48-pin products

(1/2)

> Function Name	Pin Type	I/O	After Reset	Alternate Function	Function
P10	8-5-7	I/O Digital input invalid		SCK00/TI07/TO07/ SEG28/ (INTP1)	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units.
P11	8-5-1			SI00/RxD0/ TOOLRxD/SEG29/ (INTP2)	Use of an on-chip pull-up resistor can be specified by a software setting at input port. Input of P10, P11, P15, and P16 can be set to TTL
P12	7-5-7			SO00/TxD0/ TOOLTxD/SEG30/ (TI02)/(TO02)	input buffer. Output of P10, P12, P15, and P17 can be set to N-ch open-drain output (Vpb tolerance).
P13	7-10-1		Analog input	ANI18/SEG31	P13 and P14 can be set to analog input Note 1.
P14			port	ANI19/SEG32	
P15	8-5-7		Digital input	SCK01/INTP1/SEG4	
P16	8-5-1		invalid	SI01/INTP2/SEG5	
P17	7-5-7			SO01/TI02/TO02/SEG6	
P20	4-3-1	I/O	Analog input	ANIO/AVREFP	Port 2.
P21			port	ANI1/AVREFM	2-bit I/O port. Input/output can be specified in 1-bit units. Can be set to analog input Note 2.
P30	7-5-1	I/O	Digital input invalid	TI01/TO01/KR3/ SEG19	Port 3. 3-bit I/O port.
P31				INTP3/RTC1HZ/ KR2/SEG18	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified
P32				TI03/TO03/INTP4/ KR1/SEG17	by a software setting at input port.
P40	7-1-1	I/O	Input port	TOOL0	Port 4.
P41	7-10-1		Analog input port	ANI16/SEG24	2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port. P41 can be set to analog input Note 1.

Notes 1. When the each pin is used as input, specify them as either digital or analog in Port mode control register X (PMCX) (This register can be specified in 1-bit unit).

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)**.

^{2.} Setting digital or analog to each pin can be done in A/D port configuration register (ADPC).

(2/2)

					(2/2)
Function Name	Pin Type	I/O	After Reset	Alternate Function	Function
P50	7-5-1	I/O	Digital input invalid	INTP5/SEG7/ (PCLBUZ0)	Port 5. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P60	12-1-4	I/O	Digital input	SEG21	Port 6.
P61			invalid	SEG20	2-bit I/O port. Input/output can be specified in 1-bit units.
P70	7-5-1	I/O	Digital input invalid	KR0/SEG16	Port 7. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting at input port.
P120	7-10-1	I/O	Analog input port	ANI17/SEG25	Port 12. 4-bit I/O port and 4-bit input port.
P121	2-2-1	Input	Input port	X1	For P120 and P125 to P127, input/output can be
P122	7			X2/EXCLK	specified in 1-bit units. For P120 and P125 to P127, use of an on-chip pull-up
P123				XT1	resistor can be specified by a software setting at inpu
P124				XT2/EXCLKS	port.
P125	8-5-3	I/O	Digital input	V _{L3}	P120 can be set to analog input ^{Note} .
P126	8-5-2		invalid	CAPL	
P127				CAPH	
P137	2-1-2	Input	Input port	INTP0	Port 13. 1-bit input port.
P140	7-5-1	I/O	Digital input invalid	TO00/PCLBUZ0/ SEG27	Port 14. 5-bit I/O port.
P141				TI00/PCLBUZ1/ SEG26	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by
P142	7-10-1		Analog input	ANI20/SEG33	a software setting at input port. P142 to p144 can be set to analog input ^{Note} .
P143			port	ANI21/SEG34	T 142 to p 144 can be set to analog input .
P144				ANI22/SEG35	

Note When the each pin is used as input, specify them as either digital or analog in Port mode control register X (PMCX) (This register can be specified in 1-bit unit).

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)**.

2.1.2 64-pin products

(1/2)

Function Name	Pin Type	I/O	After Reset	Alternate Function	Function		
P10	8-5-7	I/O	Digital input invalid	SCK00/SEG28	Port 1.		
P11	8-5-1			SI00/RxD0/ TOOLRxD/SEG29	8-bit I/O port. Input/output can be specified in 1-bit units.		
P12	7-5-7			SO00/TxD0/ TOOLTxD/SEG30	Use of an on-chip pull-up resistor can be specified by a software setting at input port.		
P13	7-10-1		Analog input port	ANI18/SEG31	Input of P10, P11, P15, and P16 can be set to TTL		
P14				ANI19/SEG32	input buffer. Output of P10, P12, P15, and P17 can be set to N-ch		
P15	8-5-7		Digital input invalid	SCK01/INTP1/ SEG4	open-drain output (EV _{DD} tolerance). P13 and P14 can be set to analog input Note 1.		
P16	8-5-1			SI01/INTP2/SEG5			
P17	7-5-7			SO01/TI02/TO02/ SEG6			
P20	4-3-1	I/O	Analog input port	ANIO/AVREFP	Port 2.		
P21				ANI1/AVREFM	2-bit I/O port. Input/output can be specified in 1-bit units. Can be set to analog input Note 2.		
P30	7-5-1	I/O	Digital input invalid	TI01/TO01/SEG19	Port 3.		
P31		inval		INTP3/RTC1HZ/ SEG18	3-bit I/O port. Input/output can be specified in 1-bit units.		
P32				TI03/TO03/INTP4/ SEG17	Use of an on-chip pull-up resistor can be specified by a software setting at input port.		
P40	7-1-1	I/O	Input port	TOOL0	Port 4.		
P41	7-10-1		Analog input port	ANI16 /SEG24	4-bit I/O port. Input/output can be specified in 1-bit units.		
P42	7-5-1	1	Digital input	SEG23	Use of an on-chip pull-up resistor can be specified by a software setting at input port.		
P43			invalid	INTP7/SEG22	P41 can be set to analog input Note 1.		

Notes 1. When the each pin is used as input, specify them as either digital or analog in Port mode control register X (PMCX) (This register can be specified in 1-bit unit).

2. Setting digital or analog to each pin can be done in A/D port configuration register (ADPC).

(2/2)

Function Name	Pin Type	I/O	After Reset	Alternate Function	Function
P50	7-5-1	I/O	Digital input invalid	INTP5/SEG7/ (PCLBUZ0)	Port 5. 5-bit I/O port.
P51				TI06/TO06/ SEG8	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a
P52				INTP6/SEG9	software setting at input port.
P53				TI07/TO07/SEG10/ (INTP1)	
P54				SEG11/(TI02)/ (TO02)/(INTP2)	
P60	12-1-4	I/O	Digital input invalid	SEG21	Port 6.
P61				SEG20	2-bit I/O port. Input/output can be specified in 1-bit units.
P70	7-5-1	I/O	Digital input invalid	KR0/SEG16	Port 7.
P71				KR1/SEG15	5-bit I/O port.
P72				KR2/SEG14	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a
P73				KR3/SEG13	software setting at input port.
P74				SEG12	
P120	7-10-1	I/O	Analog input port	ANI17/SEG25	Port 12. 4-bit I/O port and 4-bit input port.
P121	2-2-1	1 Input	nput Input port	X1	For P120 and P125 to P127, input/output can be specified
P122				X2/EXCLK	in 1-bit units. For P120 and P125 to P127, use of an on-chip pull-up
P123				XT1	resistor can be specified by a software setting at input port
P124				XT2/EXCLKS	P120 can be set to analog input Note.
P125	8-5-3	I/O	Digital input invalid	V _{L3}	
P126	8-5-2			CAPL	
P127				CAPH	
P130	1-1-1	Output	Output port	-	Port 13.
P137	2-1-2	Input	Input port	INTP0	1-bit output port and 1-bit input port.
P140	7-5-1	I/O	Digital input invalid	TO00/PCLBUZ0/ SEG27/(INTP6)	Port 14. 8-bit I/O port.
P141				TI00/PCLBUZ1/ SEG26/(INTP7)	Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a
P142	7-10-1		Analog input port Digital input invalid	ANI20/SEG33	software setting at input port.
P143				ANI21/SEG34	P142 to P145 can be set to analog input Note.
P144				ANI22/SEG35	
P145				ANI23/SEG36	
P146				SEG37	
P147]			SEG38	

Note When the each pin is used as input, specify them as either digital or analog in Port mode control register X (PMCX) (This register can be specified in 1-bit unit).

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Refer to **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)**.

2.2 Functions Other Than Port Pins

2.2.1 Pins for each product (pins other than port pins)

(1/5)

Function	I/O	/O Function		
Name	""	T dilototi	64- pin	48- pin
ANI0	Input	A/D converter analog input	√	V
ANI1			√	√
ANI16			√	V
ANI17			√	V
ANI18			√	√
ANI19			√	√
ANI20			√	√
ANI21			√	√
ANI22			√	V
ANI23			√	_
CAPH	_	Connecting a capacitor for LCD controller/driver	√	V
CAPL			√	$\sqrt{}$
COM0	Output	LCD controller/driver common signal outputs	√	V
COM1			√	V
COM2			√	V
СОМЗ			√	V
COM4			√	√
COM5			√	√
COM6			√	V
COM7			√	V
V _{L1}	_	LCD drive voltage	√	√
V _{L2}			√	√
VL3			√	V
VL4			√	√
SEG0	Output	LCD controller/driver segment signal outputs	√	V
SEG1			√	√
SEG2			√	V
SEG3			√	V
SEG4			√	√
SEG5			√	V
SEG6			√	√
SEG7			√	√
SEG8			√	-
SEG9			√	-

Remark √: Mounted

-: Not mounted

(2/5)

Function	I/O	Function		48-
Name			pin	pin
SEG10	Output	LCD controller/driver segment signal outputs	√	-
SEG11			√	-
SEG12			V	-
SEG13			√	-
SEG14			√	-
SEG15			√	-
SEG16			V	√
SEG17			√	√
SEG18			V	√
SEG19			√	√
SEG20			√	√
SEG21			√	√
SEG22			√	-
SEG23			√	-
SEG24			√	√
SEG25			√	√
SEG26			√	√
SEG27			√	√
SEG28			√	√
SEG29			√	√
SEG30			√	V
SEG31			√	V
SEG32			√	√
SEG33			√	V
SEG34			√	V
SEG35			√	√
SEG36			√	-
SEG37			√	-
SEG38			√	-

Remark √: Mounted

-: Not mounted

(3/5)

Function Name	I/O	Function	64- pin	48- pin
INTP0	Input	External interrupt request input	√	√
INTP1			√	V
INTP2			√	V
INTP3			√	V
INTP4			√	V
INTP5			√	V
INTP6			√	_
INTP7			V	_
KR0	Input	Key interrupt input	√	$\sqrt{}$
KR1			√	V
KR2			√	V
KR3			$\sqrt{}$	$\sqrt{}$
PCLBUZ0	Output	Clock output/buzzer output	√	√
PCLBUZ1			$\sqrt{}$	$\sqrt{}$
REGC	-	Connecting regulator output stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to 1 μ F: target).	√	V
RTC1HZ	Output	Real-time clock correction clock (1 Hz) output	V	V
RESET	Input	System reset input	V	V
RxD0	Input	Serial data input to UART0	V	V
SCK00	I/O	Clock input/output for CSI00 and CSI01	√	V
SCK01			$\sqrt{}$	V
SI00	Input	Serial data input to CSI00 and CSI01	√	V
SI01			√	√
SO00	Output	Serial data output from CSI00 and CSI01	√	V
SO01			V	V

Remark √: Mounted

(4/5)

Function Name	I/O	Function	64- pin	48- pin
TIOO	Input	External count clock input to 16-bit timer 00	√ V	√
TI01		External count clock input to 16-bit timer 01	√	√
TI02		External count clock input to 16-bit timer 02	√	√
TI03		External count clock input to 16-bit timer 03	V	V
TI06		External count clock input to 16-bit timer 06	√	_
TI07		External count clock input to 16-bit timer 07	√	√
TO00	Output	16-bit timer 00 output	√	√
TO01		16-bit timer 01 output	√	√
TO02		16-bit timer 02 output	√	√
TO03		16-bit timer 03 output	√	√
TO06		16-bit timer 06 output	√	-
TO07		16-bit timer 07 output	√	√
TxD0	Output	Serial data output from UART0	√	√
X1	_	Resonator connection for main system clock	√	√
X2	_		√	√
EXCLK	Input	External clock input for main system clock	√	√
EXCLKS	Input	External clock input for subsystem clock	√	√
XT1		Resonator connection for subsystem clock	√	√
XT2	_		√	√

Remark √: Mounted

(5/5)

				(3/3)
Function Name	I/O	Function	64- pin	48- pin
V _{DD}	-	<48-pin > Positive power supply for all pins <64-pin > Positive power supply for P20, P21, P121 to P124, P137 and RESET pin	V	1
EV _{DD}	-	Positive power supply for P20, P21, P121 to P124, P137 and RESET pill <64-pin> Positive power supply for ports (other than P20, P21, P121 to P124, P137) and pins other ports (except for the RESET pin)	√	_
AVREFP	Input	A/D converter reference potential (+ side) input	√	V
AVREFM	Input	A/D converter reference potential (- side) input	V	√
Vss	_	<48-pin > Ground potential for all pins <64-pin> Ground potential for P20, P21, P121 to P124, P137 and RESET pin	V	$\sqrt{}$
EVss	_	<64-pin > Ground potential for ports (other than P20, P21, P121 to P124, P137) and pins other ports (except for the RESET pin)	V	-
TOOLRxD	Input	UART reception pin for the external device connection used during flash memory programming	√	V
TOOLTxD	Output	UART transmission pin for the external device connection used during flash memory programming	√	√
TOOL0	I/O	Data I/O for flash memory programmer/debugger	V	√

Remark √: Mounted

<R> 2.2.2 Description of Functions

Function Name	I/O	Function
COM0 to COM7	Output	LCD controller/driver common signal outputs
SEG0 to SEG38	Output	LCD controller/driver segment signal outputs
VL1, VL2, VL3, VL4		LCD drive voltage
CAPH, CAPL		Connecting a capacitor for LCD controller/driver
ANI0, ANI1, ANI16 to ANI23	Input	A/D converter analog input (see Figure 11-38 Analog Input Pin Connection)
INTP0 to INTP7	Input	External interrupt request input
		Specified the valid edge: Rising edge, falling edge, or both rising and falling edges
KR0 to KR3	Input	Key interrupt input
PCLBUZ0, PCLBUZ1	Output	Clock output/buzzer output
REGC		Pin for connecting regulator output stabilization capacitance for internal operation. Connect this pin to Vss via a capacitor (0.47 to 1 μ F). Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.
RTC1HZ	Output	Real-time clock correction clock (1 Hz) output
RESET	Input	This is the active-low system reset input pin.
		When the external reset pin is not used, connect this pin directly or via a resistor to VDD.
RxD0	Input	Serial data input pin of serial interface UART0
TxD0	Output	Serial data output pin of serial interface UART0
SCK00, SCK01	I/O	Serial clock I/O pins of serial interfaces CSI00 and CSI01
SI00, SI01	Input	Serial data input pins of serial interfaces CSI00 and CSI01
SO00, SO01	Output	Serial data output pins of serial interfaces CSI00 and CSI01
TI00 to TI03, TI06, TI07	Input	The pins for inputting an external count clock/capture trigger to 16-bit timers 00 to03, 06, 07.
TO00 to TO03, TO06, TO07	Output	Timer output pins of 16-bit timers 00 to 03, 06, 07
X1, X2	_	Resonator connection for main system clock
EXCLK	Input	External clock input for main system clock
XT1, XT2	_	Resonator connection for subsystem clock
EXCLKS	Input	External clock input for subsystem clock

Function Name	I/O	Function
V _{DD} —		<48-pin > Positive power supply for all pins
		<64-pin > Positive power supply for P20, P21, P121 to P124, P137 and other than ports
EV _{DD}	_	<64-pin>
		Positive power supply for ports (other than P20, P21, P121 to P124, P137)
AVREFP	Input	A/D converter reference voltage (+ side) input
AVREFM	Input	A/D converter reference voltage (- side) input
Vss	_	<48-pin, > Ground potential for all pins <64-pin> Ground potential for P20, P21, P121 to P124, P137 and other than ports
EVss	_	<64-pin> Ground potential for ports (other than P20, P21, P121 to P124, P137)
TOOLRxD	Input	UART reception pin for the external device connection used during flash memory programming
TOOLTxD	Output	UART transmission pin for the external device connection used during flash memory programming
TOOL0	I/O	Data I/O for flash memory programmer/debugger

Caution After reset release, the relationships between P40/TOOL0 and the operating mode are as follows.

Table 2-2. Relationships Between P40/TOOL0 and Operation Mode After Reset Release

P40/TOOL0	Operating mode
EV _{DD}	Normal operation mode
0 V	Flash memory programming mode

For details, see 23.4 Serial Programming Method.

Remark Use bypass capacitors (about 0.1 μ F) as noise and latch up countermeasures with relatively thick wires at the shortest distance to V_{DD} to V_{SS} and EV_{DD} to EV_{SS} lines.

2.3 Connection of Unused Pins

Table 2-3 shows the types of pin I/O circuits and the recommended connections of unused pins.

Remark The pins mounted depend on the product. See 1.3 Pin Configuration (Top View) and 2.1 Port Function.

<R>

Table 2-3. Connection of Unused Pins (64-pin products) (1/3)

Pin Name	I/O	Recommended Connection of Unused Pins
P10/SCK00/SEG28	I/O	<when i="" o="" port="" setting="" to=""></when>
P11/SI00/RxD0/TOOLRxD/ SEG29		Input: Independently connect to EV _{DD} or EV _{SS} via a resistor. Output: Leave open.
P12/SO00/TxD0/TOOLTxD/ SEG30		When setting to segment output> Leave open.
P13/ANI18/SEG31		Leave open.
P14/ANI19/SEG32		
P15/SCK01/INTP1/SEG4		
P16/SI01/INTP2/SEG5		
P17/SO01/TI02/TO02/SEG6		
P20/ANI0/AVREFP		Input: Independently connect to VDD or Vss via a resistor.
P21/ANI1/AVREFM		Output: Leave open.
P30/TI01/TO01/SEG19		<when i="" o="" port="" setting="" to=""></when>
P31/INTP3/RTC1HZ/SEG18		Input: Independently connect to EV _{DD} or EVss via a resistor.
P32/TI03/TO03/INTP4/SEG17		Output: Leave open.
		<when output="" segment="" setting="" to=""></when>
		Leave open.
P40/TOOL0		Input: Independently connect to EV _{DD} via a resistor or leave open.
		Output: Leave open.
P41/ANI16/ SEG24		<when i="" o="" port="" setting="" to=""></when>
P42/SEG23		Input: Independently connect to EV _{DD} or EVss via a resistor.
P43/INTP7/SEG22		Output: Leave open.
		<when output="" segment="" setting="" to=""></when>
		Leave open.

Remark With products not provided with an EV_{DD} or EV_{SS} pin, replace EV_{DD} with V_{DD}, or replace EV_{SS} with V_{SS}.

<R>

Table 2-3. Connection of Unused Pins (64-pin products) (2/3)

Pin Name	I/O	Recommended Connection of Unused Pins
P50/INTP5/SEG7/(PCLBUZ0)	I/O	<when i="" o="" port="" setting="" to=""></when>
P51/TI06/TO06/SEG8		Input: Independently connect to EVDD or EVss via a resistor.
P52/INTP6/SEG9		Output: Leave open.
P53/TI07/TO07/SEG10/		<when output="" segment="" setting="" to=""></when>
(INTP1)		Leave open.
P54/SEG11/(TI02)/(TO02)/ (INTP2)		
P60/SEG21		Input: Independently connect to EV _{DD} or EV _{SS} via a resistor.
P61/SEG20		Output: Set the port's output latch to 0 and leave the pins open, or set the port's output latch to 1 and independently connect the pins to EV _{DD} or EV _{SS} via a resistor.
P70/KR0/SEG16		<when i="" o="" port="" setting="" to=""></when>
P71/KR1/SEG15		Input: Independently connect to EV _{DD} or EVss via a resistor.
P72/KR2/SEG14		Output: Leave open.
P73/KR3/SEG13		<when output="" segment="" setting="" to=""></when>
P74/SEG12		Leave open.
P120/ANI17/SEG25		
P121/X1	Input	Independently connect to VDD or Vss via a resistor.
P122/X2/EXCLK		
P123/XT1		
P124/XT2/EXCLKS		
P125/VL3	I/O	Input: Independently connect to EV _{DD} or EVss via a resistor.
P126/CAPL		Output: Leave open.
P127/CAPH		
P130	Output	Leave open.
P137/INTP0	Input	Independently connect to V _{DD} or V _{SS} via a resistor.
P140/TO00/PCLBUZ0/	I/O	<when i="" o="" port="" setting="" to=""></when>
SEG27/(INTP6)		Input: Independently connect to EV _{DD} or EVss via a resistor.
P141/TI00/PCLBUZ1/SEG26/ (INTP7)		Output: Leave open. <when output="" segment="" setting="" to=""></when>
P142/ANI20/SEG33		Leave open.
P143/ANI21/SEG34		
P144/ANI22/SEG35		
P145/ANI23/SEG36		
P146/SEG37		
P147/SEG38		
RESET	Input	Connect directly or via a resistor to VDD.
REGC	_	Connect to Vss via capacitor (0.47 to 1 μ F).

Remarks 1. With products not provided with an EV_{DD} or EV_{SS} pin, replace EV_{DD} with V_{DD} , or replace EV_{SS} with V_{SS} .

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR)

<R>

Table 2-3. Connection of Unused Pins (64-pin products) (3/3)

Pin Name	I/O	Recommended Connection of Unused Pins
COM0 to COM3	Output	Leave open.
COM4/SEG0		
COM5/SEG1		
COM6/SEG2		
COM7/SEG3		
V _{L1} , V _{L2} , V _{L4}	-	

<R> 2.4 Block Diagrams of Pins

Figures 2-1 to 2-14 show the block diagrams of the pins described in 2.1.1 48-pin products to 2.1.2 64-pin products.

Figure 2-1. Pin Block Diagram for Pin Type 1-1-1

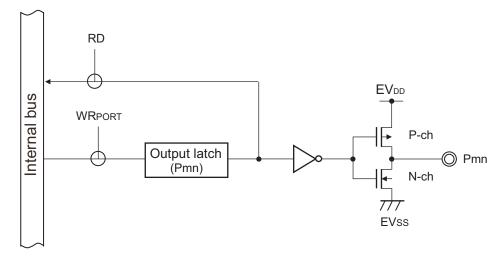


Figure 2-2. Pin Block Diagram for Pin Type 2-1-1

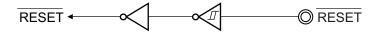
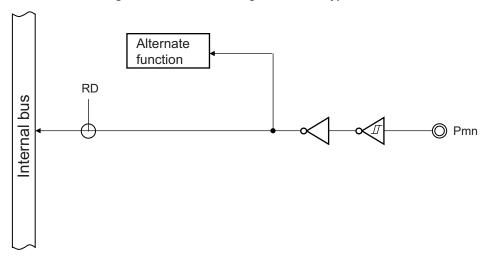



Figure 2-3. Pin Block Diagram for Pin Type 2-1-2

Remark For alternate functions, see 2.1 Port Function.

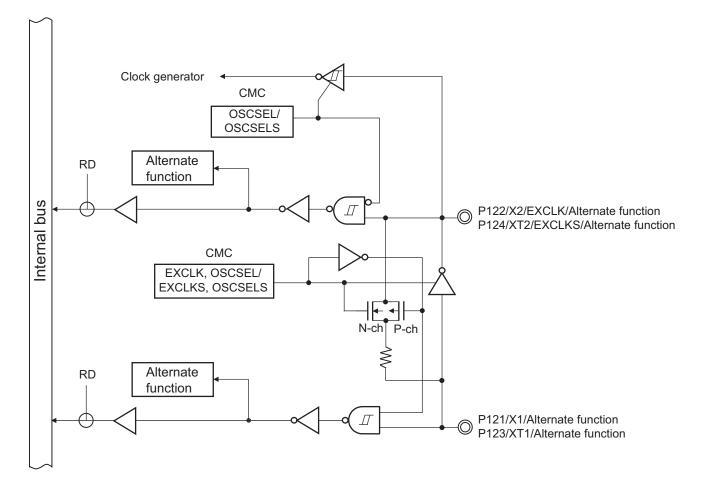


Figure 2-4. Pin Block Diagram for Pin Type 2-2-1

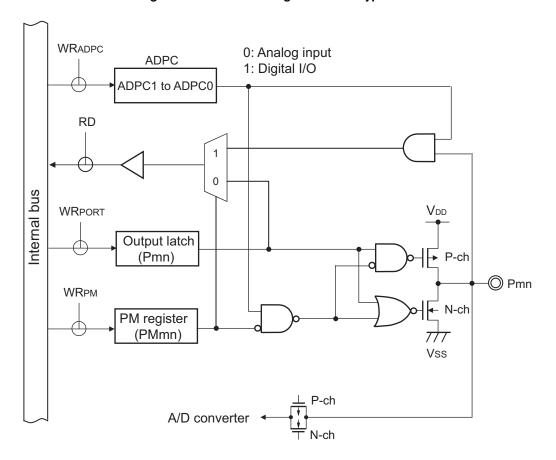


Figure 2-5. Pin Block Diagram for Pin Type 4-3-1

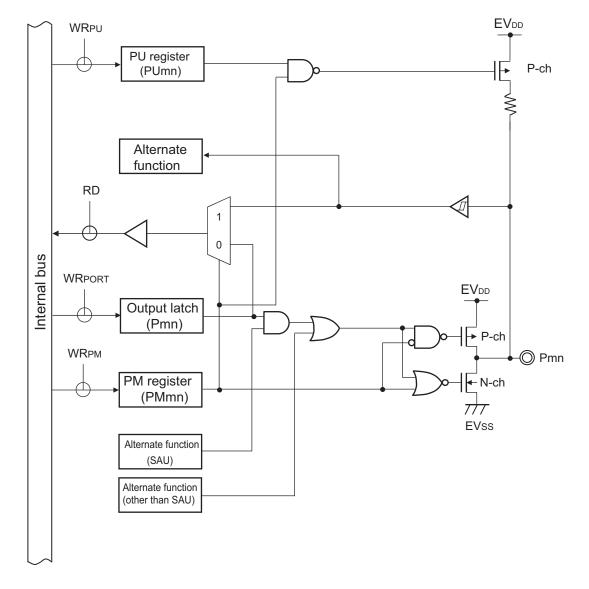


Figure 2-6. Pin Block Diagram for Pin Type 7-1-1

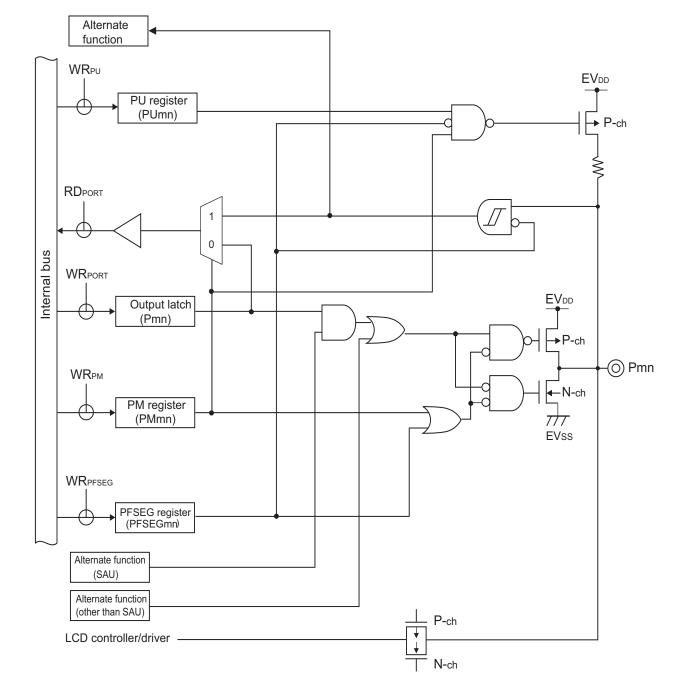


Figure 2-7. Pin Block Diagram for Pin Type 7-5-1

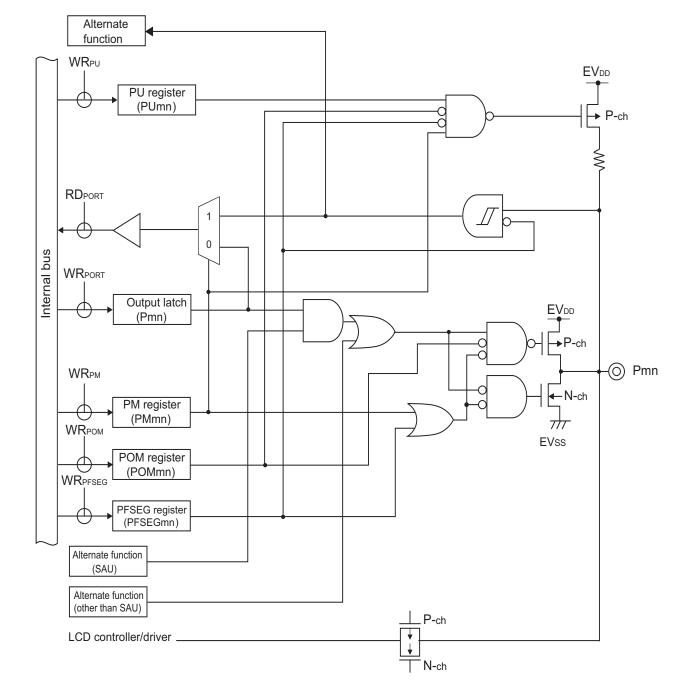


Figure 2-8. Pin Block Diagram for Pin Type 7-5-7

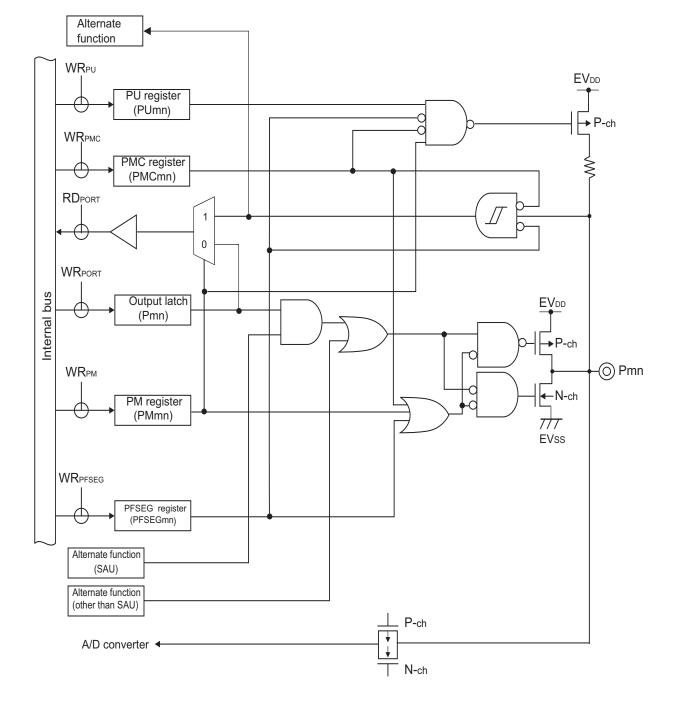


Figure 2-9. Pin Block Diagram for Pin Type 7-10-1

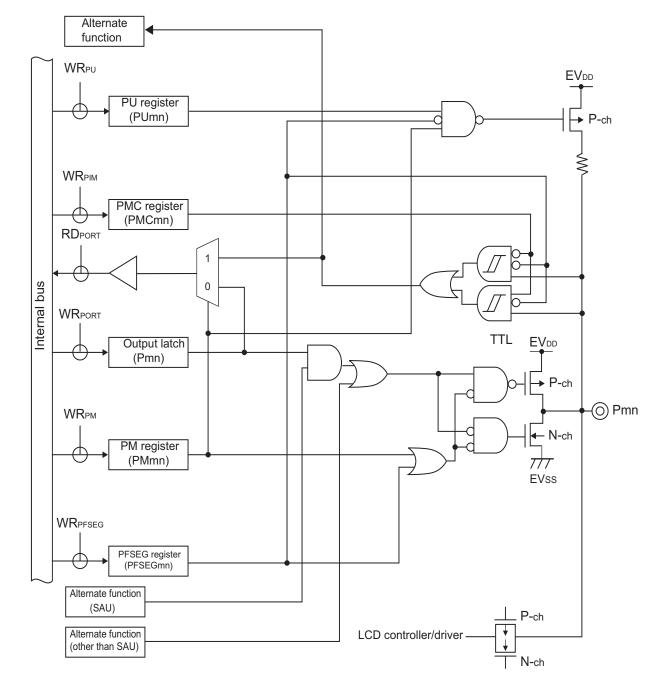


Figure 2-10. Pin Block Diagram for Pin Type 8-5-1

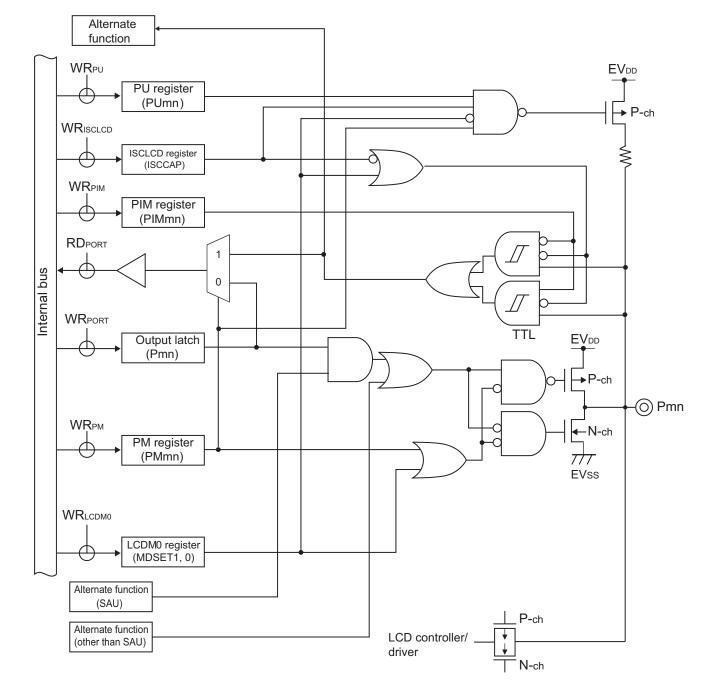


Figure 2-11. Pin Block Diagram for Pin Type 8-5-2

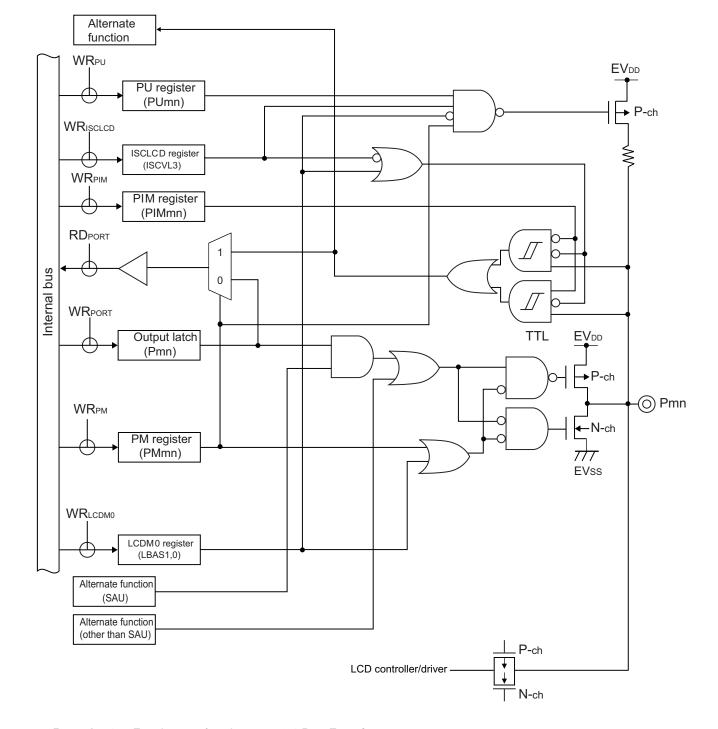


Figure 2-12. Pin Block Diagram for Pin Type 8-5-3

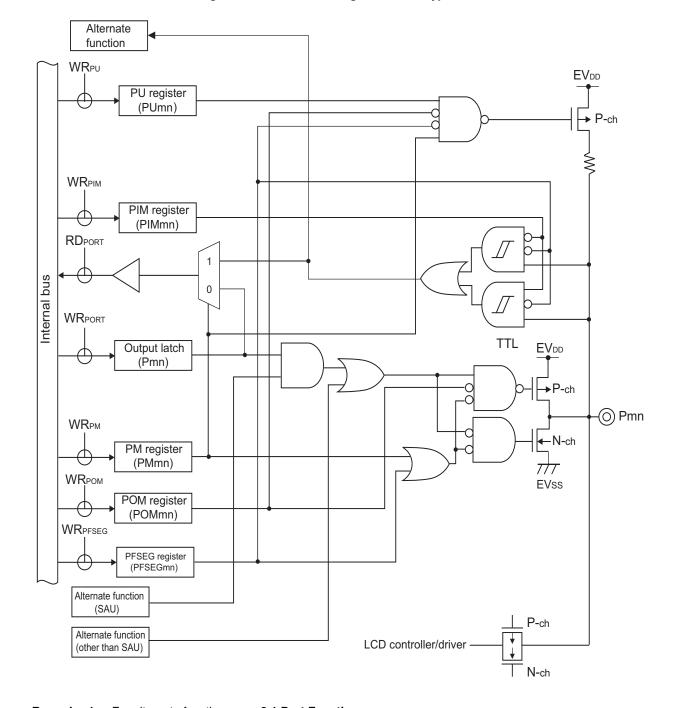


Figure 2-13. Pin Block Diagram for Pin Type 8-5-7

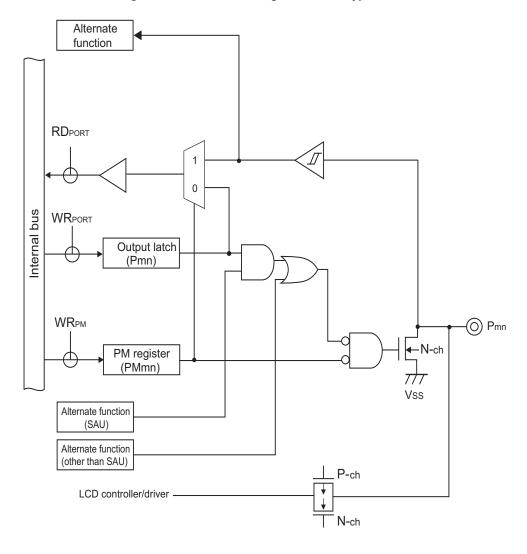


Figure 2-14. Pin Block Diagram for Pin Type 12-1-4

CHAPTER 3 CPU ARCHITECTURE

3.1 Memory Space

Products in the R7F0C001G/L, R7F0C002G/L can access a 1 MB address space. Figures 3-1, 3-2 show the memory maps.

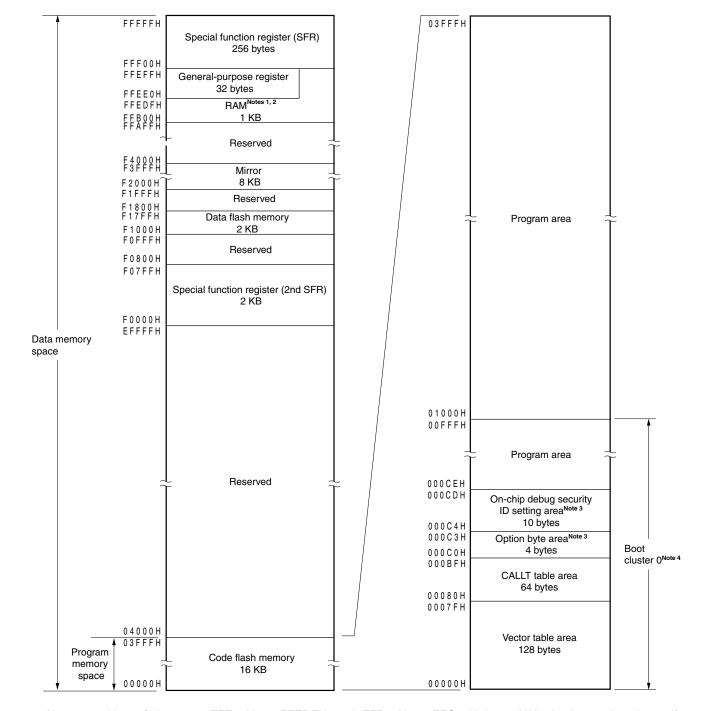


Figure 3-1. Memory Map (R7F0C001G, R7F0C001L)

- **Notes 1.** Use of the area FFE20H to FFEDFH and FFB00H to FFC89H is prohibited when using the self-programming function and data flash function, because this area is used for self-programming library.
 - 2. Instructions can be executed from the RAM area excluding the general-purpose register area.
 - 3. Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.
 - 4. Writing boot cluster 0 can be prohibited depending on the setting of security (see 23.7 Security Settings).

Caution While RAM parity error resets are enabled (RPERDIS = 0), be sure to initialize RAM areas where data access is to proceed and the RAM area + 10 bytes when instructions are fetched from RAM areas, respectively.

Reset signal generation sets RAM parity error resets to enabled (RPERDIS = 0). For details, see 20.3.3 RAM parity error detection function.

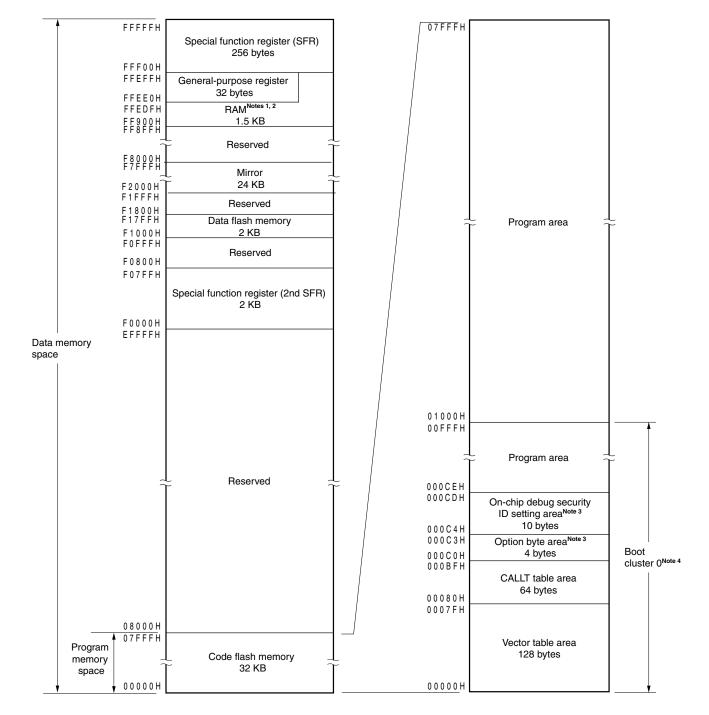
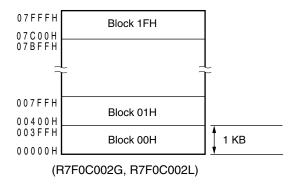


Figure 3-2. Memory Map (R7F0C002G, R7F0C002L)


- **Notes 1.** Use of the area FFE20H to FFEDFH and FF900H to FFC89H is prohibited when using the self-programming function and data flash function, because this area is used for self-programming library.
 - 2. Instructions can be executed from the RAM area excluding the general-purpose register area.
 - 3. Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.
 - 4. Writing boot cluster 0 can be prohibited depending on the setting of security (see 23.7 Security Settings).

Caution While RAM parity error resets are enabled (RPERDIS = 0), be sure to initialize RAM areas where data access is to proceed and the RAM area + 10 bytes when instructions are fetched from RAM areas, respectively.

Reset signal generation sets RAM parity error resets to enabled (RPERDIS = 0). For details, see 20.3.3 RAM parity error detection function.

Remark The flash memory is divided into blocks (one block = 1 KB). For the address values and block numbers, see

Table 3-1 Correspondence Between Address Values and Block Numbers in Flash Memory.

Correspondence between the address values and block numbers in the flash memory are shown below.

Table 3-1. Correspondence Between Address Values and Block Numbers in Flash Memory

Address Value	Block Number						
00000H to 003FFH	00H	02000H to 023FFH	08H	04000H to 043FFH	10H	06000H to 063FFH	18H
00400H to 007FFH	01H	02400H to 027FFH	09H	04400H to 047FFH	11H	06400H to 067FFH	19H
00800H to 00BFFH	02H	02800H to 02BFFH	0AH	04800H to 04BFFH	12H	06800H to 06BFFH	1AH
00C00H to 00FFFH	03H	02C00H to 02FFFH	0BH	04C00H to 04FFFH	13H	06C00H to 06FFFH	1BH
01000H to 013FFH	04H	03000H to 033FFH	0CH	05000H to 053FFH	14H	07000H to 073FFH	1CH
01400H to 017FFH	05H	03400H to 037FFH	0DH	05400H to 057FFH	15H	07400H to 077FFH	1DH
01800H to 01BFFH	06H	03800H to 03BFFH	0EH	05800H to 05BFFH	16H	07800H to 07BFFH	1EH
01C00H to 01FFFH	07H	03C00H to 03FFFH	0FH	05C00H to 05FFFH	17H	07C00H to 07FFFH	1FH

Remark R7F0C001G, R7F0C001L: Block numbers 00H to 0FH R7F0C002G, R7F0C002L: Block numbers 00H to 1FH

3.1.1 Internal program memory space

The internal program memory space stores the program and table data.

The R7F0C001G/L, R7F0C002G/L products incorporate internal ROM (flash memory), as shown below.

Table 3-2. Internal ROM Capacity

Part Number	Internal ROM		
	Structure	Capacity	
R7F0C001G, R7F0C001L	Flash memory	16384 × 8 bits (00000H to 03FFFH)	
R7F0C002G, R7F0C002L		32768 × 8 bits (00000H to 07FFFH)	

The internal program memory space is divided into the following areas.

(1) Vector table area

The 128-byte area 00000H to 0007FH is reserved as a vector table area. The program start addresses for branch upon reset or generation of each interrupt request are stored in the vector table area. Furthermore, the interrupt jump address is a 64 K address of 00000H to 0FFFFH, because the vector code is assumed to be 2 bytes.

Of the 16-bit address, the lower 8 bits are stored at even addresses and the higher 8 bits are stored at odd addresses.

Table 3-3. Vector Table

Vector Table Address	Interrupt Source	64-pin	48-pin
0000H	RESET, POR, LVD, WDT, TRAP, IAW, RPE	V	√
0004H	INTWDTI	V	√
0006H	INTLVI	√	√
0008H	INTP0	V	√
000AH	INTP1	√	√
000CH	INTP2	√	√
000EH	INTP3	√	√
0010H	INTP4	√	√
0012H	INTP5	√	√
0018H	INTST0	√	√
	INTCSI00	√	√
001AH	INTSR0	√	√
	INTCSI01	√	√
001CH	INTSRE0	√	√
	INTTM01H	√	√
0020H	INTTM00	√	√
0024H	INTTM03H	√	√
0028H	INTTM01	\checkmark	√
002AH	INTTM02	\checkmark	√
002CH	INTTM03	\checkmark	√
002EH	INTAD	\checkmark	√
0030H	INTRTC	\checkmark	√
0032H	INTIT	\checkmark	√
0034H	INTKR	√	√
0040H	INTTM06	√	√
0042H	INTTM07	√	√
0046H	INTP6	√	_
0048H	INTP7	√	-
004CH	INTFL	√	√
007EH	BRK	√	√

Remark $\sqrt{\cdot}$ Mounted

(2) CALLT instruction table area

The 64-byte area 00080H to 000BFH can store the subroutine entry address of a 2-byte call instruction (CALLT). Set the subroutine entry address to a value in a range of 00000H to 0FFFFH (because an address code is of 2 bytes).

(3) Option byte area

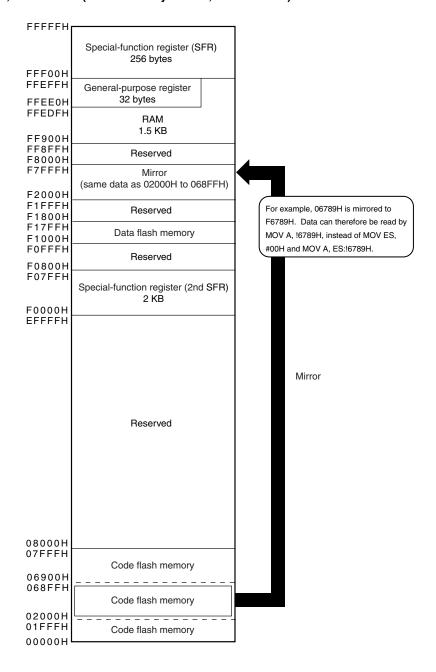
A 4-byte area of 000C0H to 000C3H can be used as an option byte area. For details, see CHAPTER 22 OPTION BYTE.

(4) On-chip debug security ID setting area

A 10-byte area of 000C4H to 000CDH can be used as an on-chip debug security ID setting area. For details, see **CHAPTER 24 ON-CHIP DEBUG FUNCTION.**

3.1.2 Mirror area

The R7F0C001G/L, R7F0C002G/L mirrors the code flash area of 02000H to 07FFFH, to F2000H to F7FFFH (the code flash area to be mirrored is set by the processor mode control register (PMC)).


By reading data from F2000H to F7FFFH, an instruction that does not have the ES register as an operand can be used, and thus the contents of the code flash can be read with the shorter code. However, the code flash area is not mirrored to the SFR, extended SFR, RAM, and use prohibited areas.

See 3.1 Memory Space for the mirror area of each product.

The mirror area can only be read and no instruction can be fetched from this area.

The following show examples.

Example R7F0C002G, R7F0C002L (Flash memory: 32 KB, RAM: 1.5 KB)

The PMC register is described below.

• Processor mode control register (PMC)

This register sets the flash memory space for mirroring to area from F0000H to FFFFFH.

The PMC register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to 00H.

Figure 3-3. Format of Configuration of Processor Mode Control Register (PMC)

Address: FFFFEH After reset: 00H R/W Symbol 5 3 2 <0> **PMC** 0 0 MAA

MAA	Selection of flash memory space for mirroring to area from F0000H to FFFFFH
0	00000H to 0FFFFH is mirrored to F0000H to FFFFFH
1	Setting prohibited

Cautions 1. Be sure to clear bit 0 (MAA) of this register to 0 (default value).

2. After setting the PMC register, wait for at least one instruction and access the mirror area.

3.1.3 Internal data memory space

The R7F0C001G/L, R7F0C002G/L products incorporate the following RAMs.

Table 3-4. Internal RAM Capacity

Part Number	Internal RAM
R7F0C001G, R7F0C001L	1024 × 8 bits (FFB00H to FFEFFH)
R7F0C002G, R7F0C002L	1536 × 8 bits (FF900H to FFEFFH)

The internal RAM can be used as a data area and a program area where instructions are fetched (it is prohibited to use the general-purpose register area for fetching instructions). Four general-purpose register banks consisting of eight 8-bit registers per bank are assigned to the 32-byte area of FFEE0H to FFEFFH of the internal RAM area.

The internal RAM is used as stack memory.

<R>

<R>

Cautions 1. It is prohibited to use the general-purpose register (FFEE0H to FFEFFH) space for fetching instructions or as a stack area.

- 2. Do not allocate RAM addresses which are used as a stack area, a data buffer, a branch destination of vector interrupt processing, and a DMA transfer destination/transfer source to the area FFE20H to FFEDFH when performing self-programming and rewriting the data flash memory.
- 3. Use of the RAM areas of the following products is prohibited when performing self-programming and rewriting the data flash memory, because these areas are used for each library.

R7F0C001G, R7F0C001L : FFB00H to FFC89H R7F0C002G, R7F0C002L : FF900H to FFC89H

3.1.4 Special function register (SFR) area

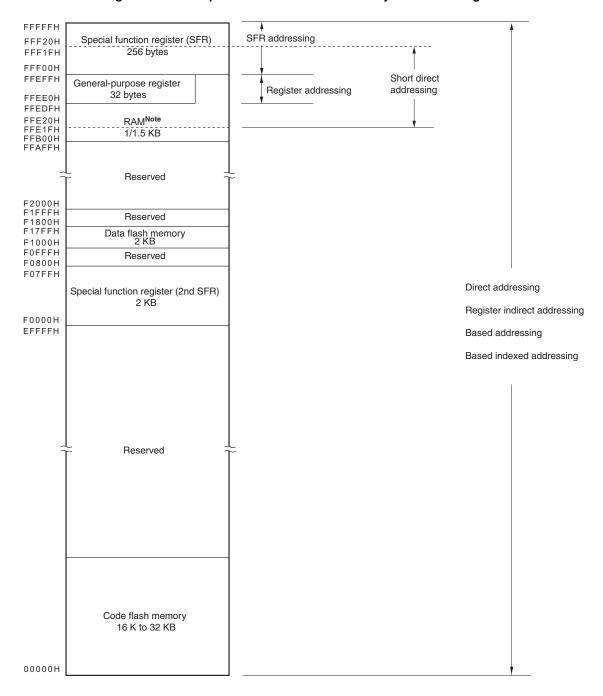
On-chip peripheral hardware special function registers (SFRs) are allocated in the area FFF00H to FFFFH (see **Table 3-5** in **3.2.4 Special function registers (SFRs)**).

Caution Do not access addresses to which SFRs are not assigned.

3.1.5 Extended special function register (2nd SFR: 2nd Special Function Register) area

On-chip peripheral hardware special function registers (2nd SFRs) are allocated in the area F0000H to F07FFH (see Table 3-6 in 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers)).

SFRs other than those in the SFR area (FFF00H to FFFFFH) are allocated to this area. An instruction that accesses the extended SFR area, however, is 1 byte longer than an instruction that accesses the SFR area.


Caution Do not access addresses to which extended SFRs are not assigned.

3.1.6 Data memory addressing

Addressing refers to the method of specifying the address of the instruction to be executed next or the address of the register or memory relevant to the execution of instructions.

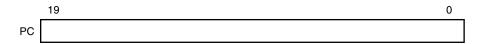
Several addressing modes are provided for addressing the memory relevant to the execution of instructions for the R7F0C001G/L, R7F0C002G/L, based on operability and other considerations. In particular, special addressing methods designed for the functions of the special function registers (SFR) and general-purpose registers are available for use. Figure 3-4 shows correspondence between data memory and addressing. For details of each addressing, see 3.4 Addressing for Processing Data Addresses.

<R> Figure 3-4 Correspondence Between Data Memory and Addressing

3.2 Processor Registers

The R7F0C001G/L, R7F0C002G/L products incorporate the following processor registers.

3.2.1 Control registers

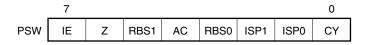

The control registers control the program sequence, statuses and stack memory. The control registers consist of a program counter (PC), a program status word (PSW) and a stack pointer (SP).

(1) Program counter (PC)

The program counter is a 20-bit register that holds the address information of the next program to be executed. In normal operation, PC is automatically incremented according to the number of bytes of the instruction to be fetched. When a branch instruction is executed, immediate data and register contents are set.

Reset signal generation sets the reset vector table values at addresses 0000H and 0001H to the 16 lower-order bits of the program counter. The four higher-order bits of the program counter are cleared to 0000.

Figure 3-5. Format of Program Counter



(2) Program status word (PSW)

The program status word is an 8-bit register consisting of various flags set/reset by instruction execution.

Program status word contents are stored in the stack area upon vectored interrupt request is acknowledged or PUSH PSW instruction execution and are restored upon execution of the RETB, RETI and POP PSW instructions. Reset signal generation sets the PSW register to 06H.

Figure 3-6. Format of Program Status Word

(a) Interrupt enable flag (IE)

This flag controls the interrupt request acknowledge operations of the CPU.

When 0, the IE flag is set to the interrupt disabled (DI) state, and all maskable interrupt requests are disabled.

When 1, the IE flag is set to the interrupt enabled (EI) state and maskable interrupt request acknowledgment is controlled with an in-service priority flag (ISP1, ISP0), an interrupt mask flag for various interrupt sources, and a priority specification flag.

The IE flag is reset (0) upon DI instruction execution or interrupt acknowledgment and is set (1) upon EI instruction execution.

(b) Zero flag (Z)

When the operation or comparison result is zero or equal, this flag is set (1). It is reset (0) in all other cases.

(c) Register bank select flags (RBS0, RBS1)

These are 2-bit flags to select one of the four register banks.

In these flags, the 2-bit information that indicates the register bank selected by SEL RBn instruction execution is stored.

(d) Auxiliary carry flag (AC)

If the operation result has a carry from bit 3 or a borrow at bit 3, this flag is set (1). It is reset (0) in all other cases.

(e) In-service priority flags (ISP1, ISP0)

This flag manages the priority of acknowledgeable maskable vectored interrupts. Vectored interrupt requests specified lower than the value of ISP0 and ISP1 flags by the priority specification flag registers (PRn0L, PRn0H, PRn1L, PRn1H, PRn2L) (see **14.3.3**) can not be acknowledged. Actual vectored interrupt request acknowledgment is controlled by the interrupt enable flag (IE).

Remark n = 0, 1

(f) Carry flag (CY)

This flag stores overflow and underflow upon add/subtract instruction execution. It stores the shift-out value upon rotate instruction execution and functions as a bit accumulator during bit operation instruction execution.

(3) Stack pointer (SP)

This is a 16-bit register to hold the start address of the memory stack area. Only the internal RAM area can be set as the stack area.

Figure 3-7. Format of Stack Pointer

In stack addressing through a stack pointer, the SP is decremented ahead of write (save) to the stack memory and is incremented after read (restore) from the stack memory.

- Cautions 1. Since reset signal generation makes the SP contents undefined, be sure to initialize the SP before using the stack.
 - 2. It is prohibited to use the general-purpose register (FFEE0H to FFEFFH) space as a stack area.
 - 3. The internal RAM in the following products cannot be used as stack area when using the self-programming function and data flash function.

R7F0C001G, R7F0C001L: FFB00H to FFC89H R7F0C002G, R7F0C002L: FF900H to FFC89H

3.2.2 General-purpose registers

General-purpose registers are mapped at particular addresses (FFEE0H to FFEFFH) of the data memory. The general-purpose registers consists of 4 banks, each bank consisting of eight 8-bit registers (X, A, C, B, E, D, L, and H).

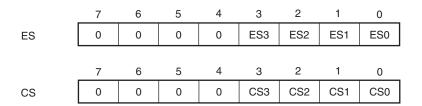
Each register can be used as an 8-bit register, and two 8-bit registers can also be used in a pair as a 16-bit register (AX, BC, DE, and HL).

Register banks to be used for instruction execution are set by the CPU control instruction (SEL RBn). Because of the 4-register bank configuration, an efficient program can be created by switching between a register for normal processing and a register for interrupt processing for each bank.

Caution It is prohibited to use the general-purpose register (FFEE0H to FFEFFH) space for fetching instructions or as a stack area.

Figure 3-8. Configuration of General-Purpose Registers

16-bit processing 8-bit processing **FFEFFH** Н HL Register bank 0 L FFEF8H D Register bank 1 DE Ε FFEF0H В ВС Register bank 2 С FFEE8H Α Register bank 3 AXΧ FFEE0H 15 0


(a) Function name

3.2.3 ES and CS registers

The ES register and CS register are used to specify the higher address for data access and when a branch instruction is executed (register direct addressing), respectively.

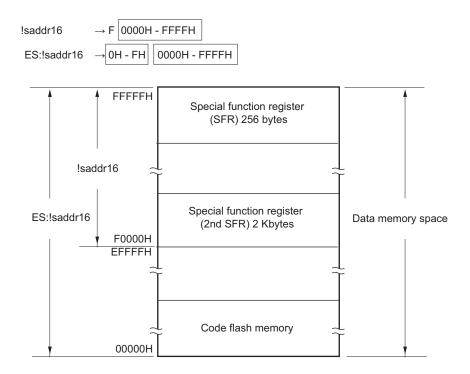

The default value of the ES register after reset is 0FH, and that of the CS register is 00H.

Figure 3-9. Configuration of ES and CS Registers

Though the data area which can be accessed with 16-bit addresses is the 64 Kbytes from F0000H to FFFFFH, using the ES register as well extends this to the 1 Mbyte from 00000H to FFFFFH.

Figure 3-10. Extension of Data Area Which Can Be Accessed

3.2.4 Special function registers (SFRs)

Unlike a general-purpose register, each SFR has a special function.

SFRs are allocated to the FFF00H to FFFFFH area.

SFRs can be manipulated like general-purpose registers, using operation, transfer, and bit manipulation instructions. The manipulable bit units, 1, 8, and 16, depend on the SFR type.

Each manipulation bit unit can be specified as follows.

· 1-bit manipulation

Describe as follows for the 1-bit manipulation instruction operand (sfr.bit).

When the bit name is defined: <Bit name>

When the bit name is not defined: <Register name>.<Bit number> or <Address>.<Bit number>

• 8-bit manipulation

Describe the symbol defined by the assembler for the 8-bit manipulation instruction operand (sfr). This manipulation can also be specified with an address.

• 16-bit manipulation

Describe the symbol defined by the assembler for the 16-bit manipulation instruction operand (sfrp). When specifying an address, describe an even address.

Table 3-5 gives a list of the SFRs. The meanings of items in the table are as follows.

Symbol

Symbol indicating the address of a special function register. It is a reserved word in the assembler, and is defined as an sfr variable using the #pragma sfr directive in the compiler. When using the assembler, debugger, and simulator, symbols can be written as an instruction operand.

R/W

Indicates whether the corresponding SFR can be read or written.

R/W: Read/write enable

R: Read only

W: Write only

· Manipulable bit units

" $\sqrt{}$ " indicates the manipulable bit unit (1, 8, or 16). "-" indicates a bit unit for which manipulation is not possible.

After reset

Indicates each register status upon reset signal generation.

Caution Do not access addresses to which extended SFRs are not assigned.

Remark For extended SFRs (2nd SFRs), see 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

Table 3-5. SFR List (1/4)

Address	Special	Function Register (SFR) Name	Syn	nbol	R/W	Manip	ulable Bit	Range	After Reset
						1-bit	8-bit	16-bit	
FFF01H	Port regi	ster 1	P1		R/W	√	√	-	00H
FFF02H	Port regi	ster 2	P2		R/W	√	√	-	00H
FFF03H	Port regi	ster 3	P3		R/W	√	√	_	00H
FFF04H	Port regi	ster 4	P4		R/W	√	√	-	00H
FFF05H	Port regi	ster 5	P5		R/W	√	√	_	00H
FFF06H	Port regi	ster 6	P6		R/W	√	√	-	00H
FFF07H	Port regi	ster 7	P7		R/W	√	√	-	00H
FFF0CH	Port regi	ster 12	P12		R/W	√	√	-	Undefined
FFF0DH	Port regi	ster 13	P13		R/W	√	√	-	Undefined
FFF0EH	Port regi	ster 14	P14		R/W	√	√	-	00H
FFF10H	Serial da	ata register 00	TXD0/ SIO00	SDR00	R/W		√	√	0000H
FFF11H			=			-	-	1	
FFF12H	Serial da	ta register 01	RXD0/ SIO01	SDR01	R/W	-	V	V	0000H
FFF13H	1		_			_	_	1	
FFF18H	Timer da	ta register 00	TDR00	I.	R/W	=	-	V	0000H
FFF19H	1								
FFF1AH	Timer da	ta register 01	TDR01L	TDR01	R/W	-	√	V	00H
FFF1BH			TDR01H			=	√		00H
FFF1EH	10-bit A/	D conversion result register	ADCR	•	R	-	-	√	0000H
FFF1FH		8-bit A/D conversion result register	ADCRH		R	-	V	-	00H
FFF21H	Port mod	de register 1	PM1		R/W	√	√	=	FFH
FFF22H	Port mod	de register 2	PM2		R/W	√	√	=	FFH
FFF23H	Port mod	de register 3	РМ3		R/W	√	√	-	FFH
FFF24H	Port mod	de register 4	PM4		R/W	√	√	-	FFH
FFF25H	Port mod	de register 5	PM5		R/W	√	√	-	FFH
FFF26H	Port mod	de register 6	PM6		R/W	√	√	-	FFH
FFF27H	Port mod	de register 7	PM7		R/W	√	√	_	FFH
FFF2CH	Port mod	de register 12	PM12		R/W	√	√	_	FFH
FFF2EH	Port mod	de register 14	PM14		R/W	√	√	-	FFH
FFF30H	A/D conv	verter mode register 0	ADM0		R/W	√	√	-	00H
FFF31H	Analog in register	nput channel specification	ADS		R/W	√	V	_	00H
FFF32H	A/D conv	verter mode register 1	ADM1		R/W	√	√	-	00H
FFF34H	Key retu	rn control register	KRCTL		R/W	√	√	-	00H
FFF35H	Key retu	rn flag register	KRF		R/W	-	√	=	00H
FFF37H	Key retu	rn mode register 0	KRM0		R/W	√	√	-	00H

Table 3-5. SFR List (2/4)

Address	Special Function Register (SFR) Name	Sym	ibol	R/W	Manip	ulable Bit	Range	After Reset
					1-bit	8-bit	16-bit	
FFF38H	External interrupt rising edge enable register 0	EGP0		R/W	V	√	_	00H
FFF39H	External interrupt falling edge enable register 0	EGN0		R/W	V	√	_	00H
FFF40H	LCD mode register 0	LCDM0		R/W	_	√	_	00H
FFF41H	LCD mode register 1	LCDM1		R/W	$\sqrt{}$	√	-	00H
FFF42H	LCD clock control register	LCDC0		R/W	-	$\sqrt{}$	-	00H
FFF43H	LCD boost level control register	VLCD		R/W	-	√	-	04H
FFF64H	Timer data register 02	TDR02		R/W	-	_	\checkmark	0000H
FFF65H								
FFF66H	Timer data register 03	TDR03L	TDR03	R/W	1	√	√	00H
FFF67H		TDR03H			I	√		00H
FFF6CH	Timer data register 06	TDR06		R/W	1	_	√	0000H
FFF6DH								
FFF6EH	Timer data register 07	TDR07		R/W	1	_	√	0000H
FFF6FH								
FFF90H	Interval timer control register	ITMC		R/W	_	_	V	0FFFH
FFF91H								
FFF92H	Second count register	SEC		R/W	I	√	-	00H
FFF93H	Minute count register	MIN		R/W	1	\checkmark	-	00H
FFF94H	Hour count register	HOUR		R/W	1	\checkmark	-	12H ^{Note}
FFF95H	Week count register	WEEK		R/W	1	√	-	00H
FFF96H	Day count register	DAY		R/W	I	√	-	01H
FFF97H	Month count register	MONTH		R/W	I	√	-	01H
FFF98H	Year count register	YEAR		R/W	I	√	-	00H
FFF99H	Watch error correction register	SUBCUD		R/W	I	√	-	00H
FFF9AH	Alarm minute register	ALARMW	М	R/W	I	√	-	00H
FFF9BH	Alarm hour register	ALARMW	Н	R/W	1	√	-	12H
FFF9CH	Alarm week register	ALARMW	W	R/W	I	√	-	00H
FFF9DH	Real-time clock control register 0	RTCC0		R/W	√	√	-	00H
FFF9EH	Real-time clock control register 1	RTCC1		R/W	√	√	-	00H
FFFA0H	Clock operation mode control register	СМС		R/W		√	_	00H
FFFA1H	Clock operation status control register	CSC		R/W	√	√	-	C0H
FFFA2H	Oscillation stabilization time counter status register	OSTC		R	V	√	_	00H
FFFA3H	Oscillation stabilization time select register	OSTS		R/W	П	√	_	07H
FFFA4H	System clock control register	CKC		R/W	$\sqrt{}$	√	-	00H

Notes The value of this register is 00H if the AMPM bit (bit 3 of real-time clock control register 0 (RTCC0)) is set to 1 after reset.

<R>

Table 3-5. SFR List (3/4)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manip	ulable Bit I	Range	After Reset
				1-bit	8-bit	16-bit	
FFFA5H	Clock output select register 0	CKS0	R/W	√	√	-	00H
FFFA6H	Clock output select register 1	CKS1	R/W	√	√	-	00H
FFFA8H	Reset control flag register	RESF	R	-	$\sqrt{}$	-	Undefined Note 1
FFFA9H	Voltage detection register	LVIM	R/W	√	√	-	00H ^{Note 1}
FFFAAH	Voltage detection level register	LVIS	R/W	√	√	-	00H/01H/81H ^{Note 1}
FFFABH	Watchdog timer enable register	WDTE	R/W	-	√	-	1AH/9AH ^{Note 2}
FFFACH	CRC input register	CRCIN	R/W	_	√	-	00H

<R>> Notes 1. The reset values of the registers vary depending on the reset source as shown below.

	Reset Source	RESET Input	Reset by	Reset by	Reset by	Reset by	Reset by	Reset by
Registe	er		POR	Execution of	WDT	RAM parity	illegal-	LVD
				Illegal		error	memory	
				Instruction			access	
RESF	TRAP bit	Cleared (0)		Set (1)	Held			Held
	WDTRF bit			Held	Set (1)	Held		
	RPERF bit			Held		Set (1)	Held	
	IAWRF bit			Held			Set (1)	
	LVIRF bit			Held				Set (1)
LVIM	LVISEN bit	Cleared (0)						Held
	LVIOMSK bit	Held						
	LVIF bit							
LVIS				Cleared (00	H/01H/81H)			

2. The reset value of the WDTE register is determined by the setting of the option byte.

Table 3-5. SFR List (4/4)

Address	Special Function Register (SFR) Name	Syr	mbol	R/W	Manip	ulable Bit I	Range	After Reset
					1-bit	8-bit	16-bit	
FFFD0H	Interrupt request flag register 2L	IF2L	IF2	R/W	√	√	√	00H
FFFD4H	Interrupt mask flag register 2L	MK2L	MK2	R/W	√	√	√	FFH
FFFD8H	Priority specification flag register 02L	PR02L	PR02	R/W	$\sqrt{}$	√	√	FFH
FFFDCH	Priority specification flag register 12L	PR12L	PR12	R/W	√	√	√	FFH
FFFE0H	Interrupt request flag register 0L	IFOL	IF0	R/W	$\sqrt{}$	√	√	00H
FFFE1H	Interrupt request flag register 0H	IF0H		R/W	√	√		00H
FFFE2H	Interrupt request flag register 1L	IF1L	IF1	R/W	$\sqrt{}$	√	√	00H
FFFE3H	Interrupt request flag register 1H	IF1H		R/W	$\sqrt{}$	√		00H
FFFE4H	Interrupt mask flag register 0L	MK0L	MK0	R/W	√	√	√	FFH
FFFE5H	Interrupt mask flag register 0H	MK0H		R/W	√	√		FFH
FFFE6H	Interrupt mask flag register 1L	MK1L	MK1	R/W	√	√	√	FFH
FFFE7H	Interrupt mask flag register 1H	MK1H		R/W	√	√		FFH
FFFE8H	Priority specification flag register 00L	PR00L	PR00	R/W	√	√	√	FFH
FFFE9H	Priority specification flag register 00H	PR00H		R/W	√	√		FFH
FFFEAH	Priority specification flag register 01L	PR01L	PR01	R/W	√	√	√	FFH
FFFEBH	Priority specification flag register 01H	PR01H		R/W	√	√		FFH
FFFECH	Priority specification flag register 10L	PR10L	PR10	R/W	√	√	√	FFH
FFFEDH	Priority specification flag register 10H	PR10H		R/W	√	√		FFH
FFFEEH	Priority specification flag register 11L	PR11L	PR11	R/W	√	√	√	FFH
FFFEFH	Priority specification flag register 11H	PR11H		R/W	√	√		FFH
FFFFEH	Processor mode control register	PMC		R/W	√	√	_	00H

Remark For extended SFRs (2nd SFRs), see Table 3-6 Extended SFR (2nd SFR) List.

3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers)

Unlike a general-purpose register, each extended SFR (2nd SFR) has a special function.

Extended SFRs are allocated to the F0000H to F07FFH area. SFRs other than those in the SFR area (FFF00H to FFFFFH) are allocated to this area. An instruction that accesses the extended SFR area, however, is 1 byte longer than an instruction that accesses the SFR area.

Extended SFRs can be manipulated like general-purpose registers, using operation, transfer, and bit manipulation instructions. The manipulable bit units, 1, 8, and 16, depend on the SFR type.

Each manipulation bit unit can be specified as follows.

• 1-bit manipulation

Describe as follows for the 1-bit manipulation instruction operand (!addr16.bit)

When the bit name is defined: <Bit name>

When the bit name is not defined: <Register name>.<Bit number> or <Address>.<Bit number>

• 8-bit manipulation

Describe the symbol defined by the assembler for the 8-bit manipulation instruction operand (!addr16). This manipulation can also be specified with an address.

• 16-bit manipulation

Describe the symbol defined by the assembler for the 16-bit manipulation instruction operand (!addr16). When specifying an address, describe an even address.

Table 3-6 gives a list of the extended SFRs. The meanings of items in the table are as follows.

Symbol

Symbol indicating the address of an extended SFR. It is a reserved word in the assembler, and is defined as an sfr variable using the #pragma sfr directive in the compiler. When using the assembler, debugger, and simulator, symbols can be written as an instruction operand.

R/W

Indicates whether the corresponding extended SFR can be read or written.

R/W: Read/write enable

R: Read only W: Write only

Manipulable bit units

"\" indicates the manipulable bit unit (1, 8, or 16). "-" indicates a bit unit for which manipulation is not possible.

After reset

Indicates each register status upon reset signal generation.

Caution Do not access addresses to which extended SFRs (2nd SFRs) are not assigned.

Remark For SFRs in the SFR area, see 3.2.4 Special function registers (SFRs).

Table 3-6. Extended SFR (2nd SFR) List (1/6)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manip	oulable Bit	Range	After Reset
			Ī	1-bit	8-bit	16-bit	
F0010H	A/D converter mode register 2	ADM2	R/W	√	V	-	00H
F0011H	Conversion result comparison upper limit setting register	ADUL	R/W	=	√	-	FFH
F0012H	Conversion result comparison lower limit setting register	ADLL	R/W	_	√	_	00H
F0013H	A/D test register	ADTES	R/W	-	$\sqrt{}$	-	00H
F0031H	Pull-up resistor option register 1	PU1	R/W	\checkmark	\checkmark	-	00H
F0033H	Pull-up resistor option register 3	PU3	R/W	\checkmark	√	-	00H
F0034H	Pull-up resistor option register 4	PU4	R/W	√	√	-	01H
F0035H	Pull-up resistor option register 5	PU5	R/W	\checkmark	√	-	00H
F0037H	Pull-up resistor option register 7	PU7	R/W	√	√	-	00H
F003CH	Pull-up resistor option register 12	PU12	R/W	√	√	-	00H
F003EH	Pull-up resistor option register 14	PU14	R/W	√	√	-	00H
F0041H	Port input mode register 1	PIM1	R/W	√	√	-	00H
F0051H	Port output mode register 1	POM1	R/W	√	√	-	00H
F0061H	Port mode control register 1	PMC1	R/W	\checkmark	√	-	FFH
F0064H	Port mode control register 4	PMC4	R/W	√	√	-	FFH
F006CH	Port mode control register 12	PMC12	R/W	√	√	-	FFH
F006EH	Port mode control register 14	PMC14	R/W	√	V	-	FFH
F0070H	Noise filter enable register 0	NFEN0	R/W	\checkmark	√	-	00H
F0071H	Noise filter enable register 1	NFEN1	R/W	\checkmark	√	-	00H
F0074H	Timer input select register 0	TIS0	R/W	_	V	-	00H
F0076H	A/D port configuration register	ADPC	R/W	_	V	-	00H
F0077H	Peripheral I/O redirection register	PIOR	R/W	_	V	-	00H
F0078H	Invalid memory access detection control register	IAWCTL	R/W	=	√	-	00H
F0079H	Timer output select register	TOS	R/W	√	√	-	00H
F0090H	Data flash control register	DFLCTL	R/W	√	V	-	00H
F00A8H	High-speed on-chip oscillator frequency select register	HOCODIV	R/W	=	√	_	Undefined ^{Note}

Note The value after a reset is a value set in FRQSEL2 to FRQSEL0 of the option byte (000C2H).

Table 3-6. Extended SFR (2nd SFR) List (2/6)

Address	Special Function Register (SFR) Name	Syr	nbol	R/W	Manip	ulable Bit l	Range	After Reset
					1-bit	8-bit	16-bit	
F00F0H	Peripheral enable register 0	PER0		R/W	√	√	_	00H
F00F3H	Subsystem clock supply mode control register	OSMC		R/W	-	√	-	00H
F00F5H	RAM parity error control register	RPECTL		R/W	√	√	-	00H
F00FEH	BCD adjust result register	BCDADJ		R	-	√	-	Undefined
F0100H	Serial status register 00	SSR00L	SSR00	R	=	√	√	0000H
F0101H		_			-	-		
F0102H	Serial status register 01	SSR01L	SSR01	R	-	√	√	0000H
F0103H		_			-	-		
F0108H	Serial flag clear trigger register 00	SIR00L	SIR00	R/W	_	√	√	0000H
F0109H		_			_	_		
F010AH	Serial flag clear trigger register 01	SIR01L	SIR01	R/W	-	√	√	0000H
F010BH		-			-	-		
F0110H	Serial mode register 00	SMR00		R/W	_	_	√	0020H
F0111H								
F0112H	Serial mode register 01	SMR01		R/W	_	_	√	0020H
F0113H								
F0118H	Serial communication operation setting	SCR00		R/W	-	-	√	0087H
F0119H	register 00							
F011AH	Serial communication operation setting	SCR01		R/W	-	-	√	0087H
F011BH	register 01							
F0120H	Serial channel enable status register 0	SE0L	SE0	R	\checkmark	√	√	0000H
F0121H		=			=	=		
F0122H	Serial channel start register 0	SS0L	SS0	R/W	√	√	√	0000H
F0123H		=			=	=		
F0124H	Serial channel stop register 0	ST0L	ST0	R/W	$\sqrt{}$	√	√	0000H
F0125H		-			-	-		
F0126H	Serial clock select register 0	SPS0L	SPS0	R/W	-	√	√	0000H
F0127H		-			-	-		
F0128H	Serial output register 0	SO0		R/W		_	√	0303H
F0129H			1					
F012AH	Serial output enable register 0	SOE0L	SOE0	R/W	√	√	√	0000H
F012BH		-			-	_		
F0134H	Serial output level register 0	SOL0L	SOL0	R/W	-	√	√	0000H
F0135H		-			=	-		
F0138H	Serial standby control register 0	SSC0L	SSC0	R/W		√	√	0000H
F0139H		_			-	_		

Table 3-6. Extended SFR (2nd SFR) List (3/6)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manip	ulable Bit	Range	After Reset
				1-bit	8-bit	16-bit	
F0180H	Timer counter register 00	TCR00	R	=	=	√	FFFFH
F0181H	7						
F0182H	Timer counter register 01	TCR01	R	-	_	√	FFFFH
F0183H	1						
F0184H	Timer counter register 02	TCR02	R	-	_	√	FFFFH
F0185H							
F0186H	Timer counter register 03	TCR03	R	-	_	√	FFFFH
F0187H	1						
F018CH	Timer counter register 06	TCR06	R	-	-	√	FFFFH
F018DH							
F018EH	Timer counter register 07	TCR07	R	-	_	√	FFFFH
F018FH							
F0190H	Timer mode register 00	TMR00	R/W	-	-	√	0000H
F0191H							
F0192H	Timer mode register 01	TMR01	R/W	-	-	√	0000H
F0193H							
F0194H	Timer mode register 02	TMR02	R/W	-	-	√	0000H
F0195H							
F0196H	Timer mode register 03	TMR03	R/W		-	√	0000H
F0197H							
F019CH	Timer mode register 06	TMR06	R/W	-	_	√	0000H
F019DH							
F019EH	Timer mode register 07	TMR07	R/W	-	_	√	0000H
F019FH							

Table 3-6. Extended SFR (2nd SFR) List (4/6)

Address	Special Function Register (SFR) Name	Syr	nbol	R/W	Manip	ulable Bit l	Range	After Reset
					1-bit	8-bit	16-bit	
F01A0H	Timer status register 00	TSR00L	TSR00	R	-	√	√	0000H
F01A1H		-			-	_		
F01A2H	Timer status register 01	TSR01L	TSR01	R	ı	√	√	0000H
F01A3H		-			ı	_		
F01A4H	Timer status register 02	TSR02L	TSR02	R	I	√	√	0000H
F01A5H		-			-	_		
F01A6H	Timer status register 03	TSR03L	TSR03	R	-	√	√	0000H
F01A7H		_			-	_		
F01ACH	Timer status register 06	TSR06L	TSR06	R	_	√	√	0000H
F01ADH		_			-	-		
F01AEH	Timer status register 07	TSR07L	TSR07	R	=	√	√	0000H
F01AFH		_			-	-		
F01B0H	Timer channel enable status register 0	TE0L	TE0	R	V	√	√	0000H
F01B1H		-]		-	-	1	
F01B2H	Timer channel start register 0	TS0L	TS0	R/W	√	√	√	0000H
F01B3H		=			=	=		
F01B4H	Timer channel stop register 0	TT0L	TT0	R/W	V	√	√	0000H
F01B5H		_			-	-		
F01B6H	Timer clock select register 0	TPS0	•	R/W	=	=	√	0000H
F01B7H								
F01B8H	Timer output register 0	TO0L	TO0	R/W	=	√	√	0000H
F01B9H		_			-	-		
F01BAH	Timer output enable register 0	TOE0L	TOE0	R/W	√	√	√	0000H
F01BBH		=			=	=		
F01BCH	Timer output level register 0	TOL0L	TOL0	R/W	=	√	√	0000H
F01BDH		=	ĺ		=	=		
F01BEH	Timer output mode register 0	TOM0L	ТОМ0	R/W	-	√	√	0000H
F01BFH]	-	1		=	=]	
F02F0H	Flash memory CRC control register	CRC0CT	L	R/W	√	√	_	00H
F02F2H	Flash memory CRC operation result register	PGCRCL		R/W	=	-	V	0000H
F02FAH	CRC data register	CRCD		R/W	=	=	√	0000H

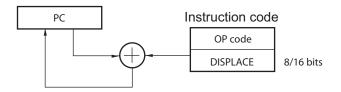
Table 3-6. Extended SFR (2nd SFR) List (5/6)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manip	ulable Bit	Range	After Reset
				1-bit	8-bit	16-bit	
F0300H	LCD port function register 0	PFSEG0	R/W	\checkmark	√	-	F0H
F0301H	LCD port function register 1	PFSEG1	R/W	\checkmark	√	-	FFH
F0302H	LCD port function register 2	PFSEG2	R/W	√	√	-	FFH
F0303H	LCD port function register 3	PFSEG3	R/W	√	√	_	FFH
F0304H	LCD port function register 4	PFSEG4	R/W	$\sqrt{}$	√	_	7FH
F0308H	LCD Input switch control register	ISCLCD	R/W	√	√	-	00H
F0400H	LCD display data memory 0	SEG0	R/W	_	$\sqrt{}$	_	00H
F0401H	LCD display data memory 1	SEG1	R/W	_	√	-	00H
F0402H	LCD display data memory 2	SEG2	R/W	-	√	-	00H
F0403H	LCD display data memory 3	SEG3	R/W	_	√	-	00H
F0404H	LCD display data memory 4	SEG4	R/W	_	√	-	00H
F0405H	LCD display data memory 5	SEG5	R/W	_	√	-	00H
F0406H	LCD display data memory 6	SEG6	R/W	_	√	_	00H
F0407H	LCD display data memory 7	SEG7	R/W	=	√	-	00H
F0408H	LCD display data memory 8	SEG8	R/W	=	√	_	00H
F0409H	LCD display data memory 9	SEG9	R/W	_	√	-	00H
F040AH	LCD display data memory 10	SEG10	R/W	_	√	-	00H
F040BH	LCD display data memory 11	SEG11	R/W	_	√	_	00H
F040CH	LCD display data memory 12	SEG12	R/W	_	√	_	00H
F040DH	LCD display data memory 13	SEG13	R/W	_	√	_	00H
F040EH	LCD display data memory 14	SEG14	R/W	=	√	_	00H
F040FH	LCD display data memory 15	SEG15	R/W	=	√	-	00H
F0410H	LCD display data memory 16	SEG16	R/W	=	√	-	00H
F0411H	LCD display data memory 17	SEG17	R/W	=	√	-	00H
F0412H	LCD display data memory 18	SEG18	R/W	_	√	-	00H
F0413H	LCD display data memory 19	SEG19	R/W	_	√	-	00H
F0414H	LCD display data memory 20	SEG20	R/W	=	√	-	00H
F0415H	LCD display data memory 21	SEG21	R/W	-	√	_	00H
F0416H	LCD display data memory 22	SEG22	R/W	=	√	-	00H
F0417H	LCD display data memory 23	SEG23	R/W	_	√	_	00H
F0418H	LCD display data memory 24	SEG24	R/W	_	√	-	00H
F0419H	LCD display data memory 25	SEG25	R/W	_	√	_	00H

Table 3-6. Extended SFR (2nd SFR) List (6/6)

Address	Special Function Register (SFR) Name	Symbol	R/W	Manip	ulable Bit I	Range	After Reset
				1-bit	8-bit	16-bit	
F041AH	LCD display data memory 26	SEG26	R/W	=	√	-	00H
F041BH	LCD display data memory 27	SEG27	R/W	=	√	-	00H
F041CH	LCD display data memory 28	SEG28	R/W	-	√	-	00H
F041DH	LCD display data memory 29	SEG29	R/W	-	√	-	00H
F041EH	LCD display data memory 30	SEG30	R/W	-	√	-	00H
F041FH	LCD display data memory 31	SEG31	R/W	-	√	-	00H
F0420H	LCD display data memory 32	SEG32	R/W	-	√	-	00H
F0421H	LCD display data memory 33	SEG33	R/W	=	√	-	00H
F0422H	LCD display data memory 34	SEG34	R/W	-	√	-	00H
F0423H	LCD display data memory 35	SEG35	R/W	-	√	-	00H
F0424H	LCD display data memory 36	SEG36	R/W	-	√	-	00H
F0425H	LCD display data memory 37	SEG37	R/W	-	√	-	00H
F0426H	LCD display data memory 38	SEG38	R/W	-	√	-	00H

Remark For SFRs in the SFR area, see **Table 3-5 SFR List**.


3.3 Instruction Address Addressing

3.3.1 Relative addressing

[Function]

Relative addressing stores in the program counter (PC) the result of adding a displacement value included in the instruction word (signed complement data: –128 to +127 or –32768 to +32767) to the program counter (PC)'s value (the start address of the next instruction), and specifies the program address to be used as the branch destination. Relative addressing is applied only to branch instructions.

Figure 3-11. Outline of Relative Addressing

3.3.2 Immediate addressing

[Function]

Immediate addressing stores immediate data of the instruction word in the program counter, and specifies the program address to be used as the branch destination.

For immediate addressing, CALL !!addr20 or BR !!addr20 is used to specify 20-bit addresses and CALL !addr16 or BR !addr16 is used to specify 16-bit addresses. 0000 is set to the higher 4 bits when specifying 16-bit addresses.

Figure 3-12. Example of CALL !!addr20/BR !!addr20

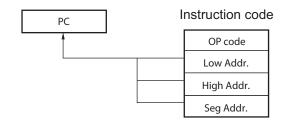
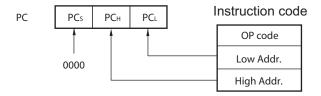



Figure 3-13. Example of CALL !addr16/BR !addr16

3.3.3 Table indirect addressing

[Function]

Table indirect addressing specifies a table address in the CALLT table area (0080H to 00BFH) with the 5-bit immediate data in the instruction word, stores the contents at that table address and the next address in the program counter (PC) as 16-bit data, and specifies the program address. Table indirect addressing is applied only for CALLT instructions.

In the R7F0C001G/L, R7F0C002G/L, branching is enabled only to the 64 KB space from 00000H to 0FFFFH.

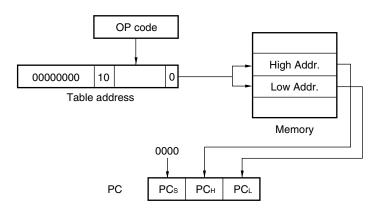


Figure 3-14. Outline of Table Indirect Addressing

3.3.4 Register direct addressing

[Function]

Register direct addressing stores in the program counter (PC) the contents of a general-purpose register pair (AX/BC/DE/HL) and CS register of the current register bank specified with the instruction word as 20-bit data, and specifies the program address. Register direct addressing can be applied only to the CALL AX, BC, DE, HL, and BR AX instructions.

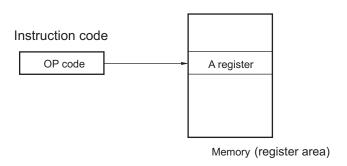
CS rp

PC PCs PCH PCL

Figure 3-15. Outline of Register Direct Addressing

3.4 Addressing for Processing Data Addresses

3.4.1 Implied addressing


[Function]

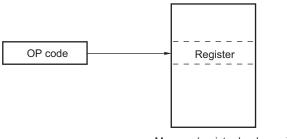
Instructions for accessing registers (such as accumulators) that have special functions are directly specified with the instruction word, without using any register specification field in the instruction word.

[Operand format]

Implied addressing can be applied only to MULU X.

Figure 3-16. Outline of Implied Addressing

3.4.2 Register addressing


[Function]

Register addressing accesses a general-purpose register as an operand. The instruction word of 3-bit long is used to select an 8-bit register and the instruction word of 2-bit long is used to select a 16-bit register.

[Operand format]

Identifier	Description
r	X, A, C, B, E, D, L, H
rp	AX, BC, DE, HL

Figure 3-17. Outline of Register Addressing

Memory (register bank area)

3.4.3 Direct addressing

[Function]

Direct addressing uses immediate data in the instruction word as an operand address to directly specify the target address

[Operand format]

Identifier	Description
!addr16	Label or 16-bit immediate data (only the space from F0000H to FFFFFH is specifiable)
ES:!addr16	Label or 16-bit immediate data (higher 4-bit addresses are specified by the ES register)

Figure 3-18. Example of ADDR16

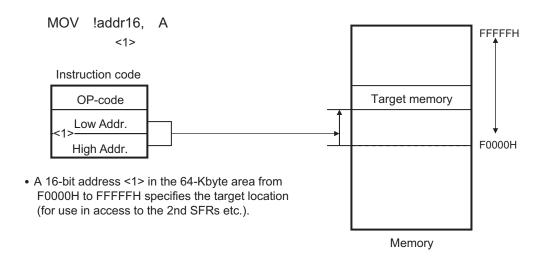
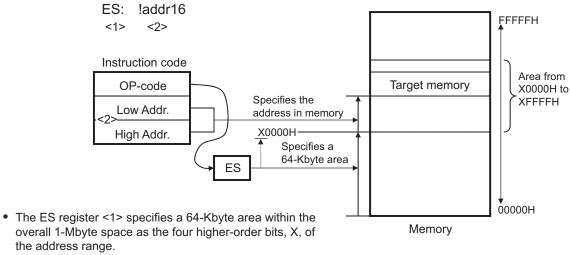
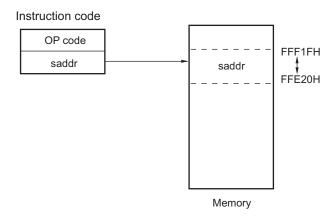



Figure 3-19. Example of ES:ADDR16

 A 16-bit address <2> in the area from X0000H to XFFFFH and the ES register <1> specify the target location; this is used for access to fixed data other than that in mirrored areas.

3.4.4 Short direct addressing


[Function]

Short direct addressing directly specifies the target addresses using 8-bit data in the instruction word. This type of addressing is applied only to the space from FFE20H to FFF1FH.

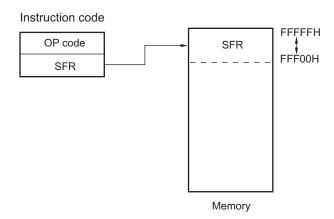
[Operand format]

Identifier	Description
SADDR	Label, FFE20H to FFF1FH immediate data, or 0FE20H to 0FF1FH immediate data
	(only the space from FFE20H to FFF1FH is specifiable)
SADDRP	Label, FFE20H to FFF1FH immediate data, or 0FE20H to 0FF1FH immediate data (even address only) (only the space from FFE20H to FFF1FH is specifiable)

Figure 3-20. Outline of Short Direct Addressing

Remark SADDR and SADDRP are used to describe the values of addresses FE20H to FF1FH with 16-bit immediate data (higher 4 bits of actual address are omitted), and the values of addresses FFE20H to FFF1FH with 20-bit immediate data.

Regardless of whether SADDR or SADDRP is used, addresses within the space from FFE20H to FFF1FH are specified for the memory.


3.4.5 SFR addressing

[Function]

SFR addressing directly specifies the target SFR addresses using 8-bit data in the instruction word. This type of addressing is applied only to the space from FFF00H to FFFFFH.

Identifier	Description
SFR	SFR name
SFRP	16-bit-manipulatable SFR name (even address)

Figure 3-21. Outline of SFR Addressing

3.4.6 Register indirect addressing

[Function]

Register indirect addressing directly specifies the target addresses using the contents of the register pair specified with the instruction word as an operand address.

	Identifier	Description
ſ	-	[DE], [HL] (only the space from F0000H to FFFFFH is specifiable)
Ī	-	ES:[DE], ES:[HL] (higher 4-bit addresses are specified by the ES register)

Figure 3-22. Example of [DE], [HL]

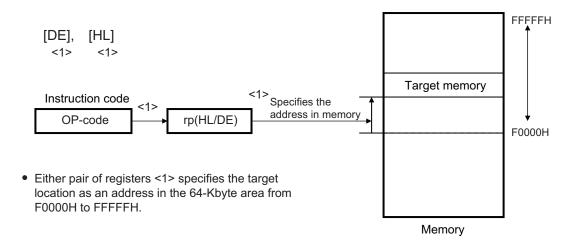
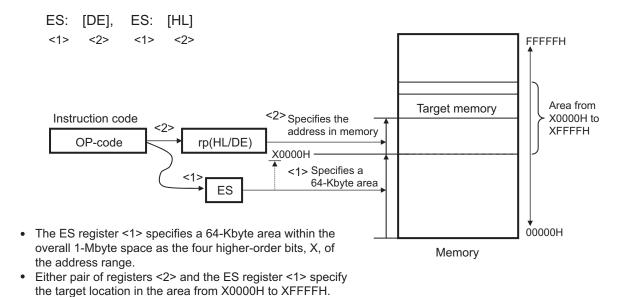
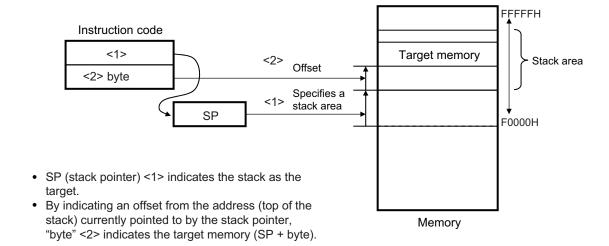



Figure 3-23. Example of ES:[DE], ES:[HL]


3.4.7 Based addressing

[Function]

Based addressing uses the contents of a register pair specified with the instruction word or 16-bit immediate data as a base address, and 8-bit immediate data or 16-bit immediate data as offset data. The sum of these values is used to specify the target address.

Identifier	Description
_	[HL + byte], [DE + byte], [SP + byte] (only the space from F0000H to FFFFFH is specifiable)
_	word[B], word[C] (only the space from F0000H to FFFFFH is specifiable)
_	word[BC] (only the space from F0000H to FFFFFH is specifiable)
-	ES:[HL + byte], ES:[DE + byte] (higher 4-bit addresses are specified by the ES register)
_	ES:word[B], ES:word[C] (higher 4-bit addresses are specified by the ES register)
_	ES:word[BC] (higher 4-bit addresses are specified by the ES register)

Figure 3-24. Example of [SP+byte]

[HL + byte], [DE + byte] <1> <1> FFFFFH Instruction code **Target** OP-code Target memory array <2> Offset of data <2> byte <1> Address of Other data in an array the array rp(HL/DE) F0000H Either pair of registers <1> specifies the address where the target array of data starts in the 64-Kbyte area from F0000H to FFFFFH. "byte" <2> specifies an offset within the array to the target location in memory. Memory

Figure 3-25. Example of [HL + byte], [DE + byte]

Figure 3-26. Example of word[B], word[C]

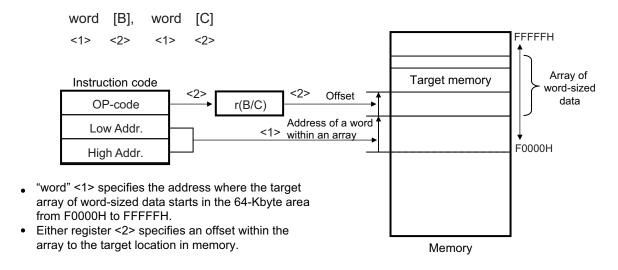
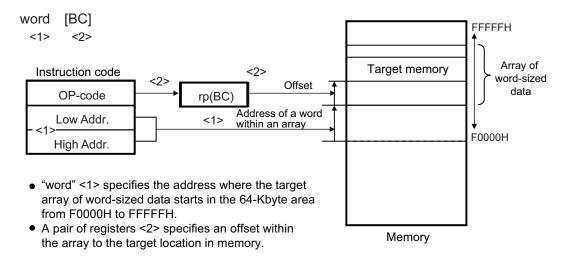



Figure 3-27. Example of word[BC]

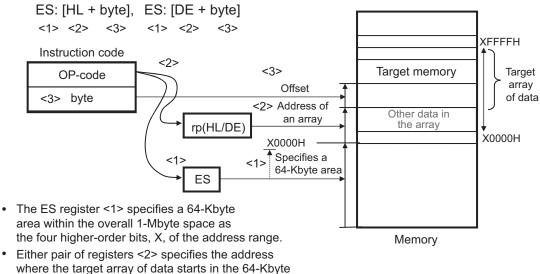


Figure 3-28. Example of ES:[HL + byte], ES:[DE + byte]

area specified in the ES register <1>.

"byte" <3> specifies an offset within the array to the

 "byte" <3> specifies an offset within the array to the target location in memory.

ES: word [B], ES: word [C] <1> <2> <3> <1> <2> <3> XFFFFH <3> Instruction code Array of <3> Target memory Offset word-sized OP-code data r(B/C) Low Addr. Address of a word within an array High Addr. X0000H H0000X <1> Specifies a <1>64-Kbyte area ES The ES register <1> specifies a 64-Kbyte area within the overall

Memory

Figure 3-29. Example of ES:word[B], ES:word[C]

- 1-Mbyte space as the four higher-order bits, X, of the address range.
 "word" <2> specifies the address where the target array of word-sizeddata
- starts in the 64-Kbyte area specified in the ES register <1>.
 Either register <3> specifies an offset within the array tothe target location in memory.

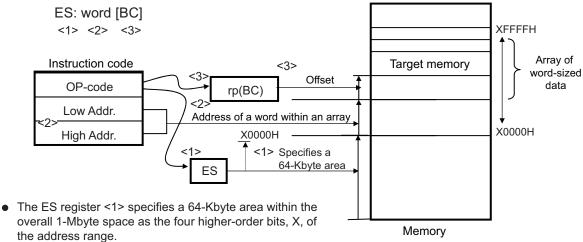


Figure 3-30. Example of ES:word[BC]

- "word" <2> specifies the address where the target array of word-sized data starts in the 64-Kbyte area specified in the ES register <1>.
- A pair of registers <3> specifies an offset within the array to the target location in memory.

3.4.8 Based indexed addressing

[Function]

Based indexed addressing uses the contents of a register pair specified with the instruction word as the base address, and the content of the B register or C register similarly specified with the instruction word as offset address. The sum of these values is used to specify the target address.

Identifier	Description
-	[HL+B], [HL+C] (only the space from F0000H to FFFFFH is specifiable)
_	ES:[HL+B], ES:[HL+C] (higher 4-bit addresses are specified by the ES register)

Figure 3-31. Example of [HL+B], [HL+C]

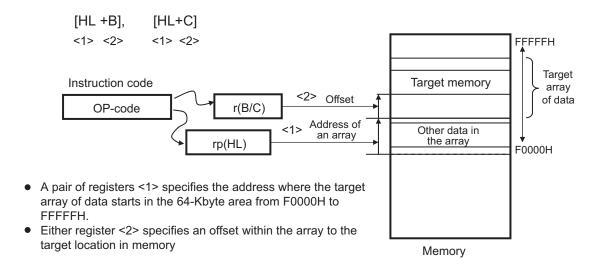
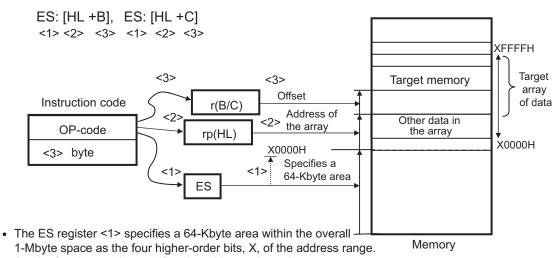
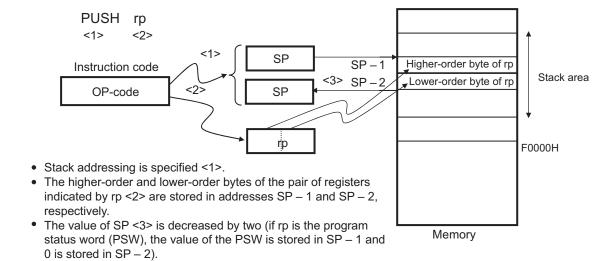



Figure 3-32. Example of ES:[HL+B], ES:[HL+C]

- A pair of registers <2> specifies the address where the target array of data starts in the 64-Kbyte area specified in the ES register <1>.
- Either register <3> specifies an offset within the array to the target location in memory.

3.4.9 Stack addressing

[Function]

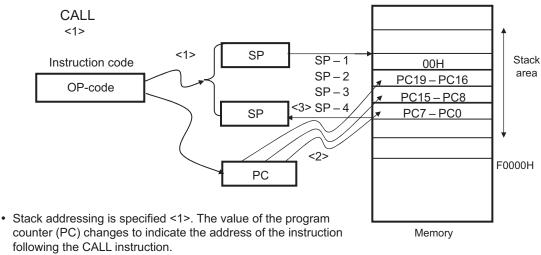

The stack area is indirectly addressed with the stack pointer (SP) contents. This addressing is automatically employed when the PUSH, POP, subroutine call, and return instructions are executed or the register is saved/restored upon generation of an interrupt request.

Stack addressing is applied only to the internal RAM area.

[Description format]

Identifier	Description
-	PUSH PSW AX/BC/DE/HL
	POP PSW AX/BC/DE/HL
	CALL/CALLT
	RET
	BRK
	RETB (Interrupt request generated)
	RETI

Figure 3-33. Example of PUSH rp



the PSW).

POP rp <1> <2> SP+2 <1> SP SP+1 (SP+1) Stack Instruction code area SP (SP) OP-code <2> SP F0000H rp Stack addressing is specified <1>. • The contents of addresses SP and SP + 1 are stored in the lower-order and higher-order bytes of the pair of registers indicated by rp <2>, respectively. Memory • The value of SP <3> is increased by two (if rp is the program

Figure 3-34. Example of POP

Figure 3-35. Example of CALL, CALLT

 00H, the values of PC bits 19 to 16, 15 to 8, and 7 to 0 are stored in addresses SP – 1, SP – 2, SP – 3, and SP – 4, respectively <2>.

status word (PSW), the content of address SP + 1 is stored in

• The value of the SP <3> is decreased by 4.

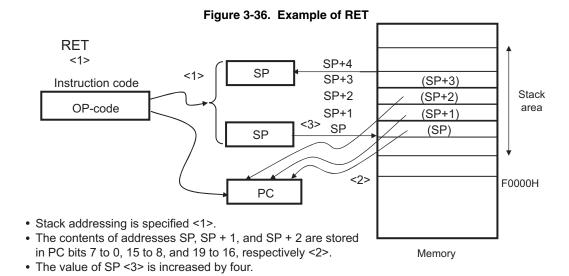
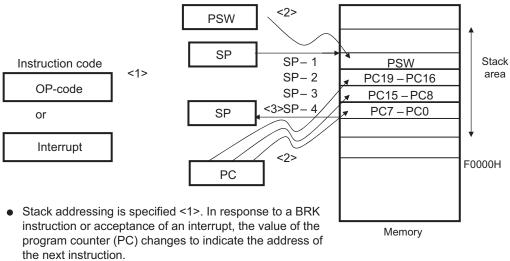



Figure 3-37. Example of Interrupt, BRK

- The values of the PSW, PC bits 19 to 16, 15 to 8, and 7 to 0 are stored in addresses SP – 1, SP – 2, SP – 3, and SP – 4, respectively <2>.
- The value of the SP <3> is decreased by 4.

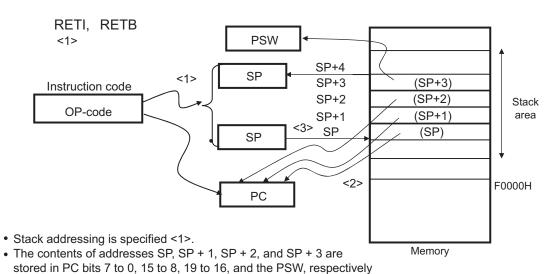


Figure 3-38. Example of RETI, RETB

<2>.
• The value of SP <3> is increased by four.

CHAPTER 4 PORT FUNCTIONS

4.1 Port Functions

The R7F0C001G/L, R7F0C002G/L microcontrollers are provided with digital I/O ports, which enable variety of control operations.

In addition to the function as digital I/O ports, these ports have several alternate functions. For details of the alternate functions, see **CHAPTER 2 PIN FUNCTIONS**.

4.2 Port Configuration

Ports include the following hardware.

Table 4-1. Port Configuration

Item	Configuration						
Control registers	Port mode registers (PM1 to PM7, PM12, PM14)						
	Port registers (P1 to P7, P12-P14)						
	Pull-up resistor option registers (PU1, PU3 to PU5, PU7, PU12, PU14)						
	Port input mode register (PIM1)						
	Port output mode register (POM1)						
	Port mode control registers (PMC1, PMC4, PMC12, PMC14)						
	A/D port configuration register (ADPC)						
	Peripheral I/O redirection register (PIOR)						
	LCD port function registers (PFSEG0 PFSEG4)						
	LCD input switch control register (ISCLCD)						
Port	• 48-pin products						
	Total: 33 (CMOS I/O: 26, CMOS input: 5, N-ch open drain I/O: 2)						
	• 64-pin products						
	Total: 47 (CMOS I/O: 39, CMOS input: 5, CMOS output: 1, N-ch open drain I/O: 2)						
Pull-up resistor	• 48-pin products Total: 24						
	• 64-pin products Total: 37						

<R> 4.2.1 Port 1

Port 1 is an I/O port with an output latch. Port 1 can be set to the input mode or output mode in 1-bit units using port mode register 1 (PM1). When the P10 to P17 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 1 (PU1).

Input to the P10, P11, P15, and P16 pins can be specified through a normal input buffer or a TTL input buffer in 1-bit units using port input mode register 1 (PIM1).

Output from the P10, P12, P15, and P17 pins can be specified as a normal CMOS output or N-ch open-drain output (V_{DD} tolerance Note 1/EV_{DD} tolerance Note 2) in 1-bit units using port output mode register 1 (POM1).

To use P13 and P14 as input pins, set them in the digital input mode or analog input mode by using port mode control register 1 (PMC1) (can be specified in 1-bit units).

This port can also be used for serial interface data I/O, serial interface clock I/O, programming UART I/O, timer I/O, segment output of the LCD controller/driver, external interrupt request input, and A/D converter analog input.

When reset signal is generated, the following configuration will be set.

- P10 to P12 and P05 to P07 pins ··· Input mode
- P13 and P14 pins ··· Analog input

Notes 1. 48-pin products: VDD tolerance2. 64-pin products: EVDD tolerance

<R> 4.2.2 Port 2

Port 2 is an I/O port with an output latch. Port 2 can be set to the input mode or output mode in 1-bit units using port mode register 2 (PM2).

This port can also be used for A/D converter analog input and reference voltage input (+ side and - side).

To use P20/ANI0 to P21/ANI1 as digital input/output pins, set them in the digital I/O mode by using the A/D port configuration register (ADPC). Use these pins starting from the upper bit.

To use P20/ANI0 to P21/ANI1 as analog input pins, set them in the analog input mode by using the A/D port configuration register (ADPC) and in the input mode by using the PM2 register. Use these pins starting from the lower bit.

P20/ANI0 to P21/ANI1 Pins **ADPC Register** PM2 Register **ADS Register** Digital I/O selection Input mode Digital input Output mode Digital output Selects ANI. Analog input selection Input mode Analog input (to be converted) Does not select ANI. Analog input (not to be converted) Selects ANI Setting prohibited Output mode Does not select ANI.

Table 4-2. Setting Functions of P20/ANI0 to P21/ANI1 Pins

All P20/ANI0 to P21/ANI1 are set in the analog input mode when the reset signal is generated.

<R> 4.2.3 Port 3

Port 3 is an I/O port with an output latch. Port 3 can be set to the input mode or output mode in 1-bit units using port mode register 3 (PM3). When the P30 to P32 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 3 (PU3).

This port can also be used for external interrupt request input, real-time clock correction clock output, segment output of the LCD controller/driver, and timer I/O.

Reset signal generation sets P30 to P32 to input mode.

<R> 4.2.4 Port 4

Port 4 is an I/O port with an output latch. Port 4 can be set to the input mode or output mode in 1-bit units using port mode register 4 (PM4). When the P40 to P43 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 4 (PU4).

Be sure to connect an external pull-up resistor to P40 when on-chip debugging is enabled (by using an option byte).

This port can also be used for segment output of the LCD controller/driver, external interrupt request input, data I/O for a flash memory programmer/debugger, timer I/O, and A/D converter analog input.

Reset signal generation sets P40, P42, and P43 to input mode, and sets P41 to analog input.

<R> 4.2.5 Port 5

Port 5 is an I/O port with an output latch. Port 5 can be set to the input mode or output mode in 1-bit units using port mode register 5 (PM5). When the P50 to P54 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 5 (PU5).

This port can also be used for external interrupt request input, segment output of the LCD controller/driver, and timer I/O.

Reset signal generation sets port 5 to input mode.

<R> 4.2.6 Port 6

Port 6 is an I/O port with an output latch. Port 6 can be set to the input mode or output mode in 1-bit units using port mode register 6 (PM6).

The output of the P60 and P61 pins is N-ch open-drain output (EVDD tolerance Note).

This port can also be used for segment output of the LCD controller/drive.

Reset signal generation sets port 6 to input mode.

Note 48-pin products: VDD tolerance 64-pin products: EVDD tolerance

<R> 4.2.7 Port 7

Port 7 is an I/O port with an output latch. Port 7 can be set to the input mode or output mode in 1-bit units using port mode register 7 (PM7). When used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 7 (PU7).

This port can also be used for key interrupt input and segment output of the LCD controller/driver.

Reset signal generation sets port 7 to input mode.

<R> 4.2.8 Port 12

P120 and P125 to P127 are 4-bit I/O ports with an output latch. These port pins can be set to the input mode or output mode in 1-bit units using port mode register 12 (PM12). When used as an input port, use of an on-chip pull-up resistor can be specified by pull-up resistor option register 12 (PU12).

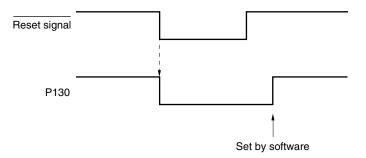
P121 to P124 are 4-bit input-only ports.

Digital input/output or analog input can be specified for the P120 pin using port mode control register 12 (PMC12).

This port can also be used for A/D converter analog input, connecting resonator for main system clock, connecting resonator for subsystem clock, external clock input for main system clock, external clock input for subsystem clock, segment output of the LCD controller/driver, connecting the capacitor for the LCD controller/driver, and voltage pin for driving the LCD.

Reset signal generation sets P120 to analog input, and sets P121 to P127 to input mode.

<R> 4.2.9 Port 13


P130 is a 1-bit output-only port with an output latch.

P137 is a 1-bit input-only port.

P130 is fixed an output port, and P137 is fixed an input port.

This port can also be used for external interrupt request input.

Remark When a reset takes effect, P130 outputs a low-level signal. If P130 is set to output a high-level signal before a reset takes effect, the output signal of P130 can be dummy-output as the CPU reset signal.

<R> 4.2.10 Port 14

Port 14 is an I/O port with an output latch. Port 14 can be set to the input mode or output mode in 1-bit units using port mode register 14 (PM14). When the P140 to P147 pins are used as an input port, use of an on-chip pull-up resistor can be specified in 1-bit units by pull-up resistor option register 14 (PU14).

Digital input/output or analog input can be specified for the P142 to P145 pins using port mode control register 14 (PMC14).

This port can also be used for clock/buzzer output, segment output of the LCD controller/driver, A/D converter analog input, and timer I/O.

Reset signal generation sets P140, P141, P146, and P147 to input mode, and sets P142 to P145 to analog input.

4.3 Registers Controlling Port Function

Port functions are controlled by the following registers.

- Port mode registers (PMxx)
- Port registers (Pxx)
- Pull-up resistor option registers (PUxx)
- Port input mode registers (PIMxx)
- Port output mode registers (POMxx)
- Port mode control registers (PMCxx)
- A/D port configuration register (ADPC)
- Peripheral I/O redirection register (PIOR)
- LCD port function registers (PFSEG0 to PFSEG4)
- LCD input switch control register (ISCLCD)

Caution The undefined bits in each register vary by product and must be used with their initial value.

Table 4-3. PMxx, Pxx, PUxx, PIMxx, POMxx, PMCxx registers and the bits mounted on each product (1/3)

Port			Bit name							
		PMxx register	Pxx register	PUxx register	PIMxx register	POMxx register	PMCxx register			
Port 0	-	-	-	-	-	-	-	=	-	
Port 1	0	PM10	P10	PU10	PIM10	POM10	-	√	V	
	1	PM11	P11	PU11	PIM11	=	=	√	V	
	2	PM12	P12	PU12	=	POM12	=	√	V	
	3	PM13	P13	PU13	=	=	PMC13	√	√	
	4	PM14	P14	PU14	=	=	PMC14	√	√	
	5	PM15	P15	PU15	PIM15	POM15	=	√	√	
	6	PM16	P16	PU16	PIM16	=	=	√	V	
	7	PM17	P17	PU17	=	POM17	=	√	√	
Port 2	0	PM20	P20	=	=	=	=	√	√	
	1	PM21	P21	=	=	=	=	√	V	
	2	=	=	=	-	=	=	-	-	
	3	=	=	=	-	=	=	-	-	
	4	=	=	=	-	=	=	-	-	
	5	=	=	=	=	=	-	_	_	
	6	=	=	=	=	=	-	_	_	
	7	=	-	-	-	=	-	-	-	

Table 4-3. PMxx, Pxx, PUxx, PIMxx, POMxx, PMCxx registers and the bits mounted on each product (2/3)

Port			64-pin	48-pin					
		PMxx register	Pxx register	PUxx register	PIMxx register	POMxx register	PMCxx register		
Port 3	0	PM30	P30	PU30	-	-	-	√	√
	1	PM31	P31	PU31	-	-	-	√	√
	2	PM32	P32	PU32	-	-	-	√	√
	3	-	-	_	-	-	-	-	_
	4	-	-	_	-	-	-	_	-
	5	-	-	_	-	-	-	_	-
	6	-	-	-	-	-	_	_	-
	7	-	-	-	-	-	-	_	_
Port 4	0	PM40	P40	PU40	-	-	-	√	√
	1	PM41	P41	PU41	-	-	PMC41	√	√
	2	PM42	P42	PU42	-	-	-	√	_
	3	PM43	P43	PU43	-	-	-	√	_
	4	_	-	_	-	-	-	_	_
	5	_	-	-	-	-	-	_	-
	6	-	-	-	-	-	-	-	_
	7	-	-	_	-	-	-	-	_
Port 5	0	PM50	P50	PU50	-	-	-	√	√
	1	PM51	P51	PU51	-	-	-	√	-
	2	PM52	P52	PU52	-	-	-	√	_
	3	PM53	P53	PU53	-	-	-	√	_
	4	PM54	P54	PU54	-	-	-	√	_
	5	-	=	=	-	-	=	-	-
	6	-	=	=	=	-	=	=	_
	7	-	=	=	=	=	=	-	-
Port 6	0	PM60	P60	-	-	-	-	√	√
	1	PM61	P61	_	-	-	-	√	√
	2	-	-	-	-	-	-	-	_
	3	-	=	=	-	-	=	-	-
	4	-	=	=	=	-	=	=	_
	5	=	=	=	=	=		-	=
	6	=	=	=	=	-	=	=	-
	7	-	=	=	=	-	=	=	_
Port 7	0	PM70	P70	PU70	-	-	=	√	√
	1	PM71	P71	PU71	-	=	=	\checkmark	-
	2	PM72	P72	PU72	-	-	-	V	-
	3	PM73	P73	PU73	=	=	=	V	=
	4	PM74	P74	PU74	-	-		√	_
	5	-	-	-	-	-	-	-	-
	6	-	-	-		-		-	-
	7	=	=	=	=	=	=	=	=.

Table 4-3. PMxx, Pxx, PUxx, PIMxx, POMxx, PMCxx registers and the bits mounted on each product (3/3)

Port			64-pin	48-pin					
		PMxx register	Pxx register	PUxx register	PIMxx register	POMxx register	PMCxx register		
Port 8	-	-	_	-	-	-	-	-	-
Port 9	_	=	=	=	=	=	=	-	-
Port 10	_	-	-	-	-	_	-	-	-
Port 11	_	=	=	=	=	=	=	-	-
Port 12	0	PM120	P120	PU120	=	=	PMC120	V	√
	1	=	P121	=	=	=	=	V	√
	2	=	P122	=	=	=	=	V	√
D. 140	3	=	P123	=	=	=	=	V	√
	4	=	P124	=	=	=	=	V	√
	5	PM125	P125	PU125	=	=	=	V	√
	6	PM126	P126	PU126	=	=	=	V	√
	7	PM127	P127	PU127	-	-	-	V	√
Port 13	0	=	P130	=	=	=	-	V	-
	1	=	=	=	=	=	=	-	-
	2	=	=	=	=	=	=	-	-
	3	=	=	=	=	=	=	-	-
	4	=	=	=	=	=	=	-	-
	5	=	=	=	=	=	=	-	-
	6	=	=	=	=	=	=	-	-
	7	=	P137	=	=	=	=	V	√
Port 14	0	PM140	P140	PU140	-	_	-	V	√
	1	PM141	P141	PU141	-	-	_	V	√
	2	PM142	P142	PU142	-	-	PMC142	V	√
	3	PM143	P143	PU143	-	-	PMC143	V	√
	4	PM144	P144	PU144	-	-	PMC144	V	√
	5	PM145	P145	PU145	-	-	PMC145	V	-
	6	PM146	P146	PU146	-	-	-	V	-
	7	PM147	P147	PU147	-	-	_	V	-
Port 15	_	-	-	-	-	_	-	-	-

The format of each register is described below. The description here uses the 64-pin products as an example. For the registers mounted on others than 64-pin products, refer to **table 4-3**.

4.3.1 Port mode registers (PMxx)

These registers specify input or output mode for the port in 1-bit units.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH.

When port pins are used as alternate-function pins, set the port mode register by referencing **4.5 Register Settings**When Using Alternate Function.

Figure 4-1. Format of Port Mode Register (64-pin products)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W		
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W		
PM2	1	1	1	1	1	1	PM21	PM20	FFF22H	FFH	R/W		
РМ3	1	1	1	1	1	PM32	PM31	PM30	FFF23H	FFH	R/W		
	_	,											
PM4	1	1	1	1	PM43	PM42	PM41	PM40	FFF24H	FFH	R/W		
	r	1						1					
PM5	1	1	1	PM54	PM53	PM52	PM51	PM50	FFF25H	FFH	R/W		
	r	1		1			1	1					
PM6	1	1	1	1	1	1	PM61	PM60	FFF26H	FFH	R/W		
	-	T						1					
PM7	1	1	1	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W		
		1						ı					
PM12	PM127	PM126	PM125	1	1	1	1	PM120	FFF2CH	FFH	R/W		
		1						ı					
PM14	PM147	PM146	PM145	PM144	PM143	PM142	PM141	PM140	FFF2EH	FFH	R/W		
•													
	PMmn	Pmn pin I/O mode selection											
	_	-	(m = 1 to 7, 12, 14; n = 0 to 7)										
	0	· ·	ode (outpu)								
	1	Input mod	put mode (output buffer off)										

<R> Caution Be sure to set bits that are not mounted to their initial values.

4.3.2 Port registers (Pxx)

These registers set the output latch value of a port.

If the data is read in the input mode, the pin level is read. If it is read in the output mode, the output latch value is read. If it is read in the output mode, the output latch value is read.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H.

Note If P13, P14, P20, P21, P41, P120, and P142 to P145 are set up as analog inputs of the A/D converter, when a port is read while in the input mode, 0 is always returned, not the pin level.

Symbol 7 6 5 4 3 2 1 0 Address After reset R/W P14 P1 P17 P16 P15 P13 P12 P11 P10 FFF01H 00H (output latch) R/W P2 0 0 0 0 0 0 P21 P20 FFF02H 00H (output latch) R/W РЗ 0 0 0 0 P32 P31 P30 FFF03H 00H (output latch) R/W 0 P43 P42 P41 P40 FFF04H 00H (output latch) R/W P5 0 0 P54 P53 P52 P51 P50 FFF05H 00H (output latch) R/W P6 0 0 0 0 0 0 P61 P60 FFF06H 00H (output latch) R/W P72 P70 FFF07H 0 0 0 P74 P73 P71 00H (output latch) R/W P12 P127 P126 P125 P124 P123 P122 P121 P120 FFF0CH Undefined R/W Note 1 P137 P130 FFF0DH R/W Note 1 P13 0 0 0 0 0 0 Note 2

Figure 4-2. Format of Port Register (64-pin products)

Pmn	Output data control (in output mode)	Input data read (in input mode)
0	Output 0	Input low level
1	Output 1	Input high level

P142

P141

P140

FFF0EH

00H (output latch) R/W

Notes 1. P121 to P124, and P137 are read-only.

2. P137: Undefined P130: 0 (output latch)

P145

<R> Caution Be sure to set bits that are not mounted to their initial values.

P144

P143

Remark m = 1 to 7, 12 to 14; n = 0 to 7

P14

P147

P146

4.3.3 Pull-up resistor option registers (PUxx)

These registers specify whether the on-chip pull-up resistors are to be used or not. On-chip pull-up resistors can be used in 1-bit units only for the bits set to input mode (PMmn = 1 and POMmn = 0) for the pins to which the use of an on-chip pull-up resistor has been specified in these registers. On-chip pull-up resistors cannot be connected to bits set to output mode and bits used as alternate-function output pins and analog setting (PMC = 1, ADPC = 1), regardless of the settings of these registers.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H (Only PU4 is set to 01H).

Caution When a port with the PIMn register is input from different potential device to TTL buffer, pull up to the power supply of the different potential device via a external pull-up resistor by setting PUmn = 0.

Symbol 6 3 2 1 0 Address After reset R/W PU1 PU17 PU16 PU15 PU14 PU13 PU12 PU11 PU10 F0031H 00H R/W 0 PU32 PU31 F0033H PU3 0 0 0 0 PU₃₀ 00H R/W PU4 0 0 0 0 PU43 PU42 PU41 PU40 F0034H 01H R/W PU51 F0035H PU₅ 0 0 0 PU54 PU53 PU52 PU50 00H R/W PU7 0 0 PU74 PU73 PU72 PU71 PU70 F0037H 00H R/W PU12 PU127 PU126 PU125 0 PU120 F003CH 00H R/W 0

Figure 4-3. Format of Pull-up Resistor Option Register (64-pin products)

PUmn	Pmn pin on-chip pull-up resistor selection
	(m = 1, 3 to 5, 7, 12, 14; n = 0 to 7)
0	On-chip pull-up resistor not connected
1	On-chip pull-up resistor connected

PU141

PU140

F003EH

00H

R/W

PU142

Cautions 1. For the pins used as LCD function pins (SEGxx, CAPL, CAPH, and VL3), be sure to clear the corresponding PUmn bit of the PUm register to 0.

2. Be sure to set bits that are not mounted to their initial values.

PU14

PU147

PU146

PU145

PU144

PU143

4.3.4 Port input mode register (PIM1)

These registers set the input buffer in 1-bit units.

TTL input buffer can be selected during serial communication, etc with an external device of the different potential.

Port input mode registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H.

Figure 4-4. Format of Port Input Mode Register (64-pin products)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PIM1	0	PIM16	PIM15	0	0	0	PIM11	PIM10	F0041H	00H	R/W

PIM1n	P1n pin input buffer selection $(n = 0, 1, 5, 6)$
0	Normal input buffer
1	TTL input buffer

Cautions 1. When using P10/SCK00/SEG28, P11/SI00/RxD0/TOOLRxD/SEG29, P15/SCK01/INTP1/SEG4, and P16/SI01/INTP2/SEG5 as LCD controller/driver function pins (segment output pins), setting the PIM1n bit to 1 is prohibited.

2. Be sure to set bits that are not mounted to their initial values.

4.3.5 Port output mode register (POM1)

<R>

This register set the output mode of P10, P12, P15, P17 in 1-bit units.

N-ch open drain output (VDD tolerance Note 1/EVDD tolerance Note 2) mode can be selected during serial communication with an external device of the different potential.

In addition, POMxx register is set with PUxx register, whether or not to use the on-chip pull-up resistor.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

An on-chip pull-up resistor is not connected to a bit for which N-ch open drain output (VDD <R> Caution tolerance Note 1/EVDD tolerance Note 2) mode is set.

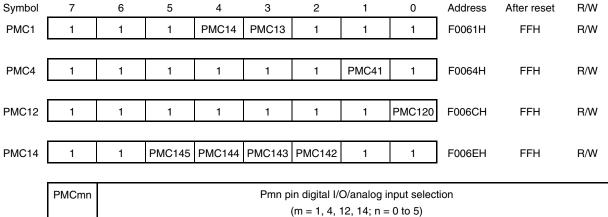
Figure 4-5. Format of Port Input Mode Register (64-pin products)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
POM1	POM17	0	POM15	0	0	POM12	0	POM10	F0051H	00H	R/W

POM1n	Pmn pin output mode selection (n = 0, 2, 5, 7)
0	Normal output mode
1	N-ch open-drain output (V _{DD} tolerance ^{Note 1} /EV _{DD} tolerance ^{Note 2}) mode

Notes 1. 48-pin products: VDD tolerance 2. 64-pin products: EVDD tolerance

Caution Be sure to set bits that are not mounted to their initial values. <R>


4.3.6 Port mode control registers (PMCxx)

These registers set the P13, P14, P41, P120, and P142 to P145 digital I/O/analog input in 1-bit units.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

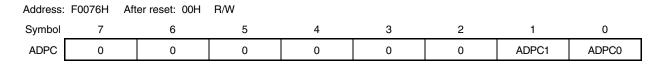
Reset signal generation clears these registers to FFH.

Figure 4-6. Format of Port Mode Control Register (64-pin products)

PMCmn	Pmn pin digital I/O/analog input selection
	(m = 1, 4, 12, 14; n = 0 to 5)
0	Digital I/O (alternate function other than analog input)
1	Analog input

- Cautions 1. Select input mode by using port mode registers 1, 4, 12, 14 (PM1, PM4, PM12, PM14) for the <R> ports which are set by the PMCxx register as analog input.
 - 2. Do not set the pin set by the PMC register as digital I/O by the analog input channel specification register (ADS).
 - 3. Be sure to set bits that are not mounted to their initial values.

<R>


4.3.7 A/D port configuration register (ADPC)

This register switches the P20/ANI0, P21/AN21 pins to digital I/O of port or analog input of A/D converter.

The ADPC register can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets this register to 00H.

Figure 4-7. Format of A/D Port Configuration Register (ADPC)

ADPC1	ADPC0	Analog input (A)/digital I/O (D) switching				
		ANI1/P21	ANI0/P20			
0	0	А	Α			
0	1	D	D			
1	0	D	Α			
1	1	А	А			

- Cautions 1. Set the port to analog input by ADPC register to the input mode by using port mode registers 2 (PM2).
 - 2. Do not set the pin set by the ADPC register as digital I/O by the analog input channel specification register (ADS).
 - 3. When using AVREFP and AVREFM, set ANIO and ANI1 to analog input and set the port mode register to the input mode.

<R>

4.3.8 Peripheral I/O redirection register (PIOR)

This register is used to specify whether to enable or disable the peripheral I/O redirect function.

This function is used to switch ports to which alternate functions are assigned.

Use the PIOR register to assign a port to the function to redirect and enable the function.

In addition, can be changed the settings for redirection until its function enable operation.

The PIOR register can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets this register to 00H.

Figure 4-8. Format of Peripheral I/O Redirection Register (PIOR)

Address:	F0077H	After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
PIOR	0	0	0	0	0	0	PIOR1	PIOR0

Bit	Function	64-pin		48-pin		
		Settino	y value	Setting	y value	
		0	1	0	1	
PIOR1	PCLBUZ0	P140	P50	P140	P50	
PIOR0	INTP1	P15	P53	P15	P10	
	INTP2	P16	P54	P16	P11	
	INTP6	P52	P140	-	-	
	INTP7	P43	P141	-	-	
	TI02/TO02	P17	P54	P17	P12	

4.3.9 LCD port function registers 0 to 4 (PFSEG0 to PFSEG4)

These registers set whether to use pins P10 to P17, P30 to P32, P41 to P43, P50 to P54, P60, P61, P70 to P74, P120, and P140 to P147 as port pins (other than segment output pins) or segment output pins.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH (PFSEG0 is set to F0H, and PFSEG4 is set to 7FH).

Remark The correspondence between the segment output pins (SEGxx) and the PFSEG register (PFSEGxx bits) and the existence of SEGxx pins in each product are shown in Table 4-4 Segment Output Pins in Each Product and Correspondence with PFSEG Register (PFSEG Bits).

Figure 4-9. Format of LCD port function registers 0 to 4 (PFSEG0 to PFSEG4) (64-pin products)

Address: F	0300H Afte	r reset: F0H	R/W					
Symbol	7	6	5	4	3	2	1	0
PFSEG0	PFSEG07	PFSEG06	PFSEG05	PFSEG04	0	0	0	0
Address: F	0301H Afte	r reset: FFH	R/W					
Symbol	7	6	5	4	3	2	1	0
PFSEG1	PFSEG15	PFSEG14	PFSEG13	PFSEG12	PFSEG11	PFSEG10	PFSEG09	PFSEG08
Address: F	0302H Afte	r reset: FFH	l R/W					
Symbol	7	6	5	4	3	2	1	0
PFSEG2	PFSEG23	PFSEG22	PFSEG21	PFSEG20	PFSEG19	PFSEG18	PFSEG17	PFSEG16
Address: F	0303H Afte	r reset: FFH	l R/W					
Symbol	7	6	5	4	3	2	1	0
PFSEG3	PFSEG31	PFSEG30	PFSEG29	PFSEG28	PFSEG27	PFSEG26	PFSEG25	PFSEG24
Address: F	0304H Afte	r reset: 7FH	R/W					
Symbol	7	6	5	4	3	2	1	0
PFSEG4	0	PFSEG38	PFSEG37	PFSEG36	PFSEG35	PFSEG34	PFSEG33	PFSEG32
	PFSEGxx	Port (otl	her than seg	ment output)/segment o	utputs speci	fication of P	mn pins
	(xx = 04)	(mn = 1	0 to 17, 30 t	o 32, 41 to 4	13, 50 to 54,	60, 61, 70-7	74, 120, 140	to 147)
	to 38)							
	0	Used the P	mn pin as po	ort (other tha	ın segment o	output)		
	Used the Pmn pin as port (other than segment output)Used the Pmn pin as segment output							

Table 4-4. Segment Output Pins in Each Product and Correspondence with PFSEG Register (PFSEG Bits)

Bit name of PFSEG register	Corresponding SEGxx pins	Alternate port	64-pin	48-pin
PFSEG04	SEG4	P15	√	√
PFSEG05	SEG5	P16	√	V
PFSEG06	SEG6	P17	\checkmark	√
PFSEG07	SEG7	P50	√	√
PFSEG08	SEG8	P51	√	-
PFSEG09	SEG9	P52	\checkmark	=
PFSEG10	SEG10	P53	\checkmark	_
PFSEG11	SEG11	P54	√	-
PFSEG12	SEG12	P74	√	-
PFSEG13	SEG13	P73	√	-
PFSEG14	SEG14	P72	√	-
PFSEG15	SEG15	P71	√	_
PFSEG16	SEG16	P70	√	√
PFSEG17	SEG17	P32	√	√
PFSEG18	SEG18	P31	√	√
PFSEG19	SEG19	P30	√	√
PFSEG20	SEG20	P61	√	√
PFSEG21	SEG21	P60	√	√
PFSEG22	SEG22	P43	√	-
PFSEG23	SEG23	P42	√	_
PFSEG24	SEG24	P41	√	√
PFSEG25	SEG25	P120	√	√
PFSEG26	SEG26	P141	√	√
PFSEG27	SEG27	P140	√	√
PFSEG28	SEG28	P10	√	√
PFSEG29	SEG29	P11	√	√
PFSEG30	SEG30	P12	√	√
PFSEG31	SEG31	P13	√	√
PFSEG32	SEG32	P14	√	√
PFSEG33	SEG33	P142	√	√
PFSEG34	SEG34	P143	√	√
PFSEG35	SEG35	P144	√	√
PFSEG36	SEG36	P145	√	=
PFSEG37	SEG37	P146	√	-
PFSEG38	SEG38	P147	√	-

Remark √: Supported, –: Not supported

4.3.10 LCD input switch control register (ISCLCD)

The CAPL/P126, CAPH/P127, and V_{L3}/P125 pins are internally connected with a Schmitt trigger buffer. To use these pins as LCD function, input to the Schmitt trigger buffer must be disabled, in order to prevent through-currents from entering.

The ISCLCD register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets these registers to 00H.

Figure 4-10. Format of LCD input switch control register (ISCLCD)

 Address: F0308H
 After reset: 00H
 R/W

 Symbol
 7
 6
 5
 4
 3
 2
 1
 0

 ISCLCD
 0
 0
 0
 0
 0
 ISCVL3
 ISCCAP

ISCVL3	Control of schmitt trigger buffer of VLs/P125 pin
0	Makes digital input ineffective
1	Makes digital input effective

ISCCAP	Control of schmitt trigger buffer of CAPL/ P126 and CAPH/P127 pins
0	Makes digital input ineffective
1	Makes digital input effective

Cautions 1. If ISCVL3 bit = 0, set the corresponding port control registers as follows:

PU125 bit of PU12 register = 0, P125 bit of P12 register = 0

2. If ISCCAP bit = 0, set the corresponding port control registers as follows:

PU127 bit of PU12 register = 0, P127 bit of P12 register = 0

PU126 bit of PU12 register = 0, P126 bit of P12 register = 0

4.4 Port Function Operations

Port operations differ depending on whether the input or output mode is set, as shown below.

4.4.1 Writing to I/O port

(1) Output mode

A value is written to the output latch by a transfer instruction, and the output latch contents are output from the pin.

Once data is written to the output latch, it is retained until data is written to the output latch again.

The data of the output latch is cleared when a reset signal is generated.

(2) Input mode

A value is written to the output latch by a transfer instruction, but since the output buffer is off, the pin status does not change. Therefore, byte data can be written to the ports used for both input and output.

Once data is written to the output latch, it is retained until data is written to the output latch again.

The data of the output latch is cleared when a reset signal is generated.

4.4.2 Reading from I/O port

(1) Output mode

The output latch contents are read by a transfer instruction. The output latch contents do not change.

(2) Input mode

The pin status is read by a transfer instruction. The output latch contents do not change.

4.4.3 Operations on I/O port

(1) Output mode

An operation is performed on the output latch contents, and the result is written to the output latch. The output latch contents are output from the pins.

Once data is written to the output latch, it is retained until data is written to the output latch again.

The data of the output latch is cleared when a reset signal is generated.

(2) Input mode

The pin level is read and an operation is performed on its contents. The result of the operation is written to the output latch, but since the output buffer is off, the pin status does not change. Therefore, byte data can be written to the ports used for both input and output.

The data of the output latch is cleared when a reset signal is generated.

<R> 4.4.4 Connecting to external device with different potential (1.8 V, 2.5 V, 3 V)

It is possible to connect to an external device with a different potential (1.8 V, 2.5 V or 3 V) by changing EVDD to accord with the power supply of the connected device. In products in which EVDD cannot be specified independently, I/O connection with an external device operating on 1.8 V, 2.5 V or 3 V is still possible via the serial interface and general-purpose port by using port 1.

<R> 4.4.5 Handling different potential (1.8 V, 2.5 V, 3 V) by using I/O buffers

It is possible to connect an external device operating on a different potential (1.8 V, 2.5 V or 3 V) by switching I/O buffers with the port input mode register (PIM1) and port output mode register (POM1).

When receiving input from an external device with a different potential (1.8 V, 2.5 V or 3 V), set the port input mode register 1 (PIM1) on a bit-by-bit basis to enable normal input (CMOS)/TTL input buffer switching.

When outputting data to an external device with a different potential (1.8 V, 2.5 V or 3 V), set the port output mode register 1 (POM1) on a bit-by-bit basis to enable normal output (CMOS)/N-ch open drain (VDD tolerance Note 1/EVDD tolerance Note 2) switching.

The connection of a serial interface is described in the following.

Notes 1. For 48-pin products

2. For 64-pin products

(1) Setting procedure when using input pins of UARTO, CSI00, and CSI01 functions for the TTL input buffer

In case of UARTO: P11
In case of CSI00: P10, P11
In case of CSI01: P15, P16

- <1> Using an external resistor, pull up externally the pin to be used to the power supply of the target device (on-chip pull-up resistor cannot be used).
- <2> Set the corresponding bit of the PIM1 register to 1 to switch to the TTL input buffer. For ViH and ViL, refer to the DC characteristics when the TTL input buffer is selected.
- <3> Enable the operation of the serial array unit and set the mode to the UART/CSI mode.

(2) Setting procedure when using output pins of UART0, CSI00, and CSI01 functions in N-ch open-drain output mode

In case of UART0: P12
In case of CSI00: P10, P12
In case of CSI01: P15, P17

- <1> Using an external resistor, pull up externally the pin to be used to the power supply of the target device (on-chip pull-up resistor cannot be used).
- <2> After reset release, the port mode is the input mode (Hi-Z).
- <3> Set the output latch of the corresponding port to 1.
- <4> Set the corresponding bit of the POM1 register to 1 to set the N-ch open drain output (V_{DD} tolerance Note 1) /EV_{DD} tolerance Note 2) mode.
- <5> Enable the operation of the serial array unit and set the mode to the UART/CSI mode.
- <6> Set the corresponding bit of the PM1 register to the output mode. At this time, the output data is high level, so the pin is in the Hi-Z state.

Notes 1. For 48-pin products

2. For 64-pin products

4.5 Register Settings When Using Alternate Function

<R> 4.5.1 Basic concept when using alternate function

In the beginning, for a pin also assigned to be used for analog input, use the ADPC register or port mode control register (PMCxx) to specify whether to use the pin for analog input or digital input/output.

Figure 4-11 shows the basic configuration of an output circuit for pins used for digital input/output. The output of the output latch for the port and the output of the alternate SAU function are input to an AND gate. The output of the AND gate is input to an OR gate. The output of an alternate function other than SAU (TAU, RTC, clock/buzzer output, IICA, etc.) is connected to the other input pin of the OR gate. When such kind of pins are used by the port function or an alternate function, the unused alternate function must not hinder the output of the function to be used. An idea of basic settings for this kind of case is shown in Table 4-5.

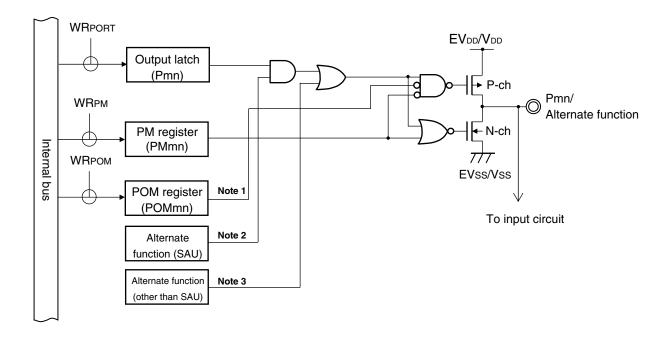


Figure 4-11. Basic Configuration of Output Circuit for Pins

Notes 1. When there is no POM register, this signal should be considered to be low level (0).

- 2. When there is no alternate function, this signal should be considered to be high level (1).
- 3. When there is no alternate function, this signal should be considered to be low level (0).

Remark m: Port number (m = 1 to 7, 12 to 14); n: Bit number (n = 0 to 7)

	Output Settings of Unused Alternate Function								
Output Function of Used Pin	Output Function for Port	Output Function for SAU	Output Function for other than SAU						
Output function for port	_	Output is high (1)	Output is low (0)						
Output function for SAU	High (1)		Output is low (0)						
Output function for other than SAU	Low (0)	Output is high (1)	Output is low (0) Note						

Table 4-5. Concept of Basic Settings

Note Since more than one output function other than SAU may be assigned to a single pin, the output of an unused alternate function must be set to low level (0). For details on the setting method, see **4.5.2 Register settings** for alternate function whose output function is not used.

<R> 4.5.2 Register settings for alternate function whose output function is not used

When the output of an alternate function of the pin is not used, the following settings should be made. Note that when the peripheral I/O redirection function is the target, the output can be switched to another pin by setting the peripheral I/O redirection register (PIOR). This allows usage of the port function or other alternate function assigned to the target pin.

- (1) SOp = 1, TxDq = 1 (settings when the serial output (SOp/TxDq) of SAU is not used)

 When the serial output (SOp/TxDq) is not used, such as, a case in which only the serial input of SAU is used, set the bit in serial output enable register m (SOEm) which corresponds to the unused output to 0 (output disabled) and set the SOmn bit in serial output register m (SOm) to 1 (high). These are the same settings as the initial state.
- (2) SCKp = 1, SDAr = 1, SCLr = 1 (settings when channel n in SAU is not used)
 When SAU is not used, set bit n (SEmn) in serial channel enable status register m (SEm) to 0 (operation stopped state), set the bit in serial output enable register m (SOEm) which corresponds to the unused output to 0 (output disabled), and set the SOmn and CKOmn bits in serial output register m (SOm) to 1 (high). These are the same settings as the initial state.
- (3) TOmn = 0 (settings when the output of channel n in TAU is not used)

 When the TOmn output of TAU is not used, set the bit in timer output enable register 0 (TOE0) which corresponds to the unused output to 0 (output disabled) and set the bit in timer output register 0 (TO0) to 0 (low). These are the same settings as the initial state.
- (4) SDAAn = 0, SCLAn = 0 (setting when IICA is not used)
 When IICA is not used, set the IICEn bit in IICA control register n0 (IICCTLn0) to 0 (operation stopped). This is the same setting as the initial state.
- (5) PCLBUZn = 0 (setting when clock/buzzer output is not used)
 When the clock/buzzer output is not used, set the PCLOEn bit in clock output select register n (CKSn) to 0 (output disabled). This is the same setting as the initial state.

<R> 4.5.3 Register setting examples for used port and alternate functions

Register setting examples for used port and alternate functions are shown in Table 4-6. The registers used to control the port functions should be set as shown in Table 4-6. See the following remark for legends used in Table 4-6.

Remark -: Not supported

: don't care

PIORx: Peripheral I/O redirection register

POMxx: Port output mode register
PMCxx: Port mode control register
PMxx: Port mode register
Pxx: Port output latch

PUxx: Pull-up resistor option register
PIMxx: Port input mode register
PFSEG xx: LCD port function register
ISCLCD: LCD input switch control register

Table 4-6. Setting Examples of Registers and Output Latches When Using Alternate Function (1/6)

	Table 4-0	. Octaing		Tricgister	and Ody	Jul Luloi	103 111101	i Osing A	illerriate i	unction (1/6)	ı
Pin Name	Used F	unction	PIORx	POMxx	PMCxx	PMxx	Pxx	PUxx	PIMxx	PFSEGxx	ISCLCD
	Function	I/O									
	Name										
P10	P10	Input	×	×	_	1	×	0/1	0/1	0	_
		Output	×	0/1	_	0	0/1	×	×	0	_
	_SCK00	Input	×	×	_	1	×	0/1	0/1	0	_
		Output	×	0/1	_	0	1	×	×	0	_
	SEG28	Output	×	0	_	0	0	0	0	1	_
P11	P11	Input	×	_	_	1	×	0/1	0/1	0	_
		Output	×	_	_	0	0/1	×	×	0	_
	SI00	Input	×	_	_	1	×	0/1	0/1	0	_
	RxD0	Input	×	_	_	1	×	0/1	0/1	0	_
	TOOLRxD	Input	×	_	_	1	×	0/1	0/1	0	_
	SEG29	Output	×	_	_	0	0	0	0	1	_
P12	P12	Input	×	×	_	1	×	0/1	_	0	_
		Output	×	0/1	_	0	0/1	×	_	0	_
	SO00	Output	×	0/1	_	0	1	×	_	0	_
	TxD0	Output	×	0/1	_	0	1	×	_	0	_
	TOOLTxD	Output	×	0/1	_	0	1	×	_	0	_
	SEG30	Output	×	0	_	0	0	0	_	1	_
P13	P13	Input	×	_	0	1	×	0/1	_	0	_
		Output	×	_	0	0	0/1	×	_	0	_
	ANI18	Input	×	l	1	1	×	×	_	_	_
	SEG31	Output	×	l	0	0	0	0	_	1	_
P14	P14	Input	×	l	0	1	×	0/1	_	0	_
		Output	×	l	0	0	0/1	×	_	0	_
	ANI19	Input	×	1	1	1	×	×	_	_	_
	SEG32	Output	×	-	0	0	0	0	_	1	_
P15	P15	Input	_	×	_	1	×	0/1	0/1	0	_
		Output	_	0/1	_	0	0/1	×	×	0	_
	_SCK01	Input	×	×	_	1	×	0/1	0/1	0	_
		Output	×	0/1	_	0	1	×	×	0	_
	INTP1	Input	PIOR0 = 0	×	_	1	×	0/1	0/1	0	_
	SEG4	Output	×	0	_	0	0	0	0	1	_
P16	P16	Input	×	-	_	1	×	0/1	0/1	0	_
		Output	×	_	_	0	0/1	×	×	0	_
	SI01	Input	×	_	_	1	×	0/1	0/1	0	_
	INTP2	Input	PIOR0 = 0	_	_	1	×	0/1	0/1	0	_
	SEG5	Output	×	_	_	0	0	0	0	1	_
P17	P17	Input	×	×	_	1	×	0/1	_	0	_
		Output	×	0/1	_	0	0/1	×	_	0	_
	SO01	Output	×	0/1	_	0	1	×	_	0	_
	TI02	Input	PIOR0 = 0	×	_	1	×	0/1	_	0	_
	TO02	Output	PIOR0 = 0	0/1	_	0	0	×	_	0	_
	SEG6	Output	×	0	_	0	0	0	_	1	_

Table 4-6. Setting Examples of Registers and Output Latches When Using Alternate Function (2/6)

r	Tubic + c.	oounig -	xampico c	rriogiotore	J ana Oat	put Lute.	100 111101	. comg /		unction (2/6)	
Pin Name	Used Fu	ınction	PIORx	POMxx	PMCxx	PMxx	Pxx	PUxx	PIMxx	PFSEGxx	ISCLCD
	Function	I/O									
	Name										
P20	P20	Input	×	_	_	1	×	_	_	_	_
		Output	×	_	_	0	0/1	_	_	_	_
	ANI0	Input	×	_	_	1	×	_	_	_	_
	AVREFP	Input	×	_	_	1	×	_	_	_	_
P21	P21	Input	×	_	_	1	×	_	_	_	_
		Output	×	_	_	0	0/1	-	_	_	_
	ANI1	Input	×	_	_	1	×	-	_	_	_
	AVREFM	Input	×	_	_	1	×	-	_	_	_
P30	P30	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	1	0/1	×	_	0	_
	TI01	Input	×	_	_	1	×	0/1	_	0	_
	TO01	Output	×	_	_	0	0	×	_	0	_
	SEG19	Output	×	_	_	0	0	0	_	1	_
P31	P31	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	INTP3	Input	×	_	_	1	×	0/1	_	0	_
	RTC1HZ	Output	×	_	_	0	0	×	_	0	_
	SEG18	Output	×	_	_	0	0	0	_	1	_
P32	P32	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	TI03	Input	×	_	_	1	×	0/1	_	0	_
	TO03	Output	×	_	_	0	0	×	_	0	_
	INTP4	Input	×	_	_	1	×	0/1	_	0	_
	SEG17	Output	×	_	_	0	0	0	_	1	_
P40	P40	Input	×	_	_	1	×	0/1	_	_	_
		Output	×	_	_	0	0/1	×	_	_	_
	TOOL0	I/O	×	_	_	×	×	×	_	_	_
P41	P41	Input	×	_	0	1	×	0/1	_	0	_
		Output	×	_	0	0	0/1	×	_	0	_
	ANI16	Input	×	_	1	1	×	×	_	_	_
	SEG24	Output	×	_	0	0	0	0	_	1	_
P42	P42	Input	×	_	_	1	×	0/1	_	0	
		Output	×	_	_	0	0/1	×	_	0	_
	SEG23	Output	×	_	_	0	0	0	_	1	
P43	P43	Input	×	_	1	1	×	0/1	_	0	1
		Output	×	_	_	0	0/1	×	_	0	_
	INTP7	Input	PIOR0 = 0	_	_	1	×	0/1	_	0	_
	SEG22	Output	×	_	_	0	0	0	_	1	_

Table 4-6. Setting Examples of Registers and Output Latches When Using Alternate Function (3/6)

	1466 1 01	Cottining =	Administration of	riogiotori	Jana Jac	out Euto.		<u> </u>		runction (3/6)	
Pin Name	Used Fu	ınction	PIORx	POMxx	PMCxx	PMxx	Pxx	PUxx	PIMxx	PFSEGxx	ISCLCD
	Function	I/O									
	Name										
P50	P50	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	
	INTP5	Input	×	_	_	1	×	0/1	_	0	_
	SEG7	Output	×	_	_	0	0	0	_	1	_
	(PCLBUZ0)	Output	PIOR1 = 1	_	_	0	0	×	_	0	_
P51	P51	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	TI06	Input	×	_	_	1	×	0/1	_	0	_
	TO06	Output	×	_	_	0	0	×	_	0	_
	SEG8	Output	×	_	_	0	0	0	_	1	_
P52	P52	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	INTP6	Input	PIOR0 = 0	_	_	1	×	0/1	_	0	_
	SEG9	Output	×	_	_	0	0	0	_	1	_
P53	P53	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	
	TI07	Input	×	_	_	1	×	0/1	_	0	
	TO07	Output	×	_	_	0	0	×	_	0	_
	SEG10	Output	×	_	_	0	0	0	_	1	_
	(INTP1)	Input	PIOR0 = 1	_	_	1	×	0/1	_	0	_
P54	P54	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	SEG11	Output	×	_	_	0	0	0	_	1	_
	(TI02)	Input	PIOR0 = 1	_	_	1	×	0/1	_	0	_
	(TO02)	Output	PIOR0 = 1	_	_	0	0	×	_	0	_
	(INTP2)	Input	PIOR0 = 1	_	_	1	×	0/1	_	0	_

Table 4-6. Setting Examples of Registers and Output Latches When Using Alternate Function (4/6)

				3							
Pin Name	Used Fu	nction	PIORx	POMxx	PMCxx	PMxx	Pxx	PUxx	PIMxx	PFSEGxx	ISCLCD
	Function	I/O									
	Name										
P60	P60	Input	×	_	_	1	×	_	_	0	_
		Output	×	_	_	0	0/1	_	_	0	_
	SEG21	Output	×	_	_	0	0	_	_	1	_
P61	P61	Input	×	_	_	1	×	_	_	0	_
		Output	×	_	_	0	0/1	_	_	0	_
	SEG20	Output	×	_	_	0	0	_	_	1	_
P70	P70	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	KR0	Input	×	_	_	1	×	0/1	_	0	_
	SEG16	Output	×		_	0	0	0	_	1	_
P71	P71	Input	×	_	_	1	×	0/1	_	0	_
		Output	×		_	0	0/1	×	_	0	_
	KR1	Input	×	_	_	1	×	0/1	_	0	_
	SEG15	Output	×		_	0	0	0	_	1	_
P72	P72	Input	×		_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	KR2	Input	×	_	_	1	×	0/1	_	0	_
	SEG14	Output	×		_	0	0	0	_	1	
P73	P73	Input	×	_	_	1	×	0/1	_	0	_
		Output	×		_	0	0/1	×	_	0	_
	KR3	Input	×	_	_	1	×	0/1	_	0	_
	SEG13	Output	×	_	_	0	0	0	_	1	_
P74	P74	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	SEG12	Output	×	_	_	0	0	0	_	1	_

Table 4-6. Setting Examples of Registers and Output Latches When Using Alternate Function (5/6)

Pin Name	Used Fu	ınction	PIORx	POMxx	PMCxx	PMxx	Pxx	PUxx	PIMxx	PFSEGxx	ISCLCD
	Function	I/O									
	Name										
P120	P120	Input	×	_	0	1	×	0/1	_	0	_
		Output	×	_	0	0	0/1	×	_	0	_
	ANI17	Input	×	_	1	1	×	×	_	_	_
	SEG25	Output	×	_	0	0	0	0	_	1	_
P121	P121	Input	×	_	_	_	×	_	_	_	_
		Output	×	_	_	_	0/1	_	_	_	_
	X1	Input	×	_	_	_	×	_	_	_	_
P122	P122	Input	×	_	_	_	×	_	_	_	_
		Output	×	_	_	_	0/1	_	_	_	_
	X2	Input	×		_	_	×	_	_	_	_
	EXCLK	Input	×	_	_	_	×	_	_	_	_
P123	P123	Input	×	_	_	_	×	_	_	_	_
		Output	×	_	_	_	0/1	_	_	_	_
	XT1	Input	×	_	_	_	×	_	_	_	_
P124	P124	Input	×	_	_	_	×	_	_	_	_
		Output	×	_	_	_	0/1	_	_	_	_
	XT2	Input	×	_	_	_	×	_	_	_	_
	EXCLKS	Input	×	_	_	_	×	_	_	_	_
P125	P125	Input	×	_	_	1	×	0/1	_	_	0
		Output	×	_	_	0	0/1	×	_	_	0
	V _{L3}	I/O	×	_	_	1	0	0	_	_	1
P126	P126	Input	×	_	_	1	×	0/1	_	_	0
		Output	×	_	_	0	0/1	×	_	_	0
	CAPL	I/O	×	_	_	1	0	0	_	_	1
P127	P127	Input	×	_	_	1	×	0/1	_	_	0
		Output	×	_	_	0	0/1	×	_	_	0
	CAPH	I/O	×	_	_	1	0	0	_	_	1

Table 4-6. Setting Examples of Registers and Output Latches When Using Alternate Function (6/6)

	rable 4-6.	. Setting i	examples of	Registers	s and Out	put Later	ies wne	n Using P	ilernale i	Function (6/6)
Pin Name	Used Fu	ınction	PIORx	POMxx	PMCxx	PMxx	Pxx	PUxx	PIMxx	PFSEGxx	ISCLCD
	Function	I/O									
	Name										
P130	P130	Output	×	_	_	_	0/1	_	_	_	_
P137	P137	Input	×	_	_	_	×	_	_	_	_
	INTP0	Input	×	_	_	_	×	_	_	_	_
P140	P140	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	TO00	Output	×	_	_	0	0	×	_	0	_
	PCLBUZ0	Output	PIOR1 = 0	_	_	0	0	×	_	0	_
	SEG27	Output	×	_	_	0	0	0	_	1	_
	(INTP6)	Input	PIOR0 = 1	_	_	1	×	0/1	_	0	_
P141	P141	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	TI00	Input	×	_	_	1	×	0/1	_	0	_
	PCLBUZ1	Output	×	_	_	0	0	×	_	0	_
	SEG26	Output	×	_	_	0	0	0	_	1	_
	(INTP7)	Input	PIOR0 = 1	_	_	1	×	0/1	_	0	_
P142	P142	Input	×	_	0	1	×	0/1	_	0	_
		Output	×	_	0	0	0/1	×	_	0	_
	ANI20	Input	×	_	1	1	×	×	_	_	_
	SEG33	Output	×	_	0	0	0	0	_	1	_
P143	P143	Input	×	_	0	1	×	0/1	_	0	_
		Output	×	_	0	0	0/1	×	_	0	_
	ANI21	Input	×	_	1	1	×	×	_	_	_
	SEG34	Output	×	_	0	0	0	0	_	1	_
P144	P144	Input	×	_	0	0	× 0/1	0/1	_	0	_
	ANI22	Output Input	×		1	1	×	×		_	_
	SEG35	Output	×	_	0	0	0	0	_	1	_
P145	P145	Input	×	_	0	1	×	0/1	_	0	_
F 145	F 143	Output	×	_	0	0	0/1	×	_	0	_
	ANI23	Input	×	_	1	1	×	×	_	_	_
	SEG36	Output	×	_	0	0	0	0	_	1	_
P146	P146	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	SEG37	Output	×	_	_	0	0	0	_	1	_
P147	P147	Input	×	_	_	1	×	0/1	_	0	_
		Output	×	_	_	0	0/1	×	_	0	_
	SEG38	Output	×	_	_	0	0	0	_	1	_

4.6 Cautions When Using Port Function

4.6.1 Cautions on 1-Bit Manipulation Instruction for Port Register n (Pn)

When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the output latch value of an input port that is not subject to manipulation may be written in addition to the targeted bit.

Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.

When P10 is an output port, P11 to P17 are input ports (all pin statuses are high level), and the port <Example>

latch value of port 1 is 00H, if the output of output port P10 is changed from low level to high level via a

1-bit manipulation instruction, the output latch value of port 1 is FFH.

Explanation: The targets of writing to and reading from the Pn register of a port whose PMnm bit is 1 are the output latch and pin status, respectively.

A 1-bit manipulation instruction is executed in the following order in the R7F0C001G/L, R7F0C002G/L.

- <1> The Pn register is read in 8-bit units.
- <2> The targeted one bit is manipulated.
- <3> The Pn register is written in 8-bit units.

In step <1>, the output latch value (0) of P10, which is an output port, is read, while the pin statuses of P11 to P17, which are input ports, are read. If the pin statuses of P11 to P17 are high level at this time, the read value is FEH.

The value is changed to FFH by the manipulation in <2>.

FFH is written to the output latch by the manipulation in <3>.

1-bit manipulation instruction P10 P10 (set1 P1.0) Low-level output High-level output is executed for P10 bit. P11 to P17 P11 to P17 Pin status: High-level Pin status: High-level Port 1 output latch Port 1 output latch 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 4-12. Bit Manipulation Instruction (P10)

- 1-bit manipulation instruction for P10 bit
- <1> Port register 1 (P1) is read in 8-bit units.
 - In the case of P10, an output port, the value of the port output latch (0) is read.
 - In the case of P11 to P17, input ports, the pin status (1) is read.
- <2> Set the P10 bit to 1.
- <3> Write the results of <2> to the output latch of port register 1 (P1) in 8-bit units.

4.6.2 Notes on specifying the pin settings

For an output pin to which multiple alternate functions are assigned, the output of the unused alternate function must be set to its initial state so as to prevent conflicting outputs. This also applies to the functions assigned by using the peripheral I/O redirection register (PIOR). For details about the alternate output function, see **4.5 Register Settings When Using Alternate Function**.

No specific setting is required for input pins because the output function of their alternate functions is disabled (the buffer output is Hi-Z).

<R> Disabling the unused functions, including blocks that are only used for input or do not have I/O, is recommended to lower power consumption.

CHAPTER 5 CLOCK GENERATOR

5.1 Functions of Clock Generator

The clock generator generates the clock to be supplied to the CPU and peripheral hardware.

The following three kinds of system clocks and clock oscillators are selectable.

(1) Main system clock

<1> X1 oscillator

This circuit oscillates a clock of fx = 1 to 20 MHz by connecting a resonator to X1 and X2.

Oscillation can be stopped by executing the STOP instruction or setting of the MSTOP bit (bit 7 of the clock operation status control register (CSC)).

<2> High-speed on-chip oscillator

The frequency at which to oscillate can be selected from among $f_{IH} = 24$, 16, 12, 8, 4, or 1 MHz (typ.) by using the option byte (000C2H). After a reset release, the CPU always starts operating with this high-speed on-chip oscillator clock. Oscillation can be stopped by executing the STOP instruction or setting the HIOSTOP bit (bit 0 of the CSC register).

The frequency specified by using an option byte can be changed by using the high-speed on-chip oscillator frequency select register (HOCODIV). For details about the frequency, see **Figure 5-9 Format of High-speed On-chip Oscillator Frequency Select Register (HOCODIV)**.

The frequencies that can be specified for the high-speed on-chip oscillator by using the option byte and the high-speed on-chip oscillator frequency select register (HOCODIV) are shown below.

Power Supply Voltage				Oscillatio	n Frequer	ncy (MHz)			
	1	2	3	4	6	8	12	16	24
$2.7~V \leq V_{DD} \leq 5.5~V$	V	√	√	√	√	√	\checkmark	√	$\sqrt{}$
$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	√	√	√	√	√	√	√	√	-
1.8 V ≤ V _{DD} < 2.4 V	√	√	√	√	√	√	-	-	-
1.6 V ≤ V _{DD} < 1.8 V	√	√	_	√	-	_	-	_	_

An external main system clock (fex = 1 to 20 MHz) can also be supplied from the EXCLK/X2/P122 pin. An external main system clock input can be disabled by executing the STOP instruction or setting of the MSTOP bit.

As the main system clock, a high-speed system clock (X1 clock or external main system clock) or high-speed onchip oscillator clock can be selected by setting of the MCM0 bit (bit 4 of the system clock control register (CKC)).

(2) Subsystem clock

XT1 clock oscillator

This circuit oscillates a clock of $f_{XT} = 32.768$ kHz by connecting a 32.768 kHz resonator to XT1 and XT2. Oscillation can be stopped by setting the XTSTOP bit (bit 6 of the clock operation status control register (CSC)).

An external subsystem clock (fexs = 32.768 KHz) can also be supplied from the EXCLKS/XT2/P124 pin. An external subsystem clock input can be disabled by setting the XTSTOP bit.

(3) Low-speed on-chip oscillator clock

This circuit oscillates a clock of f_{IL} = 15 kHz (TYP.).

The low-speed on-chip oscillator clock cannot be used as the CPU clock.

Only the following peripheral hardware runs on the low-speed on-chip oscillator clock.

- Watchdog timer
- Real-time clock

<R>

- 12-bit interval timer
- LCD driver/controller

This clock operates when bit 4 (WDTON) of the option byte (000C0H), bit 4 (WUTMMCK0) of the subsystem clock supply mode control register, or both are set to 1.

However, when WDTON = 1, WUTMMCK0 = 0, and bit 0 (WDSTBYON) of the option byte (000C0H) is 0, oscillation of the low-speed on-chip oscillator stops if the HALT or STOP instruction is executed.

Caution The low-speed on-chip oscillator clock (fill) can only be selected as the real-time clock operation clock when the fixed-cycle interrupt function is used.

Remark fx: X1 clock oscillation frequency

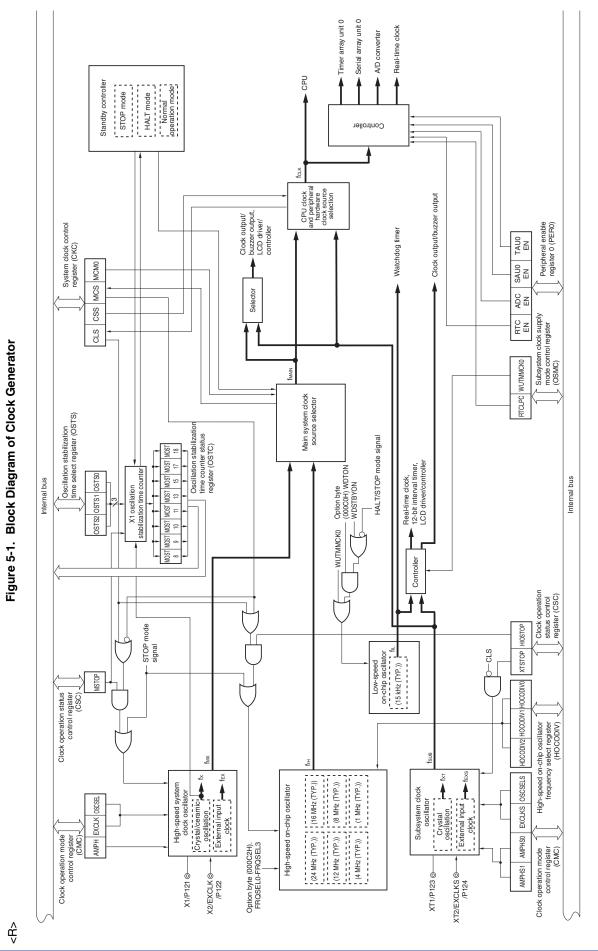
fін: High-speed on-chip oscillator clock frequency

fex: External main system clock frequency

fxT: XT1 clock oscillation frequency

fexs: External subsystem clock frequency

fıL: Low-speed on-chip oscillator clock frequency


5.2 Configuration of Clock Generator

The clock generator includes the following hardware.

Table 5-1. Configuration of Clock Generator

Item	Configuration
Control registers	Clock operation mode control register (CMC)
	System clock control register (CKC)
	Clock operation status control register (CSC)
	Oscillation stabilization time counter status register (OSTC)
	Oscillation stabilization time select register (OSTS)
	Peripheral enable register 0 (PER0)
	Subsystem clock supply mode control register (OSMC)
	High-speed on-chip oscillator frequency select register (HOCODIV)
Oscillators	X1 oscillator
	XT1 oscillator
	High-speed on-chip oscillator
	Low-speed on-chip oscillator

(Remark is listed on the next page after next.)

Remark fx: X1 clock oscillation frequency

> High-speed on-chip oscillator clock frequency fin:

fex: External main system clock frequency High-speed system clock frequency fmx:

fmain: Main system clock frequency XT1 clock oscillation frequency fxT: fexs: External subsystem clock frequency

fsub: Subsystem clock frequency

fclk: CPU/peripheral hardware clock frequency fıL: Low-speed on-chip oscillator clock frequency

5.3 Registers Controlling Clock Generator

The following nine registers are used to control the clock generator.

- · Clock operation mode control register (CMC)
- System clock control register (CKC)
- Clock operation status control register (CSC)
- Oscillation stabilization time counter status register (OSTC)
- · Oscillation stabilization time select register (OSTS)
- Peripheral enable register 0 (PER0)
- <R>
 - Subsystem clock supply mode control register (OSMC)
 - High-speed on-chip oscillator frequency select register (HOCODIV)

5.3.1 Clock operation mode control register (CMC)

This register is used to set the operation mode of the X1/P121, X2/EXCLK/P122, XT1/P123, and XT2/EXCLKS/P124 pins, and to select a gain of the oscillator.

The CMC register can be written only once by an 8-bit memory manipulation instruction after reset release. This register can be read by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 5-2. Format of Clock Operation Mode Control Register (CMC)

Address: FFFA0H After reset: 00H R/W Symbol 7 6 5 4 3 2 1 0 **EXCLK OSCSEL EXCLKS OSCSELS** AMPHS1 AMPHS0 **AMPH** CMC

EXCLK	OSCSEL	High-speed system clock pin operation mode	X1/P121 pin	X2/EXCLK/P122 pin
0	0	Input port mode	Input port	
0	1	X1 oscillation mode	Crystal/ceramic resonato	r connection
1	0	Input port mode	Input port	
1	1	External clock input mode	Input port	External clock input

EXCLKS	OSCSELS	Subsystem clock pin operation mode	XT1/P123 pin XT2/EXCLKS/P124 p		
0	0	Input port mode	Input port		
0	1	XT1 oscillation mode	Crystal resonator connection		
1	0	Input port mode	Input port		
1	1	External clock input mode	Input port External clock input		

AMPHS1	AMPHS0	XT1 oscillator oscillation mode selection				
0	0	Low power consumption oscillation (default)				
0	1	Normal oscillation				
1	0	Ultra-low power consumption oscillation				
1	1	Setting prohibited				

AMPH	Control of X1 clock oscillation frequency						
0	1 MHz \leq fx \leq 10 MHz						
1	10 MHz < fx ≤ 20 MHz						

- Cautions 1. The CMC register can be written only once after reset release, by an 8-bit memory manipulation instruction. When using the CMC register with its initial value (00H), be sure to set the register to 00H after a reset ends in order to prevent malfunction due to a program loop. Such a malfunction becomes unrecoverable when a value other than 00H is mistakenly written.
 - 2. After reset release, set the CMC register before X1 or XT1 oscillation is started as set by the clock operation status control register (CSC).
 - 3. Be sure to set the AMPH bit to 1 if the X1 clock oscillation frequency exceeds 10 MHz.
 - 4. Specify the settings for the AMPH, AMPHS1, and AMPHS0 bits while fiн is selected as fclk after a reset ends (before fclk is switched to fmx).
 - 5. Oscillation stabilization time of fxT, counting on the software.
 - 6. Although the maximum system clock frequency is 24 MHz, the maximum frequency of the X1 oscillator is 20 MHz.

(Cautions and Remark are given on the next page.)

- Cautions 7. The XT1 oscillator is a circuit with low amplification in order to achieve low-power consumption. Note the following points when designing the circuit.
 - Pins and circuit boards include parasitic capacitance. Therefore, perform oscillation evaluation using a circuit board to be actually used and confirm that there are no problems.
 - Before using the ultra-low power consumption oscillation (AMPHS1, AMPHS0 = 1, 0) as the mode of the XT1 oscillator, evaluate the resonators.
 - Make the wiring between the XT1 and XT2 pins and the resonators as short as
 possible, and minimize the parasitic capacitance and wiring resistance. Note
 this particularly when the ultra-low power consumption oscillation (AMPHS1,
 AMPHS0 = 1, 0) is selected.
 - Configure the circuit of the circuit board, using material with little wiring resistance.
 - Place a ground pattern that has the same potential as Vss as much as possible near the XT1 oscillator.
 - Be sure that the signal lines between the XT1 and XT2 pins, and the resonators
 do not cross with the other signal lines. Do not route the wiring near a signal
 line through which a high fluctuating current flows.
 - The impedance between the XT1 and XT2 pins may drop and oscillation may be disturbed due to moisture absorption of the circuit board in a high-humidity environment or dew condensation on the board. When using the circuit board in such an environment, take measures to damp-proof the circuit board, such as by coating.
 - When coating the circuit board, use material that does not cause capacitance or leakage between the XT1 and XT2 pins.

Remark fx: X1 clock frequency

5.3.2 System clock control register (CKC)

This register is used to select a CPU/peripheral hardware clock and main system clock.

The CKC register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to 00H.

Figure 5-3. Format of System Clock Control Register (CKC)

After reset: 00H R/WNote 1 Address: FFFA4H Symbol <6> <5> <4> 3 1 0 CKC CLS CSS MCS MCM0 0 0 0 0

CLS	Status of CPU/peripheral hardware clock (fclk)						
0	Main system clock (fmain)						
1	Subsystem clock (fsub)						

CSS	Selection of CPU/peripheral hardware clock (fclk)						
0	Main system clock (fmain)						
1 Note 2	Subsystem clock (fsub)						

MCS	Status of Main system clock (fmain)						
0	High-speed on-chip oscillator clock (fн)						
1	High-speed system clock (fmx)						

MCM0 Note 2	Main system clock (fMAIN) operation control						
0	Selects the high-speed on-chip oscillator clock (fin) as the main system clock (fmain)						
1	Selects the high-speed system clock (fmx) as the main system clock (fmain)						

Notes 1. Bits 7 and 5 are read-only.

2. Changing the value of the MCM0 bit is prohibited while the CSS bit is set to 1.

Remarks 1. fin: High-speed on-chip oscillator clock frequency

fмх: High-speed system clock frequency

fmain: Main system clock frequency fsus: Subsystem clock frequency

2. x: don't care

Cautions 1. Be sure to set bit 3 to 0.

- 2. The clock set by the CSS bit is supplied to the CPU and peripheral hardware. If the CPU clock is changed, therefore, the clock supplied to peripheral hardware (except the real-time clock, 12-bit interval timer, clock output/buzzer output, LCD driver/controller, and watchdog timer) is also changed at the same time. Consequently, stop each peripheral function when changing the CPU/peripheral hardware clock.
- 3. If the subsystem clock is used as the peripheral hardware clock, the operations of the A/D converter and IICA are not guaranteed. For the operating characteristics of the peripheral hardware, refer to the chapters describing the various peripheral hardware as well as CHAPTER 27 ELECTRICAL SPECIFICATIONS.

5.3.3 Clock operation status control register (CSC)

This register is used to control the operations of the high-speed system clock, high-speed on-chip oscillator clock, and subsystem clock (except the low-speed on-chip oscillator clock).

The CSC register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to C0H.

Figure 5-4. Format of Clock Operation Status Control Register (CSC)

Address: FFFA1H After reset: C0H R/W Symbol <7> <6> 3 2 <0> CSC **MSTOP** XTSTOP 0 0 0 0 HIOSTOP

MSTOP	High-speed system clock operation control								
	X1 oscillation mode	Input port mode							
0	X1 oscillator operating	External clock from EXCLK pin is valid	Input port						
1	X1 oscillator stopped	External clock from EXCLK pin is invalid							

XTSTOP	Subsystem clock operation control								
	XT1 oscillation mode	Input port mode							
0	XT1 oscillator operating	External clock from EXCLKS pin is valid	Input port						
1	XT1 oscillator stopped	External clock from EXCLKS pin is invalid							

HIOSTOP	High-speed on-chip oscillator clock operation control						
0	High-speed on-chip oscillator operating						
1	High-speed on-chip oscillator stopped						

- Cautions 1. After reset release, set the clock operation mode control register (CMC) before setting the CSC register.
 - Set the oscillation stabilization time select register (OSTS) before setting the MSTOP bit to 0 after releasing reset. Note that if the OSTS register is being used with its default settings, the OSTS register is not required to be set here.
 - To start X1 oscillation as set by the MSTOP bit, check the oscillation stabilization time of the X1 clock by using the oscillation stabilization time counter status register (OSTC).
 - 4. When starting XT1 oscillation by setting the XSTOP bit, wait for oscillation of the subsystem clock to stabilize by setting a wait time using software.
 - 5. Do not stop the clock selected for the CPU peripheral hardware clock (fclk) with the OSC register.
 - The setting of the flags of the register to stop clock oscillation (invalidate the external clock input) and the condition before clock oscillation is to be stopped are as Table 5-2.

High-speed on-chip

oscillator clock

HIOSTOP = 1

Clock Condition Before Stopping Clock Setting of CSC (Invalidating External Clock Input) Register Flags CPU and peripheral hardware clocks operate with a clock X1 clock MSTOP = 1other than the high-speed system clock. External main system (CLS = 0 and MCS = 0, or CLS = 1)clock XT1 clock CPU and peripheral hardware clocks operate with a clock XTSTOP = 1 other than the subsystem clock. External subsystem (CLS = 0)clock

CPU and peripheral hardware clocks operate with a clock

other than the high-speed on-chip oscillator clock.

Table 5-2. Stopping Clock Method

5.3.4 Oscillation stabilization time counter status register (OSTC)

This is the register that indicates the count status of the X1 clock oscillation stabilization time counter.

(CLS = 0 and MCS = 1, or CLS = 1)

The X1 clock oscillation stabilization time can be checked in the following case,

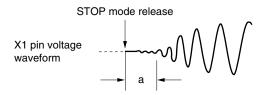
- If the X1 clock starts oscillation while the high-speed on-chip oscillator clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the high-speed on-chip oscillator clock is being used as the CPU clock with the X1 clock oscillating.

The OSTC register can be read by a 1-bit or 8-bit memory manipulation instruction.

When reset signal is generated, the STOP instruction and MSTOP (bit 7 of clock operation status control register (CSC)) = 1 clear the OSTC register to 00H.

Remark The oscillation stabilization time counter starts counting in the following cases.

- When oscillation of the X1 clock starts (EXCLK, OSCSEL = 0, 1 → MSTOP = 0)
- When the STOP mode is released


Figure 5-5. Format of Oscillation Stabilization Time Counter Status Register (OSTC)

Address: FFFA2H After reset: 00H Symbol 6 5 4 3 2 **OSTC** MOST MOST MOST MOST MOST MOST MOST MOST 8 9 10 17 18 11 13 15

MOST	Oscillation stabilization time status									
8	9	10	11	13	15	17	18		fx = 10 MHz	fx = 20 MHz
0	0	0	0	0	0	0	0	28/fx max.	25.6 <i>μ</i> s max.	12.8 <i>μ</i> s max.
1	0	0	0	0	0	0	0	28/fx min.	25.6 <i>μ</i> s min.	12.8 μ s min.
1	1	0	0	0	0	0	0	2º/fx min.	51.2 <i>μ</i> s min.	25.6 <i>μ</i> s min.
1	1	1	0	0	0	0	0	2 ¹⁰ /fx min.	102.4 <i>μ</i> s min.	51.2 μ s min.
1	1	1	1	0	0	0	0	2 ¹¹ /fx min.	204.8 <i>μ</i> s min.	102.4 μ s min.
1	1	1	1	1	0	0	0	2 ¹³ /fx min.	819.2 <i>μ</i> s min.	409.6 μ s min.
1	1	1	1	1	1	0	0	2 ¹⁵ /fx min.	3.27 ms min.	1.64 ms min.
1	1	1	1	1	1	1	0	2 ¹⁷ /fx min.	13.11 ms min.	6.55 ms min.
1	1	1	1	1	1	1	1	2 ¹⁸ /fx min.	26.21 ms min.	13.11 ms min.

Cautions 1. After the above time has elapsed, the bits are set to 1 in order from the MOST8 bit and remain 1.

- 2. The oscillation stabilization time counter counts up to the oscillation stabilization time set by the oscillation stabilization time select register (OSTS).
 In the following cases, set the oscillation stabilization time of the OSTS register to the value greater than the count value which is to be checked by the OSTC register.
 - If the X1 clock starts oscillation while the high-speed on-chip oscillator clock or subsystem clock is being used as the CPU clock.
 - If the STOP mode is entered and then released while the high-speed on-chip oscillator clock is being used as the CPU clock with the X1 clock oscillating.
 (Note, therefore, that only the status up to the oscillation stabilization time set by the OSTS register is set to the OSTC register after the STOP mode is released.)
- 3. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

<R> 5.3.5 Oscillation stabilization time select register (OSTS)

This register is used to select the X1 clock oscillation stabilization wait time.

When the X1 clock is made to oscillate by clearing the MSTOP bit to start the X1 oscillation circuit operating, actual operation is automatically delayed for the time set in the OSTS register.

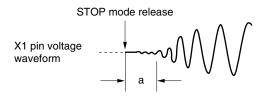
When switching the CPU clock from the high-speed on-chip oscillator clock or subsystem clock to the X1 clock, and when using the high-speed on-chip oscillator clock for switching the X1 clock from the oscillating state to STOP mode, use the oscillation stabilization time counter status register (OSTC) to confirm that the desired oscillation stabilization time has elapsed after release from the STOP mode. That is, use the OSTC register to check that the oscillation stabilization time corresponding to its setting has been reached.

The OSTS register can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets the OSTS register to 07H.

Figure 5-6. Format of Oscillation Stabilization Time Select Register (OSTS)

Address: FF	FFA3H Afte	r reset: 07H	R/W					
Symbol	7	6	5	4	3	2	1	0
OSTS	0	0	0	0	0	OSTS2	OSTS1	OSTS0


OSTS2	OSTS1	OSTS0	Oscillation stabilization time selection		
				fx = 10 MHz	fx = 20 MHz
0	0	0	28/fx	25.6 <i>μ</i> s	12.8 <i>μ</i> s
0	0	1	2°/fx	51.2 <i>μ</i> s	25.6 μs
0	1	0	2 ¹⁰ /fx	102.4 <i>μ</i> s	51.2 <i>μ</i> s
0	1	1	2 ¹¹ /fx	204.8 μs	102.4 <i>μ</i> s
1	0	0	2 ¹³ /fx	819.2 <i>μ</i> s	409.6 μs
1	0	1	2 ¹⁵ /fx	3.27 ms	1.64 ms
1	1	0	2 ¹⁷ /fx	13.11 ms	6.55 ms
1	1	1	2 ¹⁸ /fx	26.21 ms	13.11 ms

Cautions 1. Change the setting of the OSTS register before setting the MSTOP bit of the clock operation status control register (CSC) to 0.

2. The oscillation stabilization time counter counts up to the oscillation stabilization time set by the OSTS register.

In the following cases, set the oscillation stabilization time of the OSTS register to the value greater than the count value which is to be checked by the OSTC register after the oscillation starts.

- If the X1 clock starts oscillation while the high-speed on-chip oscillator clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the high-speed on-chip oscillator clock is being used as the CPU clock with the X1 clock oscillating. (Note, therefore, that only the status up to the oscillation stabilization time set by the OSTS register is set to the OSTC register after the STOP mode is released.)
- 3. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

Remark fx: X1 clock oscillation frequency

<R>

5.3.6 Peripheral enable register 0 (PER0)

These registers are used to enable or disable supplying the clock to the peripheral hardware. Clock supply to the hardware that is not used is also stopped so as to decrease the power consumption and noise.

To use the peripheral functions below, which are controlled by this register, set (1) the bit corresponding to each function before specifying the initial settings of the peripheral functions.

- Real-time clock, 12-bit interval timer
- A/D converter
- Serial array unit 0
- Timer array unit 0
- LCD driver/controller

The PER0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H.

Figure 5-7. Format of Peripheral Enable Register 0 (PER0) (1/2)

Address: F00F0H After reset: 00H			R/W					
Symbol	<7>	6	<5>	4	3	<2>	1	<0>
PER0	RTCEN	0	ADCEN	0	0	SAU0EN	0	TAU0EN

RTCEN	Real-time clock (RTC) and	LCD driver/controller and clock output/buzzer output controller			
	12-bit interval timer	When subsystem clock (fsub) is selected.	When subsystem clock (fsuв) is not selected.		
0	Stops input clock supply. SFR used by the real-time clock (RTC) and 12-bit interval timer cannot be written. The real-time clock (RTC) and 12-bit interval timer are in the reset status.	Stops input clock and subsystem clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.	Enables input clock and main system clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.		
1	Enables input clock supply. SFR used by the real-time clock (RTC) and 12-bit interval timer can be read and written.	Enables input clock and subsystem clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.			

ADCEN	Control of A/D converter input clock supply
0	Stops input clock supply. • SFR used by the A/D converter cannot be written. • The A/D converter is in the reset status.
1	Enables input clock supply. • SFR used by the A/D converter can be read and written.

Caution Be sure to clear the following bits 1, 3, and 6 to 0.

Figure 5-7. Format of Peripheral Enable Register 0 (PER0) (2/2)

Address: F00F0H After reset: 00H R/W 6 Symbol <7> <5> 4 3 <2> 1 <0> PER0 RTCEN 0 **ADCEN** 0 0 SAU0EN 0 TAU0EN

SAU0EN	Control of serial array unit 0 input clock supply
0	Stops input clock supply. • SFR used by the serial array unit 0 cannot be written. • The serial array unit 0 is in the reset status.
1	Enables input clock supply. • SFR used by the serial array unit 0 can be read and written.

TAU0EN	Control of timer array unit 0 input clock supply
0	Stops input clock supply. SFR used by timer array unit 0 cannot be written. Timer array unit 0 is in the reset status.
1	Enables input clock supply. • SFR used by timer array unit 0 can be read and written.

Caution Be sure to clear the following bits 1, 3, 4 and 6 to 0.

<R> 5.3.7 Subsystem clock supply mode control register (OSMC)

This register is used to reduce power consumption by stopping as many unnecessary clock functions.

If the RTCLPC bit is set to 1, power consumption can be reduced, because clock supply to the peripheral functions, except the real-time clock, 12-bit interval timer, and LCD driver/controller, is stopped in STOP mode and HALT mode while subsystem clock is selected as CPU clock. Set bit 7 (RTCEN) of peripheral enable registers 0 (PER0) to 1 before this setting.

In addition, the OSMC register can be used to select the operation clock of the real-time clock, 12-bit interval timer, and LCD driver/controller.

The OSMC register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

<R>

Figure 5-8. Format of Subsystem Clock Supply Mode Control Register (OSMC)

Address: F0	00F3H After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
OSMC	RTCLPC	0	0	WUTMMCK0	0	0	0	0

RTCLPC	Setting in HALT mode while subsystem clock is selected as CPU clock
0	Enables supply of subsystem clock to peripheral functions
	(See Table 19-1 for peripheral functions whose operations are enabled.)
1	Stops supply of subsystem clock to peripheral functions other than real-time clock, 12-bit interval timer, and LCD driver/controller.

WUTMMCK0 Note	Selection of operation clock for real-time clock, 12-bit interval timer, and LCD driver/controller	Selection of clock output from PCLBUZn pin of clock output/buzzer output
0	Subsystem clock (fsuB)	Selecting the subsystem clock (fsub) is enabled.
1	Low-speed on-chip oscillator clock (fiL)	Selecting the subsystem clock (fsub) is disabled.

Note Be sure to select the subsystem clock (WUTMMCK0 bit = 0) if the subsystem clock is oscillating.

Cautions 1. The subsystem clock and low-speed on-chip oscillator clock can only be switched by using the WUTMMCK0 bit if the real-time clock, 12-bit interval timer, and LCD driver/controller are all stopped.

These are stopped as follows:

Real-time clock: Set the RTCE bit to 0. 12-bit interval timer: Set the RINTE bit to 0.

LCD driver/controller: Set the SCOC and VLCON bits to 0.

2. Do not select fsuB as the clock output or buzzer output clock when the WUTMMCK0 bit is set to 1.

Remark RTCE: Bit 7 of real-time clock control register 0 (RTCC0)

RINTE: Bit 15 of the interval timer control register (ITMC)

SCOC: Bit 6 of LCD mode register 1 (LCDM1)
VLCON: Bit 5 of LCD mode register 1 (LCDM1)

5.3.8 High-speed on-chip oscillator frequency select register (HOCODIV)

The frequency of the high-speed on-chip oscillator which is set by an option byte (000C2H) can be changed by using high-speed on-chip oscillator frequency select register (HOCODIV). However, the selectable frequency depends on the FRQSEL3 bit of the option byte (000C2H).

The HOCODIV register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to default value (undefined).

Figure 5-9. Format of High-speed On-chip Oscillator frequency select register (HOCODIV)

Address: F00A8H After reset: undefined			ined R/W					
Symbol	7	6	5	4	3	2	1	0
HOCODIV	0	0	0	0	0	HOCODIV2	HOCODIV1	HOCODIV0

HOCODIV2	HOCODIV1	HOCODIV0	High-Speed On-Chip Oscillator Clock Frequency		
			FRQSEL3 Bit is 0	FRQSEL3 Bit is 1	
0	0	0	24 MHz	Setting prohibited	
0	0	1	12 MHz	16 MHz	
0	1	0	6 MHz	8 MHz	
0	1	1	3 MHz	4 MHz	
1	0	0	Setting prohibited	2 MHz	
1	0	1	Setting prohibited	1 MHz	
0	ther than abo	ve	Setting prohibited		

Cautions 1. Set the HOCODIV register within the operable voltage range of the flash operation mode set in the option byte (000C2H) before and after the frequency change.

Option Byte (000C2H) Value		Flash Operation Mode	Operating	Operating Voltage	
CMODE1	CMODE2		Frequency Range	Range	
0	0	LV (low-voltage main) mode	1 to 4 MHz	1.6 to 5.5 V	
1	0	LS (low-speed main) mode	1 to 8 MHz	1.8 to 5.5 V	
1	1	HS (high-speed main) mode	1 to 16 MHz	2.4 to 5.5 V	
			1 to 32 MHz	2.7 to 5.5 V	

- 2. Set the HOCODIV register with the high-speed on-chip oscillator clock (fill) selected as the CPU/peripheral hardware clock (fclk).
- 3. After the frequency is changed with the HOCODIV register, the frequency is switched after the following transition time has elapsed.
 - Operation for three clocks at the pre-change frequency
 - CPU/peripheral hardware clock wait at the post-change frequency for up to three clocks

5.4 System Clock Oscillator

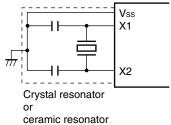
5.4.1 X1 oscillator

The X1 oscillator oscillates with a crystal resonator or ceramic resonator (1 to 20 MHz) connected to the X1 and X2 pins.

An external clock can also be input. In this case, input the clock signal to the EXCLK pin.

To use the X1 oscillator, set bits 7 and 6 (EXCLK, OSCSEL) of the clock operation mode control register (CMC) as follows.

- Crystal or ceramic oscillation: EXCLK, OSCSEL = 0, 1
- External clock input: EXCLK, OSCSEL = 1, 1


When the X1 oscillator is not used, set the input port mode (EXCLK, OSCSEL = 0, 0).

When the pins are not used as input port pins, either, see Table 2-3 Connection of Unused Pins (64-pin products).

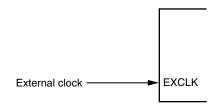

Figure 5-10 shows an example of the external circuit of the X1 oscillator.

Figure 5-10. Example of External Circuit of X1 Oscillator

(a) Crystal or ceramic oscillation

(b) External clock

Cautions are listed on the next page.

5.4.2 XT1 oscillator

The XT1 oscillator oscillates with a crystal resonator (32.768 kHz (TYP.)) connected to the XT1 and XT2 pins.

To use the XT1 oscillator, set bit 4 (OSCSELS) of the clock operation mode control register (CMC) to 1.

An external clock can also be input. In this case, input the clock signal to the EXCLKS pin.

To use the XT1 oscillator, set bits 5 and 4 (EXCLKS, OSCSELS) of the clock operation mode control register (CMC) as follows.

· Crystal oscillation: EXCLKS, OSCSELS = 0, 1 • External clock input: EXCLKS, OSCSELS = 1, 1

When the XT1 oscillator is not used, set the input port mode (EXCLKS, OSCSELS = 0, 0).

When the pins are not used as input port pins, either, see Table 2-3 Connection of Unused Pins (64-pin products).

Figure 5-11 shows an example of the external circuit of the XT1 oscillator.

Figure 5-11. Example of External Circuit of XT1 Oscillator

(a) Crystal oscillation (b) External clock Vss XT1 XT2 External clock EXCLKS

Caution

When using the X1 oscillator and XT1 oscillator, wire as follows in the area enclosed by the broken lines in the Figures 5-10 and 5-11 to avoid an adverse effect from wiring capacitance.

- · Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines. Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss. Do not
 ground the capacitor to a ground pattern through which a high current flows.
- · Do not fetch signals from the oscillator.

The XT1 oscillator is a circuit with low amplification in order to achieve low-power consumption. Note the following points when designing the circuit.

- Pins and circuit boards include parasitic capacitance. Therefore, perform oscillation evaluation using a circuit board to be actually used and confirm that there are no problems.
- Before using the ultra-low power consumption oscillation (AMPHS1, AMPHS0 = 1, 0) as the mode of the XT1 oscillator, evaluate the resonators.
- Make the wiring between the XT1 and XT2 pins and the resonators as short as possible, and minimize the parasitic capacitance and wiring resistance. Note this particularly when the ultralow power consumption oscillation (AMPHS1, AMPHS0 = 1, 0) is selected.
- Configure the circuit of the circuit board, using material with little wiring resistance.
- Place a ground pattern that has the same potential as Vss as much as possible near the XT1 oscillator.
- Be sure that the signal lines between the XT1 and XT2 pins, and the resonators do not cross
 with the other signal lines. Do not route the wiring near a signal line through which a high
 fluctuating current flows.
- The impedance between the XT1 and XT2 pins may drop and oscillation may be disturbed due
 to moisture absorption of the circuit board in a high-humidity environment or dew
 condensation on the board. When using the circuit board in such an environment, take
 measures to damp-proof the circuit board, such as by coating.
- When coating the circuit board, use material that does not cause capacitance or leakage between the XT1 and XT2 pins.

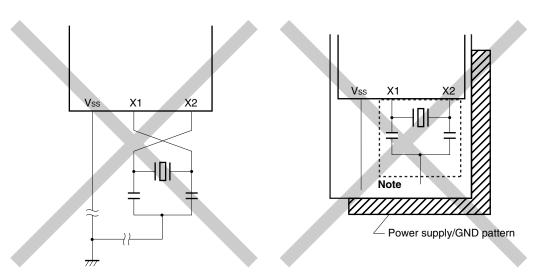
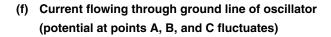
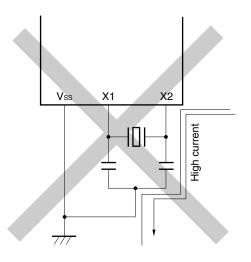

Figure 5-12 shows examples of incorrect resonator connection.

Figure 5-12. Examples of Incorrect Resonator Connection (1/2)

(c) The X1 and X2 signal line wires cross.

(d) A power supply/GND pattern exists under the X1 and X2 wires.


Note Do not place a power supply/GND pattern under the wiring section (section indicated by a broken line in the figure) of the X1 and X2 pins and the resonators in a multi-layer board or double-sided board.


Do not configure a layout that will cause capacitance elements and affect the oscillation characteristics.

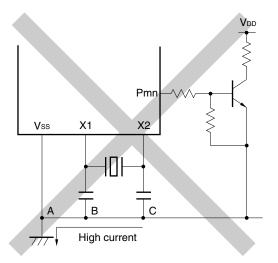
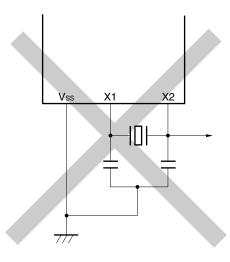

Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.

Figure 5-12. Examples of Incorrect Resonator Connection (2/2)


(e) Wiring near high alternating current

(g) Signals are fetched

Caution When X2 and XT1 are wired in parallel, the crosstalk noise of X2 may increase with XT1, resulting in malfunctioning.

Remark When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.

5.4.3 High-speed on-chip oscillator

The high-speed on-chip oscillator is incorporated in the R7F0C001G/L, R7F0C002G/L. The frequency can be selected <R> from among 24, 16, 12, 8, 6, 4, 3, 2, or 1 MHz by using the option byte (000C2H). Oscillation can be controlled by bit 0 (HIOSTOP) of the clock operation status control register (CSC). The high-speed on-chip oscillator automatically starts oscillating after reset release.

5.4.4 Low-speed on-chip oscillator

The low-speed on-chip oscillator is incorporated in the R7F0C001G/L, R7F0C002G/L.

The low-speed on-chip oscillator clock is used only as a clock of the watchdog timer, real-time clock, 12-bit interval timer, and LCD driver/controller. The low-speed on-chip oscillation clock cannot be used as the CPU clock.

- <R> This clock operates when bit 4 (WDTON) of the option byte (000C0H), bit 4 (WUTMMCK0) of the subsystem clock supply mode control register (OSMC), or both are set to 1.
- <R> Unless the watchdog timer is stopped and WUTMMCK0 is a value other than zero, oscillation of the low-speed on-chip oscillator continues. Note that only when the watchdog timer is operating and the WUTMMCK0 bit is 0, oscillation of the low-speed on-chip oscillator will stop while the WDSTBYON bit is 0 and operation is in the HALT, STOP, or SNOOZE mode. While the watchdog timer operates, the low-speed on-chip oscillator does not stop even if the program freezes.

5.5 Clock Generator Operation

The clock generator generates the following clocks and controls the operation modes of the CPU, such as standby mode (see **Figure 5-1**).

- Main system clock fmain
 - High-speed system clock fmx
 - X1 clock fx
 - External main system clock fex
 - High-speed on-chip oscillator fін
- Subsystem clock fsub
 - XT1 clock fxT
 - External subsystem clock fexs
- Low-speed on-chip oscillator clock fill
- CPU/peripheral hardware clock fclk

The CPU starts operation when the high-speed on-chip oscillator starts outputting after a reset release in the R7F0C001G/L, R7F0C002G/L.

When the power supply voltage is turned on, the clock generator operation is shown in Figure 5-13.

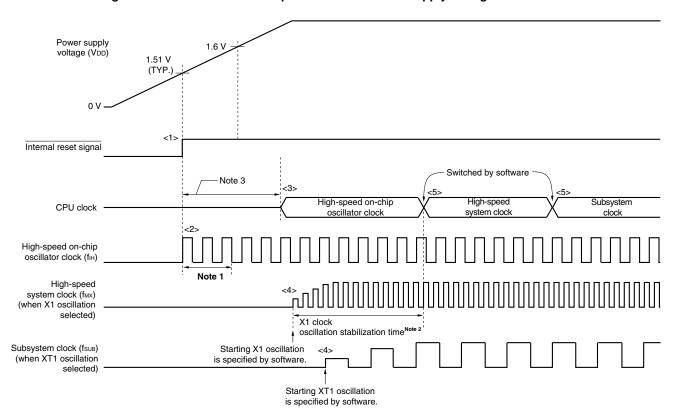


Figure 5-13. Clock Generator Operation When Power Supply Voltage Is Turned On

- <1> When the power is turned on, an internal reset signal is generated by the power-on-reset (POR) circuit.
- <2> When the power supply voltage exceeds 1.51 V (TYP.), the reset is released and the high-speed on-chip oscillator automatically starts oscillation.
- <3> The CPU starts operation on the high-speed on-chip oscillator clock after a reset processing such as waiting for the voltage of the power supply or regulator to stabilize has been performed after reset release.
- <4> Set the start of oscillation of the X1 or XT1 clock via software (see 5.6.2 Example of setting X1 oscillation clock and 5.6.3 Example of setting XT1 oscillation clock).
- <5> When switching the CPU clock to the X1 or XT1 clock, wait for the clock oscillation to stabilize, and then set switching via software (see 5.6.2 Example of setting X1 oscillation clock and 5.6.3 Example of setting XT1 oscillation clock).
- **Notes 1.** The internal reset processing time includes the oscillation accuracy stabilization time of the high-speed onchip oscillator clock.
 - 2. When releasing a reset, confirm the oscillation stabilization time for the X1 clock using the oscillation stabilization time counter status register (OSTC).
 - 3. For the reset processing time, see CHAPTER 18 POWER-ON-RESET CIRCUIT.

Caution It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK pin is used.

5.6 Controlling Clock

5.6.1 Example of setting high-speed on-chip oscillator

After a reset release, the CPU/peripheral hardware clock (fclk) always starts operating with the high-speed on-chip <R> oscillator clock. The frequency of the high-speed on-chip oscillator can be selected from 24, 16, 12, 8, 6, 4, 3, 2, and 1 MHz by using FRQSEL0 to FRQSEL3 of the option byte (000C2H).

[Option byte setting] Address: 000C2H

Option	7	6	5	4	3	2	1	0
byte	CMODE1	CMODE0			FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0
(000C2H)	0/1	0/1	1	0	0/1	0/1	0/1	0/1

CMODE1	CMODE0	Setting	of flash operation mode
0	0	LV (low voltage main) mode	V _{DD} = 1.6 V to 5.5 V@1 MHz to 4 MHz
1	0	LS (low speed main) mode	V _{DD} = 1.8 V to 5.5 V@1 MHz to 8 MHz
1	1	HS (high speed main) mode	V _{DD} = 2.4 V to 5.5 V@1 MHz to 16 MHz
			V _{DD} = 2.7 V to 5.5 V@1 MHz to 24 MHz
Other tha	an above	Setting prohibited	

FRQSEL3 FRQSEL2 FRQSEL1 FRQSEL0 Frequency of the high-speed on-chip oscillator 0 0 0 0 24 MHz 0 0 16 MHz 0 0 0 1 12 MHz 1 1 0 0 8 MHz 0 0 1 0 6 MHz 1 0 1 1 4 MHz 0 0 1 1 3 MHz 1 1 0 0 2 MHz 1 0 1 MHz Other than above Setting prohibited

[High-speed on-chip oscillator frequency select register (HOCODIV) setting]

Address: F00A8H 7 6 5 4 3 2

	7	6	5	4	3	2	1	0
HOCODIV	0	0	0	0	0	HOCODIV2	HOCODIV1	HOCODIV0

HOCODIV2	HOCODIV1	HOCODIV0	Selection of high-speed on-c	hip oscillator clock frequency
HOCODIV2	HOCODIVI	носоріуо	FRQSEL3 Bit is 0	FRQSEL3 Bit is 1
0	0	0	24 MHz	Setting prohibited
0	0	1	12 MHz	16 MHz
0	1	0	6 MHz	8 MHz
0	1	1	3 MHz	4 MHz
1	0	0	Setting prohibited	2 MHz
1	0	1	Setting prohibited	1 MHz
Other than above			Setting prohibited	

5.6.2 Example of setting X1 oscillation clock

After a reset release, the CPU/peripheral hardware clock (fclk) always starts operating with the high-speed on-chip oscillator clock. To subsequently change the clock to the X1 oscillation clock, set the oscillator and start oscillation by using the oscillation stabilization time select register (OSTS), clock operation mode control register (CMC) and clock operation status control register (CSC) and wait for oscillation to stabilize by using the oscillation stabilization time counter status register (OSTC). After the oscillation stabilizes, set the X1 oscillation clock to fclk by using the system clock control register (CKC).

[Register settings] Set the register in the order of <1> to <5> below.

<1> Set (1) the OSCSEL bit of the CMC register, except for the cases where fx > 10 MHz, in such cases set (1) the AMPH bit, to operate the X1 oscillator.

	7	6	5	4	3	2	1	0
CMC	EXCLK	OSCSEL	EXCLKS	OSCSELS		AMPHS1	AMPHS0	AMPH
CIVIC	0	1	0	0	0	0	0	0/1

AMPH bit: Set this bit to 0 if the X1 oscillation clock is 10 MHz or less.

<2> Using the OSTS register, select the oscillation stabilization time of the X1 oscillator at releasing of the STOP mode. Example: Setting values when a wait of at least 102.4 μ s is set based on a 10 MHz resonator.

	7	6	5	4	3	2	1	0
OSTS						OSTS2	OSTS1	OSTS0
0313	0	0	0	0	0	0	1	0

<3> Clear (0) the MSTOP bit of the CSC register to start oscillating the X1 oscillator.

	7	6	5	4	3	2	1	0
CSC	MSTOP	XTSTOP						HIOSTOP
CSC	0	1	0	0	0	0	0	0

<4> Use the OSTC register to wait for oscillation of the X1 oscillator to stabilize.

Example: Wait until the bits reach the following values when a wait of at least 102.4 μ s is set based on a 10 MHz resonator.

	7	6	5	4	3	2	1	0	
OSTC	MOST8	MOST9	MOST10	MOST11	MOST13	MOST15	MOST17	MOST18	
0310	1	1	1	0	0	0	0	0	

<5> Use the MCM0 bit of the CKC register to specify the X1 oscillation clock as the CPU/peripheral hardware clock.

	7	6	5	4	3	2	1	0	
CKC	CLS	CSS	MCS	MCM0					
CICO	0	0	0	1	0	0	0	0	

5.6.3 Example of setting XT1 oscillation clock

After a reset release, the CPU/peripheral hardware clock (fclk) always starts operating with the high-speed on-chip oscillator clock. To subsequently change the clock to the XT1 oscillation clock, set the oscillator and start oscillation by using the subsystem clock supply mode control register (OSMC), clock operation mode control register (CMC), and clock operation status control register (CSC), set the XT1 oscillation clock to fclk by using the system clock control register (CKC).

[Register settings] Set the register in the order of <1> to <5> below.

<R> <1> To run only the real-time clock, 12-bit interval timer, and LCD driver/controller on the subsystem clock (ultra-low current consumption) when in the STOP mode or sub-HALT mode, set the RTCLPC bit to 1.

_	7	6	5	4	3	2	1	0
OSMC	RTCLPC			WUTMMCK0				
USIVIC	0/1	0	0	0	0	0	0	0

<2> Set (1) the OSCSELS bit of the CMC register to operate the XT1 oscillator.

	7	6	5	4	3	2	1	0
CMC	EXCLK	OSCSEL	EXCLKS	OSCSELS		AMPHS1	AMPHS0	AMPH
CIVIC	0	0	0	1	0	0/1	0/1	0

AMPHS0 and AMPHS1 bits: These bits are used to specify the oscillation mode of the XT1 oscillator.

<3> Clear (0) the XTSTOP bit of the CSC register to start oscillating the XT1 oscillator.

	7	6	5	4	3	2	1	0
CSC	MSTOP	XTSTOP						HIOSTOP
CSC	1	0	0	0	0	0	0	0

- <4> Use the timer function or another function to wait for oscillation of the subsystem clock to stabilize by using software.
- <5> Use the CSS bit of the CKC register to specify the XT1 oscillation clock as the CPU/peripheral hardware clock.

	/	6	5	4	3	2	1	0
CKC	CLS	CSS	MCS	MCM0				
CKC	0	1	0	0	0	0	0	0

5.6.4 CPU clock status transition diagram

Figure 5-14 shows the CPU clock status transition diagram of this product.

<R>

Figure 5-14. CPU Clock Status Transition Diagram

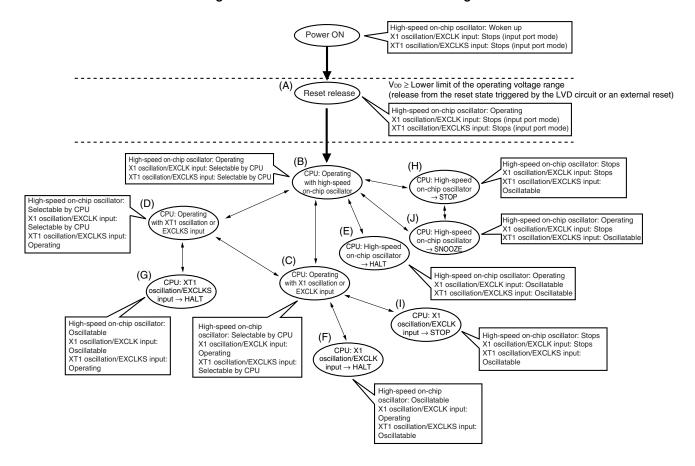


Table 5-3 shows transition of the CPU clock and examples of setting the SFR registers.

Table 5-3. CPU Clock Transition and SFR Register Setting Examples (1/5)

(1) CPU operating with high-speed on-chip oscillator clock (B) after reset release (A)

Status Transition	SFR Register Setting
$(A) \rightarrow (B)$	SFR registers do not have to be set (default status after reset release).

(2) CPU operating with high-speed system clock (C) after reset release (A)

(The CPU operates with the high-speed on-chip oscillator clock immediately after a reset release (B).)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CM	IC Register	Note	OSTS Register	CSC Register	OSTC Register	CKC Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		MCM0
$ (A) \rightarrow (B) \rightarrow (C) $ $ (X1 \ clock: 1 \ MHz \le f_X \le 10 \ MHz) $	0	1	0	Note 2	0	Must be checked	1
(A) \rightarrow (B) \rightarrow (C) (X1 clock: 10 MHz < fx \leq 20 MHz)	0	1	1	Note 2	0	Must be checked	1
$(A) \rightarrow (B) \rightarrow (C)$ (external main clock)	1	1	×	Note 2	0	Must not be checked	1

- **Notes 1.** The clock operation mode control register (CMC) can be written only once by an 8-bit memory manipulation instruction after reset release.
 - 2. Set the oscillation stabilization time as follows.
 - Desired the oscillation stabilization time counter status register (OSTC) oscillation stabilization time ≤
 Oscillation stabilization time set by the oscillation stabilization time select register (OSTS)

Caution Set the clock after the supply voltage has reached the operable voltage of the clock to be set (see CHAPTER 27 ELECTRICAL SPECIFICATIONS).

(3) CPU operating with subsystem clock (D) after reset release (A)

(The CPU operates with the high-speed on-chip oscillator clock immediately after a reset release (B).)

(Setting sequence of SFR registers)

(Setting sequence of SFR registers)							
Setting Flag of SFR Register	CMC Register ^{Note}			CSC Register	Waiting for Oscillation	CKC Register	
Status Transition	EXCLKS	OSCSELS	AMPHS1	AMPHS0	XTSTOP	Stabilization	CSS
$(A) \rightarrow (B) \rightarrow (D)$	0	1	0/1	0/1	0	Necessary	1
(XT1 clock)							
$(A) \rightarrow (B) \rightarrow (D)$	1	1	×	×	0	Necessary	1
(external sub clock)							

Note The clock operation mode control register (CMC) can be written only once by an 8-bit memory manipulation instruction after reset release.

Remarks 1. x: don't care

2. (A) to (J) in Table 5-3 correspond to (A) to (J) in Figure 5-14.

Table 5-3. CPU Clock Transition and SFR Register Setting Examples (2/5)

(4) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (C)

(Setting sequence of SFR registers) CMC Register^{Note 1} OSTS Setting Flag of SFR Register CSC **OSTC** Register CKC Register Register Register Status Transition **EXCLK** OSCSEL **AMPH MSTOP** MCM0 $(B) \rightarrow (C)$ 0 0 Note 2 0 Must be checked (X1 clock: 1 MHz \leq fX \leq 10 MHz) $(B) \rightarrow (C)$ 0 1 Note 2 0 Must be checked (X1 clock: 10 MHz < fX \le 20 MHz) $(B) \rightarrow (C)$ 1 1 Note 2 n Must not be checked 1 (external main clock)

Unnecessary if these registers Unnecessary if the CPU is operating with are already set the high-speed system clock

- **Notes 1.** The clock operation mode control register (CMC) can be changed only once after reset release. This setting is not necessary if it has already been set.
 - 2. Set the oscillation stabilization time as follows.
 - Desired the oscillation stabilization time counter status register (OSTC) oscillation stabilization time ≤
 Oscillation stabilization time set by the oscillation stabilization time select register (OSTS)
- <R> Caution Set the clock after the supply voltage has reached the operable voltage of the clock to be set (see CHAPTER 27 ELECTRICAL SPECIFICATIONS).
 - (5) CPU clock changing from high-speed on-chip oscillator clock (B) to subsystem clock (D)

(Setting sequence of SFR registers) **CKC** Register Setting Flag of SFR Register CMC Register^{Note} CSC Waiting for Oscillation Register Status Transition Stabilization **EXCLKS OSCSELS XTSTOP** CSS $(B) \rightarrow (D)$ 0 0 1 Necessary 1 (XT1 clock) 1 0 $(B) \rightarrow (D)$ 1 Necessary 1 (external sub clock)

Unnecessary if the CPU is operating with the subsystem clock

Note The clock operation mode control register (CMC) can be written only once by an 8-bit memory manipulation instruction after reset release.

Remarks 1. x: don't care

2. (A) to (J) in Table 5-3 correspond to (A) to (J) in Figure 5-14.

Table 5-3. CPU Clock Transition and SFR Register Setting Examples (3/5)

(6) CPU clock changing from high-speed system clock (C) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers)

	Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
	Status Transition	HIOSTOP	stabilization time	МСМ0
<r></r>	$(C) \rightarrow (B)$	0	18 <i>μ</i> s to 65 <i>μ</i> s	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

(7) CPU clock changing from high-speed system clock (C) to subsystem clock (D)

(Setting sequence of SFR registers)

Setting Flag of SFR Register Status Transition	CSC Register XTSTOP	Waiting for Oscillation Stabilization	CKC Register CSS
$(C) \rightarrow (D)$	0	Necessary	1

Unnecessary if the CPU is operating with the subsystem clock

(8) CPU clock changing from subsystem clock (D) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers)

<R>

	Setting Flag of SFR Register	CSC Register	Oscillation accuracy	CKC Register
	Status Transition	HIOSTOP	stabilization time	CSS
<r></r>	$(D) \rightarrow (B)$	0	18 μ s to 65 μ s	0

Unnecessary if the CPU is operating with the highspeed on-chip oscillator clock

Remarks 1. (A) to (J) in Table 5-3 correspond to (A) to (J) in Figure 5-15.

2. The oscillation accuracy stabilization time changes according to the temperature conditions and the STOP mode period.

Table 5-3. CPU Clock Transition and SFR Register Setting Examples (4/5)

(9) CPU clock changing from subsystem clock (D) to high-speed system clock (C)

(Setting sequence of SFR registers)

Setting Flag of SFR Register OSTS CSC Register **OSTC** Register CKC <R> Register **MSTOP** CSS Status Transition (D) \rightarrow (C) (X1 clock: 1 MHz \leq Note 0 Must be checked 0 $fx \le 10 \text{ MHz}$ (D) \rightarrow (C) (X1 clock: 10 MHz < Note 0 Must be checked 0 $fx \le 20 \text{ MHz}$ $(D) \rightarrow (C)$ (external main Note 0 Must not be checked 0 clock)

Unnecessary if the CPU is operating with the high-speed system clock

Note Set the oscillation stabilization time as follows.

Desired the oscillation stabilization time counter status register (OSTC) oscillation stabilization time ≤
 Oscillation stabilization time set by the oscillation stabilization time select register (OSTS)

Caution Set the clock after the supply voltage has reached the operable voltage of the clock to be set (see CHAPTER 27 ELECTRICAL SPECIFICATIONS).

- (10) . HALT mode (E) set while CPU is operating with high-speed on-chip oscillator clock (B)
 - HALT mode (F) set while CPU is operating with high-speed system clock (C)
 - HALT mode (G) set while CPU is operating with subsystem clock (D)

Status Transition	Setting
$(B) \rightarrow (E)$	Executing HALT instruction
$(B) \to (E)$ $(C) \to (F)$	
$(D) \rightarrow (G)$	

Remark (A) to (J) in Table 5-3 correspond to (A) to (J) in Figure 5-14.

Table 5-3. CPU Clock Transition and SFR Register Setting Examples (5/5)

- (11) STOP mode (H) set while CPU is operating with high-speed on-chip oscillator clock (B)
 - STOP mode (I) set while CPU is operating with high-speed system clock (C)

	(Setting sequence)			•
Status -	Transition	Setting		
$(B) \rightarrow (H)$		Stopping peripheral functions that cannot	-	Executing STOP instruction
(C) → (I)	In X1 oscillation	operate in STOP mode	Sets the OSTS register	
	External main system clock		-	

(12) CPU changing from STOP mode (H) to SNOOZE mode (J)

For details about the setting for switching from the STOP mode to the SNOOZE mode, see **11.8 SNOOZE Mode** Function, **12.5.7 SNOOZE mode function** and **12.6.3 SNOOZE mode function**.

Remark (A) to (J) in Table 5-3 correspond to (A) to (J) in Figure 5-14.

5.6.5 Condition before changing CPU clock and processing after changing CPU clock

Condition before changing the CPU clock and processing after changing the CPU clock are shown below.

Table 5-4. Changing CPU Clock (1/2)

CPU	Clock	Condition Before Change	Processing After Change
Before Change	After Change		
High-speed on- chip oscillator clock	X1 clock	Stabilization of X1 oscillation OSCSEL = 1, EXCLK = 0, MSTOP = 0 After elapse of oscillation stabilization time	Operating current can be reduced by stopping high-speed on-chip oscillator (HIOSTOP = 1).
	External main system clock	Enabling input of external clock from the EXCLK pin • OSCSEL = 1, EXCLK = 1, MSTOP = 0	
	XT1 clock	Stabilization of XT1 oscillation OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 After elapse of oscillation stabilization time	
	External subsystem clock	Enabling input of external clock from the EXCLKS pin OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	
X1 clock	High-speed on- chip oscillator clock	Oscillation of high-speed on-chip oscillator • HIOSTOP = 0 • After elapse of oscillation accuracy stabilization time	X1 oscillation can be stopped (MSTOP = 1).
	External main system clock	Transition not possible (To change the clock, set it again after executing reset once.)	_
	XT1 clock	Stabilization of XT1 oscillation OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 After elapse of oscillation stabilization time	X1 oscillation can be stopped (MSTOP = 1).
	External subsystem clock	Enabling input of external clock from the EXCLKS pin OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	X1 oscillation can be stopped (MSTOP = 1).
External main system clock	High-speed on- chip oscillator clock	Oscillation of high-speed on-chip oscillator • HIOSTOP = 0 • After elapse of oscillation accuracy stabilization time	External main system clock input can be disabled (MSTOP = 1).
	X1 clock	Transition not possible (To change the clock, set it again after executing reset once.)	-
	XT1 clock	Stabilization of XT1 oscillation OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 After elapse of oscillation stabilization time	External main system clock input can be disabled (MSTOP = 1).
	External subsystem clock	Enabling input of external clock from the EXCLKS pin OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	External main system clock input can be disabled (MSTOP = 1).

Table 5-4. Changing CPU Clock (2/2)

CPU	Clock	Condition Before Change	Processing After Change
Before Change	After Change		
XT1 clock	High-speed on- chip oscillator clock	Oscillation of high-speed on-chip oscillator and selection of high-speed on-chip oscillator clock as main system clock • HIOSTOP = 0, MCS = 0	XT1 oscillation can be stopped (XTSTOP = 1)
	X1 clock	Stabilization of X1 oscillation and selection of high-speed system clock as main system clock OSCSEL = 1, EXCLK = 0, MSTOP = 0 After elapse of oscillation stabilization time MCS = 1	
	External main system clock	Enabling input of external clock from the EXCLK pin and selection of high-speed system clock as main system clock • OSCSEL = 1, EXCLK = 1, MSTOP = 0 • MCS = 1	
	High-speed on- chip oscillator clock	Transition not possible	_
External subsystem clock	High-speed on- chip oscillator clock	Oscillation of high-speed on-chip oscillator and selection of high-speed on-chip oscillator clock as main system clock • HIOSTOP = 0, MCS = 0	External subsystem clock input can be disabled (XTSTOP = 1).
	X1 clock	Stabilization of X1 oscillation and selection of high-speed system clock as main system clock OSCSEL = 1, EXCLK = 0, MSTOP = 0 After elapse of oscillation stabilization time MCS = 1	
	External main system clock	Enabling input of external clock from the EXCLK pin and selection of high-speed system clock as main system clock OSCSEL = 1, EXCLK = 1, MSTOP = 0 MCS = 1	
	XT1 clock	Transition not possible	_

5.6.6 Time required for switchover of CPU clock and system clock

By setting bits 4 and 6 (MCM0, CSS) of the system clock control register (CKC), the CPU clock can be switched (between the main system clock and the subsystem clock), and main system clock can be switched (between the high-speed on-chip oscillator clock and the high-speed system clock).

The actual switchover operation is not performed immediately after rewriting to the CKC register; operation continues on the pre-switchover clock for several clocks (see **Table 5-5** to **Table 5-7**).

Whether the CPU is operating on the main system clock or the subsystem clock can be ascertained using bit 7 (CLS) of the CKC register. Whether the main system clock is operating on the high-speed system clock or high-speed on-chip oscillator clock can be ascertained using bit 5 (MCS) of the CKC register.

When the CPU clock is switched, the peripheral hardware clock is also switched.

Table 5-5. Maximum Time Required for System Clock Switchover

Clock A	Switching directions	Clock B	Remark
fін	←→	fмx	See Table 5-6
fmain	←→	fsuв	See Table 5-7

Table 5-6. Maximum Number of Clocks Required for fiн ↔ fmx

Set Value Befo	ore Switchover	Set Value After	er Switchover
MCM0		MCM0	
		0 1	
		(fmain = fih)	$(f_{MAIN} = f_{MX})$
0	fмх≥fін		2 clock
(fmain = fih)	fмx <fін< td=""><td></td><td>2fін/fмх clock</td></fін<>		2fін/fмх clock
1	fмх≥fін	2fмx/fін clock	
(fmain = fmx)	fмx <fін< td=""><td>2 clock</td><td></td></fін<>	2 clock	

Table 5-7. Maximum Number of Clocks Required for fMAIN ↔ fSUB

Set Value Before Switchover	Set Value After Switchover				
CSS	CSS				
	0	1			
	(fclk = fmain)	(fclk = fsub)			
0 (fclk = fmain)		1 + 2fmain/fsub clock			
1 (fclк = fsuв)	3 clock				

Remarks 1. The number of clocks listed in Table 5-6 to Table 5-7 is the number of CPU clocks before switchover.

2. Calculate the number of clocks in Table 5-6 to Table 5-7 by removing the decimal portion.

Example When switching the main system clock from the high-speed system clock to the high-speed onchip oscillator clock (@ oscillation with $f_{IH} = 8$ MHz, $f_{MX} = 10$ MHz)

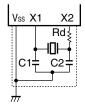
$$2f_{MX}/f_{IH} = 2 (10/8) = 2.5 \rightarrow 3 \text{ clocks}$$

5.6.7 Conditions before clock oscillation is stopped

The following lists the register flag settings for stopping the clock oscillation (disabling external clock input) and conditions before the clock oscillation is stopped.

Table 5-8. Conditions Before the Clock Oscillation Is Stopped and Flag Settings

Clock	Conditions Before Clock Oscillation Is Stopped (External Clock Input Disabled)	Flag Settings of SFR Register
High-speed on-chip oscillator clock	MCS = 1 or CLS = 1 (The CPU is operating on a clock other than the high-speed on-chip oscillator clock.)	HIOSTOP = 1
X1 clock External main system clock	MCS = 0 or CLS = 1 (The CPU is operating on a clock other than the high-speed system clock.)	MSTOP = 1
XT1 clock External subsystem clock	CLS = 0 (The CPU is operating on a clock other than the subsystem clock.)	XTSTOP = 1


<R> 5.7 Resonator and Oscillator Constants

The resonators for which the operation is verified and their oscillator constants are shown below.

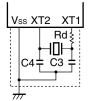

- Cautions 1. The constants for these oscillator circuits are reference values based on specific environments set up for evaluation by the manufacturers. For actual applications, request evaluation by the manufacturer of the oscillator circuit mounted on a board. Furthermore, if you are switching from a different product to this microcontroller, and whenever you change the board, again request evaluation by the manufacturer of the oscillator circuit mounted on the new board.
 - 2. The oscillation voltage and oscillation frequency only indicate the oscillator characteristic. Use the R7F0C001G/L, R7F0C002G/L so that the internal operation conditions are within the specifications of the DC and AC characteristics.

Figure 5-15. External Oscillation Circuit Example

(a) X1 oscillation

(b) XT1 oscillation

(1) X1 oscillation:

As of October, 2013

Manufacturer	Resonator	Part Number	SMD/ Lead	Frequency (MHz)	Flash operation	Recommended Constants Note 2				n Voltage ge (V)
					mode ^{Note 1}	C1 (pF)	C2 (pF)	Rd (kΩ)	MIN.	MAX.
Murata	Ceramic	CSTCC2M00G56-R0	SMD	2.0	LV	(47)	(47)	0	1.6	5.5
Manufacturing	resonator	CSTCR4M00G55-R0	SMD	4.0		(39)	(39)	0		
Co., Ltd.		CSTLS4M00G53-B0	Lead			(15)	(15)	0		
		CSTCC2M00G56-R0	SMD	2.0	LS	(47)	(47)	0	1.8	5.5
		CSTCR4M00G55-R0	SMD	4.0		(39)	(39)	0		
		CSTLS4M00G53-B0	Lead			(15)	(15)	0		
		CSTCR4M19G55-R0	SMD	4.194		(39)	(39)	0		
		CSTLS4M19G53-B0	Lead			(15)	(15)	0		
		CSTCR4M91G53-R0	SMD	4.915		(15)	(15)	0		
		CSTLS4M91G53-B0	Lead			(15)	(15)	0		
		CSTCR5M00G53-R0	SMD	5.0		(15)	(15)	0		
		CSTLS5M00G53-B0	Lead			(15)	(15)	0		
		CSTCR6M00G53-R0	SMD	6.0		(15)	(15)	0		
		CSTLS6M00G53-B0	Lead			(15)	(15)	0		
		CSTCE8M00G52-R0	SMD	8.0		(10)	(10)	0		
		CSTLS8M00G53-B0	Lead			(15)	(15)	0		
		CSTCE8M38G52-R0	SMD	8.388	HS	(10)	(10)	0	2.4	5.5
		CSTLS8M38G53-B0	Lead			(15)	(15)	0		
		CSTCE10M0G52-R0	SMD	10.0		(10)	(10)	0		
		CSTLS10M0G53-B0	Lead			(15)	(15)	0		
		CSTCE12M0G52-R0	SMD	12.0		(10)	(10)	0		
		CSTCE16M0V53-R0	SMD	16.0		(15)	(15)	0		
		CSTLS16M0X51-B0	Lead			(5)	(5)	0		
		CSTCE20M0V51-R0	SMD	20.0		(5)	(5)	0	2.7	5.5
		CSTLS20M0X51-B0	Lead			(5)	(5)	0		
Nihon Dempa	Crystal	NX8045GB Note 3	SMD	8.0			Note	3		
Kogyo	resonator	NX5032GA Note 3	SMD	16.0						
Co., Ltd.		NX3225HA Note 3	SMD	20.0	HS	3	3	0	2.4	5.5

Notes 1. Set the flash operation mode by using CMODE1 and CMODE0 bits of the option byte (000C2H).

- 2. Values in parentheses in the C1 and C2 columns indicate an internal capacitance.
- **3.** When using this resonator, for details about the matching, contact Nihon Dempa Kogyo Co., Ltd (http://www.ndk.com/en).

Remark Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 24 MHz

 $2.4~V \leq V_{DD} \leq 5.5~V @ 1~MHz$ to 16~MHz

LS (low-speed main) mode: 1.8 $V \le V_{DD} \le 5.5 \ V@1 \ MHz$ to 8 MHz LV (low-voltage main) mode: 1.6 $V \le V_{DD} \le 5.5 \ V@1 \ MHz$ to 4 MHz

<R> (2) XT1 oscillation: Crystal resonator

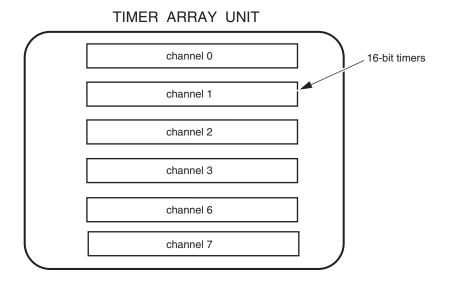
As of October, 2013

Manufacturer	Part Number	SMD/ Lead	Frequency (kHz)	Load Capacitance CL (pF)	XT1 oscillation mode	(omme Circui onstar	t	Volt Rai	lation tage nge V)
						C1 (pF)	C2 (pF)	Rd (kΩ)		MAX
Nihon Dempa	NX3215SA Note 2	SMD	32.768	6	Normal oscillation	7	7	0	1.6	5.5
Kogyo Co., Ltd.					Low power consumption oscillation	6	7			
					Ultra-low power consumption oscillation	6	6			
	NX2012SA Note 2	SMD	32.768	6	Normal oscillation			Note	2	
					Low power consumption oscillation					
					Ultra-low power consumption oscillation					

Notes 1. Set the XT1 oscillation mode by using AMPHS0 and AMPHS1 bits of the clock operation mode control register (CMC).

2. When using this resonator, for details about the matching, contact Nihon Dempa Kogyo Co., Ltd (http://www.ndk.com/en).

CHAPTER 6 TIMER ARRAY UNIT


<R> The number of units or channels of the timer array unit differs, depending on the product.

Channels	48-pin	64-pin
Channel 0	V	V
Channel 1	V	V
Channel 2	V	V
Channel 3	V	V
Channel 4	V	$\sqrt{}$
Channel 5	_	V
Channel 6	_	V
Channel 7	V	$\sqrt{}$

- Cautions 1. The presence or absence of timer I/O pins depends on the product. See Table 6-2 Timer I/O Pins Provided in Each Product for details.
 - 2. Most of the following descriptions in this chapter use the 64-pin products as an example.

The timer array unit has six 16-bit timers.

Each 16-bit timer is called a channel and can be used as an independent timer. In addition, two or more "channels" can be used to create a high-accuracy timer.

For details about each function, see the table below.

Independent channel operation function	Simultaneous channel operation function
 Interval timer (→ refer to 6.8.1) Square wave output (→ refer to 6.8.1) External event counter (→ refer to 6.8.2) Divider Note (→ refer to 6.8.3) Input pulse interval measurement (→ refer to 6.8.4) Measurement of high-/low-level width of input signal (→ refer to 6.8.5) Delay counter (→ refer to 6.8.6) 	 One-shot pulse output(→ refer to 6.9.1) PWM output(→ refer to 6.9.2) Multiple PWM output(→ refer to 6.9.3) Remote control output function (→ refer to 6.9.4)

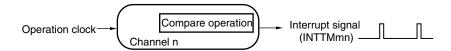
Notes Only channel 0.

It is possible to use the 16-bit timer of channels 1 and 3 as two 8-bit timers (higher and lower). The functions that can use channels 1 and 3 as 8-bit timers are as follows:

<R>

- Interval timer (upper or lower 8-bit timer)/square wave output
- External event counter (lower 8-bit timer only)
- Delay counter (lower 8-bit timer only)

6.1 Functions of Timer Array Unit


Timer array unit has the following functions.

6.1.1 Independent channel operation function

By operating a channel independently, it can be used for the following purposes without being affected by the operation mode of other channels.

(1) Interval timer

Each timer of a unit can be used as a reference timer that generates an interrupt (INTTMmn) at fixed intervals.

(2) Square wave output

A toggle operation is performed each time INTTMmn interrupt is generated and a square wave with a duty factor of 50% is output from a timer output pin (TOmn).

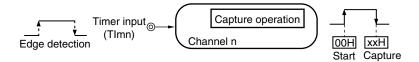
(3) External event counter

Each timer of a unit can be used as an event counter that generates an interrupt when the number of the valid edges of a signal input to the timer input pin (TImn) has reached a specific value.

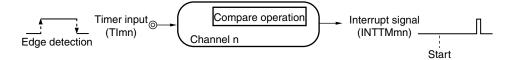
(4) Divider function (channel 0 only)

A clock input from a timer input pin (TI00) is divided and output from an output pin (TO00).

(5) Input pulse interval measurement


Counting is started by the valid edge of a pulse signal input to a timer input pin (TImn). The count value of the timer is captured at the valid edge of the next pulse. In this way, the interval of the input pulse can be measured.

(Note, Caution, and Remark are listed on the next page.)

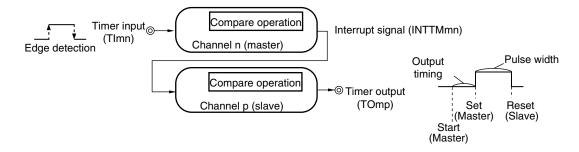

(6) Measurement of high-/low-level width of input signal

Counting is started by a single edge of the signal input to the timer input pin (Tlmn), and the count value is captured at the other edge. In this way, the high-level or low-level width of the input signal can be measured.

(7) Delay counter

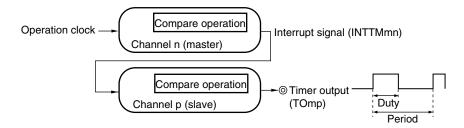
Counting is started at the valid edge of the signal input to the timer input pin (Tlmn), and an interrupt is generated after any delay period.

Remarks 1 m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)


2. The presence or absence of timer I/O pins of channel 0 to 3, 6, 7 depends on the product. See **Table 6-2 Timer I/O Pins provided in Each Product** for details.

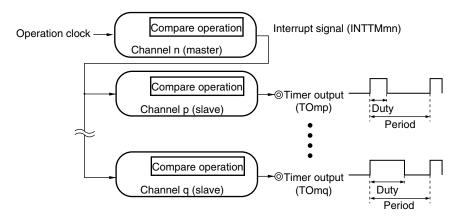
6.1.2 Simultaneous channel operation function

By using the combination of a master channel (a reference timer mainly controlling the cycle) and slave channels (timers operating according to the master channel), channels can be used for the following purposes.

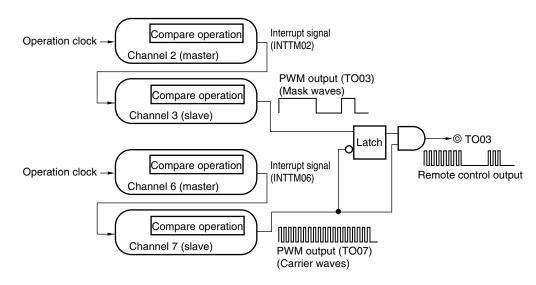

<R> (1) One-shot pulse output

Two channels are used as a set to generate a one-shot pulse with a specified output timing and a specified pulse width.

(2) PWM (Pulse Width Modulation) output


Two channels are used as a set to generate a pulse with a specified period and a specified duty factor.

(Caution is listed on the next page.)


(3) Multiple PWM (Pulse Width Modulation) output

By extending the PWM function and using one master channel and two or more slave channels, up to seven types of PWM signals that have a specific period and a specified duty factor can be generated.

(4) Remote control output function

The pairings of channels 2 and 3 and channels 6 and 7 are used to output the PWM signal. The PWM signal output from channel 3 is used as a mask waves, the PWM signal output from channel 7 is used as a carrier waves, and the logical products of these signals are output as remote control output.

Caution For details about the rules of simultaneous channel operation function, see 6.4.1 Basic rules of simultaneous channel operation function.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7), p, q: Slave channel number (n

6.1.3 8-bit timer operation function (channels 1 and 3 only)

The 8-bit timer operation function makes it possible to use a 16-bit timer channel in a configuration consisting of two 8-bit timer channels. This function can only be used for channels 1 and 3.

Caution There are several rules for using 8-bit timer operation function.

For details, see 6.4.2 Basic rules of 8-bit timer operation function (channels 1 and 3 only).

6.2 Configuration of Timer Array Unit

Timer array unit includes the following hardware.

Table 6-1. Configuration of Timer Array Unit

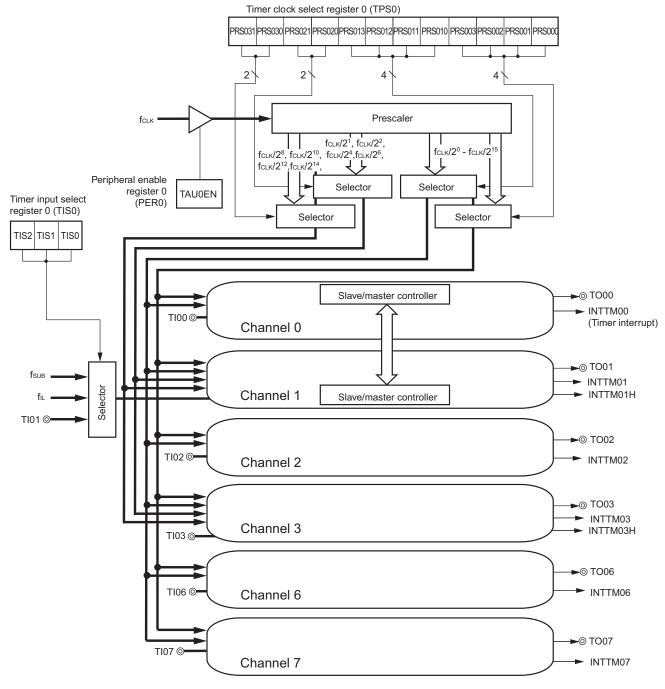
Item	Configuration	
Timer/counter	Timer count register mn (TCRmn)	
Register	Timer data register mn (TDRmn)	
Timer input	TI00 to TI03, TI06, TI07 Note 1	
Timer output	TO00 to TO03, TO06, TO07 Note 1, output controller	
Control registers	<registers block="" of="" setting="" unit=""> Peripheral enable register 0 (PER0) Timer clock select register m (TPSm) Timer channel enable status register m (TEm) Timer channel start register m (TSm) Timer channel stop register m (TTm) Timer input select register 0 (TIS0) Timer output select register (TOS) Timer output enable register m (TOEm) Timer output register m (TOM) Timer output level register m (TOLm) Timer output mode register m (TOMm) <registers channel="" each="" of=""> Timer mode register mn (TMRmn) Timer status register mn (TSRmn) Noise filter enable register 1 (NFEN1) Port mode register (PMxx) Note 2 Port register (Pxxx) Note 2</registers></registers>	

Notes 1. The presence or absence of timer I/O pins of channel 0 to 3, 6, 7 depends on the product. See **Table 6-2**Timer I/O Pins provided in Each Product for details.

2. The Port mode registers (PMxx) and port registers (Pxx) to be set differ depending on the product. For details, see 6.3.15 Port mode registers 1, 3, 5, 14 (PM1, PM3, PM5, PM14).

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

The presence or absence of timer I/O pins in each timer array unit channel depends on the product.

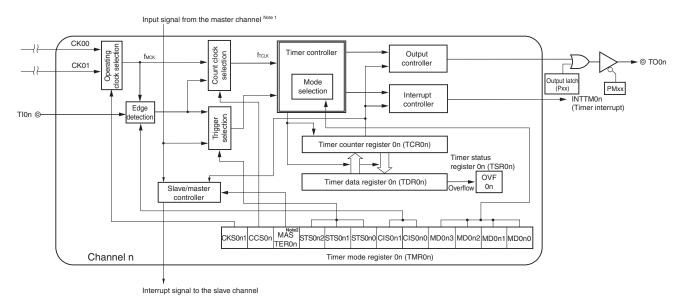

Table 6-2. Timer I/O Pins Provided in Each Product

Timer array unit channels	I/O Pins of Each Product				
	48-pin 64-pin				
Channel 0	P141/TI00, P140/TO00				
Channel 1	P30/TI01/TO01				
Channel 2	P17/TI02/TO02 P17/TI02/TO02				
	(P12) (P54)				
Channel 3	P32/TI03/TO03				
Channel 6	- P51/Tl06/TO06				
Channel 7	P10/TI07/TO07 P53/TI07/TO07				

- **Remarks 1.** When timer input and timer output are shared by the same pin, either only timer input or only timer output can be used.
 - 2. -: There is no timer I/O pin, but the channel is available. (However, the channel can only be used as an interval timer.)
 - **3.** "(P12), (P54)" indicates an alternate port when the bit 0 of the peripheral I/O redirection register (PIOR) is set to "1".

Figure 6-1 shows the block diagrams of the timer array unit.

<R> Figure 6-1. Entire Configuration of Timer Array Unit (Example: 64-pin products)



Remark fsub: Subsystem clock frequency

fı∟: Low-speed on-chip oscillator clock frequency

<R>

Figure 6-2. Internal Block Diagram of Channels 0, 2, 6 of Timer Array Unit


<R> Notes 1. Channels 2, 6 only

2. n = 2, 6 only

Remark n = 0, 2, 6

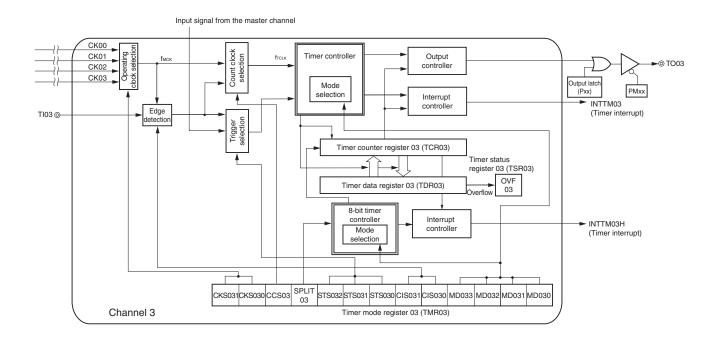

<R>

Figure 6-3. Internal Block Diagram of Channel 1 of Timer Array Unit

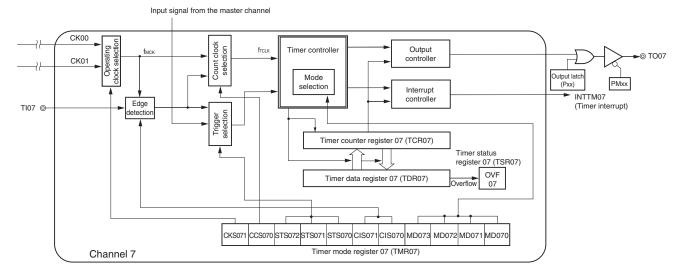
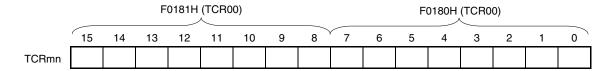

<R>

Figure 6-4. Internal Block Diagram of Channel 3 of Timer Array Unit

<R>

Figure 6-5. Internal Block Diagram of Channel 7 of Timer Array Unit

6.2.1 Timer count register mn (TCRmn)


The TCRmn register is a 16-bit read-only register and is used to count clocks.

The value of this counter is incremented or decremented in synchronization with the rising edge of a count clock.

Whether the counter is incremented or decremented depends on the operation mode that is selected by the MDmn3 to MDmn0 bits of timer mode register mn (TMRmn) (refer to **6.3.3 Timer mode register mn (TMRmn)**).

Figure 6-6. Format of Timer Count Register mn (TCRmn)

Address: F0180H, F0181H (TCR00) to F0186H, F0187H (TCR03), After reset: FFFFH R F018CH, F018DH (TCR06), F018EH, F018FH (TCR07)

The count value can be read by reading timer count register mn (TCRmn).

The count value is set to FFFFH in the following cases.

- When the reset signal is generated
- When the TAU0EN bit of peripheral enable register 0 (PER0) is cleared
- When counting of the slave channel has been completed in the PWM output mode
- When counting of the slave channel has been completed in the delay count mode
- When counting of the master/slave channel has been completed in the one-shot pulse output mode
- When counting of the slave channel has been completed in the multiple PWM output mode

The count value is cleared to 0000H in the following cases.

- When the start trigger is input in the capture mode
- When capturing has been completed in the capture mode

Caution The count value is not captured to timer data register mn (TDRmn) even when the TCRmn register is read.

The TCRmn register read value differs as follows according to operation mode changes and the operating status.

Table 6-3. Timer Count Register mn (TCRmn) Read Value in Various Operation Modes

Operation Mode	Count Mode		Timer count register mn (TCRmn) Read Value Note									
		Value if the operation mode was changed after releasing reset	was restarted after count operation paused (TTmn = 1) was restarted after after count operation paused (TTmn = 1)									
Interval timer mode	Count down	FFFFH	Value if stop	Undefined	_							
Capture mode	Count up	0000H	Value if stop	Undefined	-							
Event counter mode	Count down	FFFFH	Value if stop	Undefined	-							
One-count mode	Count down	FFFFH	Value if stop	Undefined	FFFFH							
Capture & one- count mode	Count up	0000H	Value if stop	Undefined	Capture value of TDRmn register + 1							

Note This indicates the value read from the TCRmn register when channel n has stopped operating as a timer (TEmn = 0) and has been enabled to operate as a counter (TSmn = 1). The read value is held in the TCRmn register until the count operation starts.

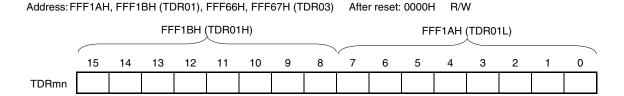
6.2.2 Timer data register mn (TDRmn)

This is a 16-bit register from which a capture function and a compare function can be selected.

The capture or compare function can be switched by selecting an operation mode by using the MDmn3 to MDmn0 bits of timer mode register mn (TMRmn).

The value of the TDRmn register can be changed at any time.

This register can be read or written in 16-bit units.


In addition, for the TDRm1 and TDRm3 registers, while in the 8-bit timer mode (when the SPLIT bits of timer mode registers m1 and m3 (TMRm1, TMRm3) are 1), it is possible to read and write the data in 8-bit units, with TDRm1H and TDRm3H used as the higher 8 bits, and TDRm1L and TDRm3L used as the lower 8 bits.

Reset signal generation clears this register to 0000H.

Figure 6-7. Format of Timer Data Register mn (TDRmn) (n = 0, 2, 6, 7)

Figure 6-8. Format of Timer Data Register mn (TDRmn) (n = 1, 3)

(i) When timer data register mn (TDRmn) is used as compare register

Counting down is started from the value set to the TDRmn register. When the count value reaches 0000H, an interrupt signal (INTTMmn) is generated. The TDRmn register holds its value until it is rewritten.

Caution The TDRmn register does not perform a capture operation even if a capture trigger is input, when it is set to the compare function.

(ii) When timer data register mn (TDRmn) is used as capture register

The count value of timer count register mn (TCRmn) is captured to the TDRmn register when the capture trigger is input.

A valid edge of the TImn pin can be selected as the capture trigger. This selection is made by timer mode register mn (TMRmn).

6.3 Registers Controlling Timer Array Unit

Timer array unit is controlled by the following registers.

- Peripheral enable register 0 (PER0)
- Timer clock select register m (TPSm)
- Timer mode register mn (TMRmn)
- Timer status register mn (TSRmn)
- Timer channel enable status register m (TEm)
- Timer channel start register m (TSm)
- Timer channel stop register m (TTm)
- Timer input select register 0 (TIS0)
- Timer output select register (TOS)
- Timer output enable register m (TOEm)
- Timer output register m (TOm)
- Timer output level register m (TOLm)
- Timer output mode register m (TOMm)
- Noise filter enable registers 1 (NFEN1)
- Port mode register (PMxx) Note
- Port register (Pxx) Note

Note The port mode registers (PMxx) and port registers (Pxx) to be set differ depending on the product. For details, see 6.3.15 Port mode registers 1, 3, 5, 14 (PM1, PM3, PM5, PM14).

6.3.1 Peripheral enable register 0 (PER0)

This registers is used to enable or disable supplying the clock to the peripheral hardware. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

When the timer array unit is used, be sure to set bit 0 (TAU0EN) of this register to 1.

The PER0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 6-9. Format of Peripheral Enable Register 0 (PER0)

Address: F00F0H After reset: 00H R/W <7> Symbol 6 <5> 3 <2> <0> 1 PER0 **RTCEN** 0 **ADCEN** 0 0 SAU0EN 0 TAU0EN

TAU0EN	Control of timer array unit input clock
0	Stops supply of input clock. • SFR used by the timer array unit cannot be written. • The timer array unit is in the reset status.
1	Supplies input clock. • SFR used by the timer array unit can be read/written.

<R>

- Cautions 1. When setting the timer array unit, be sure to set the following registers first while the TAU0EN bit is set to 1. If TAU0EN = 0, the values of the registers which control the timer array unit are cleared to their initial values and writing to them is ignored (except for the timer input select register 0 (TIS0), timer output select register (TOS), noise filter enable register 1 (NFEN1), port mode registers 1, 3, 5, 14 (PM1, PM3, PM5, PM14), and port registers 1, 3 to 5, 14 (P1, P3 to P5, P14)).
 - Timer clock select register m (TPSm)
 - Timer mode register mn (TMRmn)
 - Timer status register mn (TSRmn)
 - Timer channel enable status register m (TEm)
 - Timer channel start register m (TSm)
 - Timer channel stop register m (TTm)
 - Timer output enable register m (TOEm)
 - Timer output register m (TOm)
 - Timer output level register m (TOLm)
 - Timer output mode register m (TOMm)
 - 2. Be sure to clear bits 1, 3, 4 and 6 to "0".

6.3.2 Timer clock select register m (TPSm)

The TPSm register is a 16-bit register that is used to select two types or four types of operation clocks (CKm0, CKm1) that are commonly supplied to each channel from external prescaler. CKm1 is selected by using bits 7 to 4 of the TPSm register, and CKm0 is selected by using bits 3 to 0. In addition, for channel 1 and 3, CKm2 is selected by using bits 9 and 8 of the TPSm register, and CKm3 is selected by using bits 13 and 12.

Rewriting of the TPSm register during timer operation is possible only in the following cases.

If the PRSm00 to PRSm03 bits can be rewritten (n = 0 to 3, 6, 7):

All channels for which CKm0 is selected as the operation clock (CKSmn1, CKSmn0 = 0, 0) are stopped (TEmn = 0). If the PRSm10 to PRSm13 bits can be rewritten (n = 0 to 3, 6, 7):

All channels for which CKm1 is selected as the operation clock (CKSmn1, CKSmn0 = 0, 1) are stopped (TEmn = 0). If the PRSm20 and PRSm21 bits can be rewritten (n = 1, 3):

All channels for which CKm2 is selected as the operation clock (CKSmn1, CKSmn0 = 1, 0) are stopped (TEmn = 0). If the PRSm30 and PRSm31 bits can be rewritten (n = 1, 3):

All channels for which CKm3 is selected as the operation clock (CKSmn1, CKSmn0 = 1, 1) are stopped (TEmn = 0).

The TPSm register can be set by a 16-bit memory manipulation instruction.

Reset signal generation clears this register to 0000H.

Figure 6-10. Format of Timer Clock Select register m (TPSm) (1/2)

Address: F01B6H, F01B7H After reset: 0000H R/W Symbol 15 13 12 10 9 8 6 5 3 2 0 11 **TPSm** 0 0 PRS **PRS** 0 0 PRS PRS **PRS PRS PRS** PRS **PRS** PRS **PRS PRS** m31 m30 m21 m20 m13 m12 m10 m03 m02 m01 m00 m11

PRS	PRS	PRS	PRS	Selection of operation clock (CKmk) Note (k = 0, 1)								
mk3	mk2	mk1	mk0		fclk = 2 MHz	fclk = 5 MHz	fclk = 10 MHz	fclk = 20 MHz	fclk = 24 MHz			
0	0	0	0	fclk	2 MHz	5 MHz	10 MHz	20 MHz	24 MHz			
0	0	0	1	fclk/2	1 MHz	2.5 MHz	5 MHz	10 MHz	12 MHz			
0	0	1	0	fclk/2 ²	500 kHz	1.25 MHz	2.5 MHz	5 MHz	6 MHz			
0	0	1	1	fclk/2 ³	250 kHz	625 kHz	1.25 MHz	2.5 MHz	3 MHz			
0	1	0	0	fclk/2 ⁴	125 kHz	312.5 kHz	625 kHz	1.25 MHz	1.5 MHz			
0	1	0	1	fclk/2⁵	62.5 kHz	156.2 kHz	312.5 kHz	625 kHz	750 kHz			
0	1	1	0	fclk/2 ⁶	31.25 kHz	78.1 kHz	156.2 kHz	312.5 kHz	375 kHz			
0	1	1	1	fclk/2 ⁷	15.62 kHz	39.1 kHz	78.1 kHz	156.2 kHz	187.5 kHz			
1	0	0	0	fclk/28	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	93.8 kHz			
1	0	0	1	fclk/29	3.91 kHz	9.76 kHz	19.5 kHz	39.1 kHz	46.9 kHz			
1	0	1	0	fclk/2 ¹⁰	1.95 kHz	4.88 kHz	9.76 kHz	19.5 kHz	23.4 kHz			
1	0	1	1	fcLK/2 ¹¹	976 Hz	2.44 kHz	4.88 kHz	9.76 kHz	11.7 kHz			
1	1	0	0	fclk/2 ¹²	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	5.86 kHz			
1	1	0	1	fclk/2 ¹³	244 Hz	610 Hz	1.22 kHz	2.44 kHz	2.93 kHz			
1	1	1	0	fclk/2 ¹⁴	122 Hz	305 Hz	610 Hz	1.22 kHz	1.46 kHz			
1	1	1	1	fclk/2 ¹⁵	61 Hz	153 Hz	305 Hz	610 Hz	732 Hz			

Note When changing the clock selected for fcLK (by changing the system clock control register (CKC) value), stop timer array unit (TTm = 00FFH).

Cautions 1. Be sure to clear bits 15, 14, 11, 10 to "0".

2. If fclk (undivided) is selected as the operation clock (CKmk) and TDRnm is set to 0000H (n = 0 or 1, m = 0 to 3, 6, 7), interrupt requests output from timer array units are not detected.

Remarks 1. fclk: CPU/peripheral hardware clock frequency

2. Waveform of the clock to be selected in the TPSm register which becomes high level for one period of fclk from its rising edge (m = 1 to 15). For details, see 6.5.1 Count clock (fτclk).

Figure 6-10. Format of Timer Clock Select register m (TPSm) (2/2)

Address: F01B6H, F01B7H After reset: 0000H R/W Symbol 15 13 12 10 9 6 3 2 0 11 **TPSm** 0 0 PRS **PRS** 0 0 PRS PRS PRS **PRS PRS PRS** PRS **PRS PRS PRS** m31 m30 m21 m20 m13 m12 m10 m03 m02 m01 m00 m11

PRS	PRS		Selection of	operation cloc	k (CKm2) Note		
m21	m20		fclk = 2 MHz	fclk = 5 MHz	fclk = 10 MHz	fclk = 20 MHz	fclk = 24 MHz
0	0	fclk/2	1 MHz	2.5 MHz	5 MHz	10 MHz	12 MHz
0	1	fclk/2 ²	500 kHz	1.25 MHz	2.5 MHz	5 MHz	6 MHz
1	0	fclk/2 ⁴	125 kHz	312.5 kHz	625 MHz	1.25 MHz	1.5 MHz
1	1	fclk/2 ⁶	31.25 kHZ	78.1 kHz	156.2 kHz	312.5 kHz	375 MHz

PRS	PRS		Selection of	operation cloc	k (CKm3) Note		
m31	m30		fclk = 2 MHz	fclk = 5 MHz	fclk = 10 MHz	fclk = 20 MHz	fclk = 24 MHz
0	0	fclk/2 ⁸	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	93.8 kHz
0	1	fcLk/2 ¹⁰	1.95 kHz	4.88 kHz	9.76 kHz	19.5 kHz	23.4 kHz
1	0	fcLk/2 ¹²	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	5.86 kHz
1	1	fcLk/2 ¹⁴	122 HZ	305 Hz	610 Hz	1.22 kHz	1.46 kHz

Note When changing the clock selected for fcLK (by changing the system clock control register (CKC) value), stop timer array unit (TTm = 00FFH).

The timer array unit must also be stopped if the operating clock (fMcK) specified by using the CKSmn0, and CKSmn1 bits or the valid edge of the signal input from the TImn pin is selected as the count clock (fTCLK).

Caution Be sure to clear bits 15, 14, 11, 10 to "0".

By using channels 1 and 3 in the 8-bit timer mode and specifying CKm2 or CKm3 as the operation clock, the interval times shown in Table 6-4 can be achieved by using the interval timer function.

Table 6-4. Interval Times Available for Operation Clock CKSm2 or CKSm3

Clock			Interval time (fclk = 24 MHz)									
		10 μs Note	100 μs ^{Note}	1 ms Note	10 ms Note							
CKm2	fclk/2	V	-		-							
	fclk/2 ²	√	-		-							
	fclk/2 ⁴	V	√	-	-							
	fclk/2 ⁶	√	√	=	=							
CKm3	fclk/2 ⁸	-	√	√	-							
	fclk/2 ¹⁰	-	√	√	-							
	fclk/2 ¹²	-	-	√	√							
	fclk/2 ¹⁴	-	-	√	√							

Note The margin is within 5%.

Remarks 1. fclk: CPU/peripheral hardware clock frequency

2. For details of a signal of fclk/2 selected with the TPSm register, see 6.5.1 Count clock (ftclk).

6.3.3 Timer mode register mn (TMRmn)

The TMRmn register sets an operation mode of channel n. This register is used to select the operation clock (fmck), select the count clock, select the master/slave, select the 16 or 8-bit timer (only for channels 1 and 3), specify the start trigger and capture trigger, select the valid edge of the timer input, and specify the operation mode (interval, capture, event counter, one-count, or capture and one-count).

Rewriting the TMRmn register is prohibited when the register is in operation (when TEmn = 1). However, bits 7 and 6 (CISmn1, CISmn0) can be rewritten even while the register is operating with some functions (when TEmn = 1) (for details, see 6.8 Independent Channel Operation Function of Timer Array Unit and 6.9 Simultaneous Channel Operation Function of Timer Array Unit).

The TMRmn register can be set by a 16-bit memory manipulation instruction.

Reset signal generation clears this register to 0000H.

Caution The bits mounted depend on the channels in the bit 11 of TMRmn register.

TMRm2, TMRm6: MASTERmn bit (n = 2, 6) TMRm1, TMRm3: SPLITmn bit (n = 1, 3)

TMRm0, TMRm7: Fixed to 0

Figure 6-11. Format of Timer Mode Register mn (TMRmn) (1/4)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	MAST	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 6)	mn1	mn0		mn	ERmn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
																<u>.</u>
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
																<u>.</u>
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	O ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 0, 7)	mn1	mn0		mn		mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0

CKS mn1	CKS mn0	Selection of operation clock (fмск) of channel n
0	0	Operation clock CKm0 set by timer clock select register m (TPSm)
0	1	Operation clock CKm2 set by timer clock select register m (TPSm)
1	0	Operation clock CKm1 set by timer clock select register m (TPSm)
1	1	Operation clock CKm3 set by timer clock select register m (TPSm)

Operation clock (f_{MCK}) is used by the edge detector. A count clock (f_{TCLK}) and a sampling clock are generated depending on the setting of the CCSmn bit.

The operation clocks CKm2 and CKm3 can only be selected for channels 1 and 3.

ccs	Selection of count clock (ftclk) of channel n							
mn								
0	Operation clock (fmck) specified by the CKSmn0 and CKSmn1 bits							
1	Valid edge of input signal input from the Tlmn pin							
Count	Count clock (frcik) is used for the timer/counter, output controller, and interrupt controller.							

Note Bit 11 is fixed at 0 of read only, write is ignored.

Cautions 1. Be sure to clear bits 13, 5, and 4 to "0".

2. The timer array unit must be stopped (TTm = 00FFH) if the clock selected for fclk is changed (by changing the value of the system clock control register (CKC)), even if the operating clock specified by using the CKSmn0 and CKSmn1 bits (fmck) or the valid edge of the signal input from the TImn pin is selected as the count clock (ftclk).

Figure 6-11. Format of Timer Mode Register mn (TMRmn) (2/4)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	MAST	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 6)	mn1	mn0		mn	ERmn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	O ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 0, 7)	mn1	mn0		mn		mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0

(Bit 11 of TMRmn (n = 2, 6))

MAS	Selection between using channel n independently or
TER	simultaneously with another channel(as a slave or master)
mn	
0	Operates in independent channel operation function or as slave channel in simultaneous channel operation
	function.
1	Operates as master channel in simultaneous channel operation function.

Only the channel 2, 6 can be set as a master channel (MASTERmn = 1).

Be sure to use channel 0, 7 are fixed to 0 (Regardless of the bit setting, channel 0 operates as master, because it is the highest channel).

Clear the MASTERmn bit to 0 for a channel that is used with the independent channel operation function.

(Bit 11 of TMRmn (n = 1, 3))

SPLI Tmn	Selection of 8 or 16-bit timer operation for channels 1 and 3
0	Operates as 16-bit timer. (Operates in independent channel operation function or as slave channel in simultaneous channel operation function.)
1	Operates as 8-bit timer.

STS mn2	STS mn1	STS mn0	Setting of start trigger or capture trigger of channel n
0	0	0	Only software trigger start is valid (other trigger sources are unselected).
0	0	1	Valid edge of the TImn pin input is used as both the start trigger and capture trigger.
0	1	0	Both the edges of the TImn pin input are used as a start trigger and a capture trigger.
1	0	0	Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function).
Other than above		bove	Setting prohibited

Note Bit 11 is fixed at 0 of read only, write is ignored.

Figure 6-11. Format of Timer Mode Register mn (TMRmn) (3/4)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	MAST	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 6)	mn1	mn0		mn	ERmn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	O ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 0, 7)	mn1	mn0		mn		mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0

CIS	CIS	Selection of Tlmn pin input valid edge
mn1	mn0	
0	0	Falling edge
0	1	Rising edge
1	0	Both edges (when low-level width is measured) Start trigger: Falling edge, Capture trigger: Rising edge
1	1	Both edges (when high-level width is measured) Start trigger: Rising edge, Capture trigger: Falling edge

If both the edges are specified when the value of the STSmn2 to STSmn0 bits is other than 010B, set the CISmn1 to CISmn0 bits to 10B.

MD mn3	MD mn2	MD mn1	MD mn0	Operation mode of channel n	Corresponding function	Count operation of TCR				
0	0	0	1/0	Interval timer mode	Interval timer/Square wave output/Divider function/PWM output (master)	Counting down				
0	1	0	1/0	Capture mode	Input pulse interval measurement	Counting up				
0	1	1	0	Event counter mode	External event counter	Counting down				
1	0	0	1/0	One-count mode	Delay counter/One-shot pulse output/PWM output (slave)	Counting down				
1	1	0	0	Capture & one-count mode	Measurement of high-/low-level width of input signal	Counting up				
С	Other tha	an abov	e	Setting prohibited						
The o	The operation of the MDmn0 bit varies depending on each operation mode (see table below).									

Note Bit 11 is fixed at 0 of read only, write is ignored.

Figure 6-11. Format of Timer Mode Register mn (TMRmn) (4/4)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	MAST	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 6)	mn1	mn0		mn	ERmn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	ccs	O ^{Note 1}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 0, 7)	mn1	mn0		mn		mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0

Operation mode (Value set by the MDmn3 to MDmn1 bits (see table above))	MD mn0	Setting of starting counting and interrupt
• Interval timer mode (0, 0, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• One-count mode Note 2 (1, 0, 0)	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated.
	1	Start trigger is valid during counting operation ^{Note 3} . At that time, interrupt is not generated.
Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation.

Notes 1. Bit 11 is fixed at 0 of read only, write is ignored.

- 2. In one-count mode, interrupt output (INTTMmn) when starting a count operation and TOmn output are not controlled.
- **3.** If the start trigger (TSmn = 1) is issued during operation, the counter is initialaized, an interrupt is generated, and recounting is started (does not occur the interrupt request).

6.3.4 Timer status register mn (TSRmn)

The TSRmn register indicates the overflow status of the counter of channel n.

The TSRmn register is valid only in the capture mode (MDmn3 to MDmn1 = 010B) and capture & one-count mode (MDmn3 to MDmn1 = 110B). See Table 6-5 for the operation of the OVF bit in each operation mode and set/clear conditions.

The TSRmn register can be read by a 16-bit memory manipulation instruction.

The lower 8 bits of the TSRmn register can be set with an 8-bit memory manipulation instruction with TSRmnL.

Reset signal generation clears this register to 0000H.

Figure 6-12. Format of Timer Status Register mn (TSRmn)

Address: F01A0H, F01A1H (TSR00) to F01A6H, F01A7H (TSR03), After reset: 0000H R F01ACH, F01ADH (TSR06), F01AEH, F01AFH (TSR07)

Symbol OVF 0 **TSRmn** 0 0 0 0 0

OVF	Counter overflow status of channel n					
0	Overflow does not occur.					
1	Overflow occurs.					
When	When OVF = 1, this flag is cleared (OVF = 0) when the next value is captured without overflow.					

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

Table 6-5. OVF Bit Operation and Set/Clear Conditions in Each Operation Mode

Timer operation mode	OVF bit	Set/clear conditions
Capture mode	clear	When no overflow has occurred upon capturing
Capture & one-count mode	set	When an overflow has occurred upon capturing
Interval timer mode	clear	
Event counter mode		=
One-count mode	set	(Use prohibited)

Remark The OVF bit does not change immediately after the counter has overflowed, but changes upon the subsequent capture.

6.3.5 Timer channel enable status register m (TEm)

The TEm register is used to enable or stop the timer operation of each channel.

Each bit of the TEm register corresponds to each bit of the timer channel start register m (TSm) and the timer channel stop register m (TTm). When a bit of the TSm register is set to 1, the corresponding bit of this register is set to 1. When a bit of the TTm register is set to 1, the corresponding bit of this register is cleared to 0.

The TEm register can be read by a 16-bit memory manipulation instruction.

The lower 8 bits of the TEm register can be set with a 1-bit or 8-bit memory manipulation instruction with TEmL.

Reset signal generation clears this register to 0000H.

Figure 6-13. Format of Timer Channel Enable Status register m (TEm)

Address: F01B0H, F01B1H After reset: 0000H R 12 7 6 3 0 Symbol 13 10 9 5 2 1 15 11 0 TEHm TEHm TEm TEm 0 0 TEm TEm TEm TEm 0 0 0 0 0 TEm 7 6 3 2 0 3 1 1

TEH	Indication of whether operation of the higher 8-bit timer is enabled or stopped when channel 3 is in the 8-bit
03	timer mode
0	Operation is stopped.
1	Operation is enabled.

TEH	Indication of whether operation of the higher 8-bit timer is enabled or stopped when channel 1 is in the 8-bit
01	timer mode
0	Operation is stopped.
1	Operation is enabled.

TEmn	Indication of operation enable/stop status of channel n					
0	Operation is stopped.					
1	Operation is enabled.					
	This bit displays whether operation of the lower 8-bit timer for TEm1 and TEm3 is enabled or stopped when channel 1 or 3 is in the 8-bit timer mode.					

6.3.6 Timer channel start register m (TSm)

The TSm register is a trigger register that is used to initialize timer count register mn (TCRmn) and start the counting operation of each channel.

When a bit of this register is set to 1, the corresponding bit of timer channel enable status register m (TEm) is set to 1. The TSmn, TSHm1, TSHm3 bits are immediately cleared when operation is enabled (TEmn, TEHm1, TEHm3 = 1), because they are trigger bits.

The TSm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the TSm register can be set with a 1-bit or 8-bit memory manipulation instruction with TSmL.

Reset signal generation clears this register to 0000H.

Figure 6-14. Format of Timer Channel Start register m (TSm)

Address: F01B2H, F01B3H After reset: 0000H Symbol 15 13 12 10 9 6 5 3 2 0 14 11 7 **TSHm TSHm** TSm TSm 0 TSm TSm TSm TSm TSm 0 0 0 0 0 0 3 1 7 6 3 2 1 0

TSH m3	Trigger to enable operation (start operation) of the higher 8-bit timer when channel 3 is in the 8-bit timer mode
0	No trigger operation
1	The TEHm3 bit is set to 1 and the count operation becomes enabled.
	The TCRm3 register count operation start in the interval timer mode in the count operation enabled state
	(see Table 6-6 in 6.5.2 Start timing of counter).

TSH m1	Trigger to enable operation (start operation) of the higher 8-bit timer when channel 1 is in the 8-bit timer mode
0	No trigger operation
1	The TEHm1 bit is set to 1 and the count operation becomes enabled. The TCRm1 register count operation start in the interval timer mode in the count operation enabled state (see Table 6-6 in 6.5.2 Start timing of counter).

TSm n	Operation enable (start) trigger of channel n
0	No trigger operation
1	The TEmn bit is set to 1 and the count operation becomes enabled. The TCRmn register count operation start in the count operation enabled state varies depending on each operation mode (see Table 6-6 in 6.5.2 Start timing of counter).
	This bit is the trigger to enable operation (start operation) of the lower 8-bit timer for TSm1 and TSm3 when channel 1 or 3 is in the 8-bit timer mode.

Cautions 1. Be sure to clear bits 15 to 12, 10, 8, 5, 4 to "0"

2. When switching from a function that does not use TImn pin input to one that does, the following wait period is required from when timer mode register mn (TMRmn) is set until the TSmn (TSHm1, TSHm3) bit is set to 1.

When the TImn pin noise filter is enabled (TNFENmn = 1): Four cycles of the operation clock

When the TImn pin noise filter is disabled (TNFENmn = 0): Two cycles of the operation clock (fmck)

Remarks 1. When the TSm register is read, 0 is always read.

6.3.7 Timer channel stop register m (TTm)

The TTm register is a trigger register that is used to stop the counting operation of each channel.

When a bit of this register is set to 1, the corresponding bit of timer channel enable status register m (TEm) is cleared to 0. The TTmn, TTHm1, TTHm3 bits are immediately cleared when operation is stopped (TEmn, TTHm1,

TTHm3 = 0), because they are trigger bits.

The TTm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the TTm register can be set with a 1-bit or 8-bit memory manipulation instruction with TTmL.

Reset signal generation clears this register to 0000H.

Figure 6-15. Format of Timer Channel Stop register m (TTm)

Address: F01B4H, F01B5H After reset: 0000H R/W 12 7 6 3 0 Symbol 13 10 9 5 2 15 11 TTHm 0 0 TTm 0 0 0 0 **TTHm** 0 0 TTm TTm TTm TTm TTm TTm 3 7 6 3 2 0 1

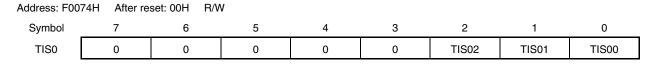
TTH m3	Trigger to stop operation of the higher 8-bit timer when channel 3 is in the 8-bit timer mode
0	No trigger operation
1	Operation is stopped (stop trigger is generated).

TTH m1	Trigger to stop operation of the higher 8-bit timer when channel 1 is in the 8-bit timer mode
0	No trigger operation
1	Operation is stopped (stop trigger is generated).

TTm	Operation stop trigger of channel n
n	
0	No trigger operation
1	TEmn bit clear to 0, to be count operation stop enable status.
	This bit is the trigger to stop operation of the lower 8-bit timer for TTm1 and TTm3 when channel 1 or 3 is in the 8-bit timer mode.

Caution Be sure to clear bits 15 to 12, 10, 8, 5, 4 of the TTm register to "0".

Remarks 1. When the TTm register is read, 0 is always read.


6.3.8 Timer input select register 0 (TIS0)

The TISO register is used to select the channel 1 timer input.

The TISO register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 6-16. Format of Timer Input Select register 0 (TIS0)

TIS02	TIS01	TIS00	Selection of timer input used with channel 1
0	0	0	Input signal of timer input pin (TI01)
1	0	0	Low-speed on-chip oscillator clock (fil.)
1	0	1	Subsystem clock (fsub)
Other than above			Setting prohibited

Caution High-level width, low-level width of timer input is selected, will require more than 1/fmck +10 ns.

Therefore, when selecting fsub to fclk (CSS bit of CKS register = 1), can not TIS02 bit set to 1.

6.3.9 Timer output select register (TOS)

The TOS register is used to enable the remote control output function.

Remote control output are generated by using the PWM output signal generated by channels 2 and 3 (mask wave) to mask the PWM output signal generated by channels 6 and 7 (carrier wave).

Rewriting the TOS register is only possible before counting starts (TE02, TE03, TE06, TE07 = 0).

The TOS register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 6-17. Format of Timer Output Select register (TOS)

Address: F0079H		ter reset: 00H	R/W	1					
Symbol	7	6		5	4	3	2	1	0
TOS	0	0		0	0	0	0	0	TOS0

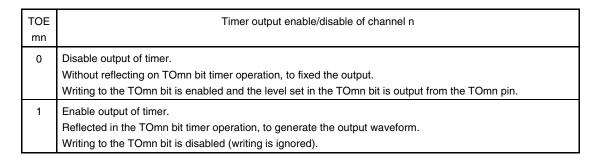
TOS0 Remote control output setting					
0	Disable (channels 2, 3, 6, and 7 is used for timer output)				
1	Enable (remote control output to the TO03 pin)				

Cautions Channels 2, 3, 6, and 7 cannot be used for any other function when remote control output is enabled (TOS0 = 1).

6.3.10 Timer output enable register m (TOEm)

The TOEm register is used to enable or disable timer output of each channel.

Channel n for which timer output has been enabled becomes unable to rewrite the value of the TOmn bit of timer output register m (TOm) described later by software, and the value reflecting the setting of the timer output function through the count operation is output from the timer output pin (TOmn).


The TOEm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the TOEm register can be set with a 1-bit or 8-bit memory manipulation instruction with TOEmL.

Reset signal generation clears this register to 0000H.

Figure 6-18. Format of Timer Output Enable register m (TOEm)

Address: F01BAH, F01BBH After reset: 0000H R/W 7 6 3 0 Symbol 15 13 12 9 8 5 2 1 11 10 **TOEm** TOE TOE 0 TOE TOE TOE TOE 0 0 0 0 0 0 0 0 0 m7 m6 m2 m0 m3 m1

Caution Be sure to clear bits 15 to 8, 5, 4 to "0".

6.3.11 Timer output register m (TOm)

The TOm register is a buffer register of timer output of each channel.

The value of each bit in this register is output from the timer output pin (TOmn) of each channel.

The TOmn bit oh this register can be rewritten by software only when timer output is disabled (TOEmn = 0). When timer output is enabled (TOEmn = 1), rewriting this register by software is ignored, and the value is changed only by the timer operation.

To use the P140/T000, P30/TI01/T001, P17/TI02/T002, P32/TI03/T003, P51/TI06/T006, or P53/TI07/T007 pin as a port function pin, set the corresponding TOmn bit to "0".

The TOm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the TOm register can be set with an 8-bit memory manipulation instruction with TOmL.

Reset signal generation clears this register to 0000H.

Figure 6-19. Format of Timer Output register m (TOm)

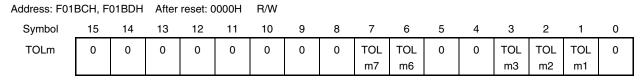
Address: F01B8H, F01B9H			After reset: 0000H			H/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOm	0	0	0	0	0	0	0	0	TOm	TOm	0	0	TOm	TOm	TOm	TOm
									7	6			3	2	1	0

TOm n	Timer output of channel n
0	Timer output value is "0".
1	Timer output value is "1".

Caution Be sure to clear bits 15 to 8, 5, 4 to "0".

6.3.12 Timer output level register m (TOLm)

The TOLm register is a register that controls the timer output level of each channel.


The setting of the inverted output of channel n by this register is reflected at the timing of set or reset of the timer output signal while the timer output is enabled (TOEmn = 1) in the Slave channel output mode (TOMmn = 1). In the master channel output mode (TOMmn = 0), this register setting is invalid.

The TOLm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the TOLm register can be set with an 8-bit memory manipulation instruction with TOLmL.

Reset signal generation clears this register to 0000H.

Figure 6-20. Format of Timer Output Level register m (TOLm)

TOL mn	Control of timer output level of channel n
0	Positive logic output (active-high)
1	Negative logic output (active-low)

Caution Be sure to clear bits 15 to 8, 5, 4 and 0 to "0".

Remarks 1. If the value of this register is rewritten during timer operation, the timer output logic is inverted when the timer output signal changes next, instead of immediately after the register value is rewritten.

6.3.13 Timer output mode register m (TOMm)

The TOMm register is used to control the timer output mode of each channel.

When a channel is used for the independent channel operation function, set the corresponding bit of the channel to be used to 0.

When a channel is used for the simultaneous channel operation function (PWM output, one-shot pulse output, or multiple PWM output), set the corresponding bit of the master channel to 0 and the corresponding bit of the slave channel to 1.

The setting of each channel n by this register is reflected at the timing when the timer output signal is set or reset while the timer output is enabled (TOEmn = 1).

The TOMm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the TOMm register can be set with an 8-bit memory manipulation instruction with TOMmL.

Reset signal generation clears this register to 0000H.

Figure 6-21. Format of Timer Output Mode register m (TOMm)

Address: F01BEH, F01BFH After reset: 0000H 13 12 7 6 3 0 Symbol 15 11 10 9 8 TOM TOM 0 TOM TOM TOM **TOMm** 0 0 0 0 0 0 0 0 0 0 m6 m1 m7 m3 m2

ТОМ	Control of timer output mode of channel n
mn	
0	Master channel output mode (to produce toggle output by timer interrupt request signal (INTTMmn))
1	Slave channel output mode (output is set by the timer interrupt request signal (INTTMmn) of the master
	channel, and reset by the timer interrupt request signal (INTTM0p) of the slave channel)

Caution Be sure to clear bits 15 to 8, 5, 4 and 0 to "0".

Remark m: Unit number (m = 0)

n: Channel number

n = 0 to 3, 6, 7 (n = 0, 2, 6 for master channel)

p: Slave channel number

n

(For details of the relation between the master channel and slave channel, refer to 6.4.1 Basic rules of simultaneous channel operation function.)

6.3.14 Noise filter enable register 1 (NFEN1)

The NFEN1 register is used to set whether the noise filter can be used for the timer input signal to each channel.

Enable the noise filter by setting the corresponding bits to 1 on the pins in need of noise removal.

<R> When the noise filter is enabled, after synchronization with the operating clock (fmck) for the target channel, whether the signal keeps the same value for two clock cycles is detected.

When the noise filter is disabled, the input signal is only synchronized with the operating clock (fmck) for the target channel Note.

The NFEN1 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Note For details, see 6.5.1 (2) When valid edge of input signal input from the Tlmn pin is selected (CCSmn = 1) and 6.5.2 Start timing of counter.

Figure 6-22. Format of Noise Filter Enable Register 1 (NFEN1)

Address: F00	71H After re	eset: 00H R/V	V					
Symbol	7	6	5	4	3	2	1	0
NFEN1	TNFEN07	TNFEN06	0	0	TNFEN03	TNFEN02	TNFEN01	TNFEN00
	TNFEN07	Enable/disable using noise filter of TI07TO07P53 pin signal						
	0	Noise filter OFF						
	1	Noise filter ON						
i		1						
	TNFEN06		Enable/dis	able using nois	e filter of TI06/	TO06/P51 pin i	nput signal	
	0	Noise filter OFF						
	1 Noise filter ON							
		ı						1
	TNFEN03 Enable/disable using noise filter of Tl03/T003/P32 pin input signal							
	0	Noise filter OFF						
	1	Noise filter ON						
ĺ	TNFEN02		Enable/dis	able using nois	e filter of TI02/	T∩02/P17 nin i	nnut signal	
	0	Noise filter OF		able dailig fiola	C IIICI OI 1102/	1002/1 17 pii11	ilput signai	
	1	Noise filter ON						
	'	110100 11101 011						
	TNFEN01		Enable/dis	able using nois	e filter of TI01/	ΓΟ01/P30 pin i	nput signal	
	0	Noise filter OF	F					
	1	Noise filter ON						
		•						
	TNFEN00		Enable/d	disable using n	oise filter of TIO	0/P141 pin inp	ut signal	
	0	Noise filter OF	F					
	1	Noise filter ON						

Remark The presence or absence of timer I/O pins of channel 0 to 3, 6, 7 depends on the product. See Table 6-2 Timer I/O Pins provided in Each Product for details.

6.3.15 Port mode registers 1, 3, 5, 14 (PM1, PM3, PM5, PM14)

These registers set input/output of ports 1, 3, 5, 14 in 1-bit units.

The presence or absence of timer I/O pins depends on the product. When using the timer array unit, set the following port mode registers according to the product used.

48-pin products: PM1, PM3, PM14 64-pin products: PM1, PM3, PM5, PM14

When using the ports (such as (P140/TO00 and P17/TO02/TI02) to be shared with the timer output pin for timer output, set the port mode register (PMxx) bit and port register (Pxx) bit corresponding to each port to 0.

Example: When using P17/T002/Tl02 for timer output Set the PM17 bit of port mode register 1 to 0.

Set the P17 bit of port register 1 to 0.

When using the ports (such as P141/TI00 and P32/TO03/TI03) to be shared with the timer input pin for timer input, set the port mode register (PMxx) bit corresponding to each port to 1. At this time, the port register (Pxx) bit may be 0 or 1.

Example: When using P32/T003/Tl03 for timer input Set the PM32 bit of port mode register 1 to 1. Set the P32 bit of port register 1 to 0 or 1.

The PM1, PM3, PM5, PM14 registers can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets these registers to FFH

Figure 6-23. Format of Port Mode Registers 1, 3, 5, 14 (PM1, PM3, PM5, PM14) (64-pin products)

Symbol 7		5	4	3	2	1	0
PM1 PM	117 PM16					•	0
	117	PM15	PM14	PM13	PM12	PM11	PM10
Address: FFF23H	After reset: FFH R/	W					
Symbol	7 6	5	4	3	2	1	0
PM3	1 1	1	1	1	PM32	PM31	PM30
	After reset: FFH R/	W 5	4	3	2	1	0
PM5	1 1	1	PM54	PM53	PM52	PM51	PM50
	After reset: FFH R/						
Symbol	7 6	5	4	3	2	1	0
PM14 PM	147 PM146	PM145	PM144	PM143	PM142	PM141	PM140

PMmn	Pmn pin I/O mode selection (m = 1, 3, 5, 14; n = 0 to 3, 6, 7)		
0	Output mode (output buffer on)		
1	Input mode (output buffer off)		

Remark The figure shown above presents the format of port mode registers 1, 3, 5, 14 of the 64-pin products. The format of the port mode register of other products, see Table 4-3 PMxx, PXx, PUxx, PIMxx, POMxx, PMCxx registers and the bits mounted on each product.

6.4 Basic Rules of Timer Array Unit

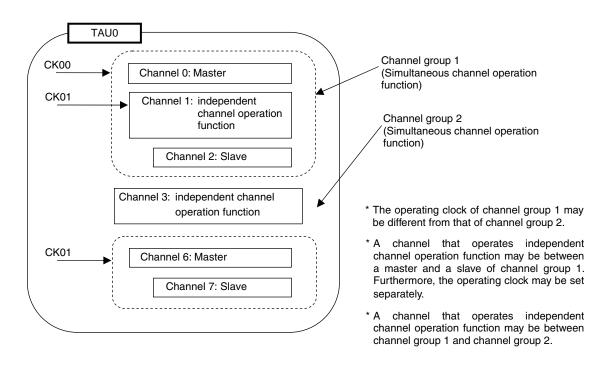
6.4.1 Basic rules of simultaneous channel operation function

When simultaneously using multiple channels, namely, a combination of a master channel (a reference timer mainly counting the cycle) and slave channels (timers operating according to the master channel), the following rules apply.

- (1) Only an even channel (channel 0, 2, 6) can be set as a master channel.
- (2) Any channel, except channel 0, can be set as a slave channel.
- (3) The slave channel must be lower than the master channel.

Example: If channel 0 is set as a master channel, channel 1 or those that follow (channels 1, 2, 3, etc.) can be set as a slave channel.

- (4) Two or more slave channels can be set for one master channel.
- (5) When two or more master channels are to be used, slave channels with a master channel between them may not be set.


Example: If channels 0 and 6 are set as master channels, channels 1 to 3 can be set as the slave channels of master channel 0. Channel 7 cannot be set as the slave channel of master channel 0.

- (6) The operating clock for a slave channel in combination with a master channel must be the same as that of the master channel. The CKSmn0, CKSmn1 bits (bit 15, 14 of timer mode register mn (TMRmn)) of the slave channel that operates in combination with the master channel must be the same value as that of the master channel.
- (7) A master channel can transmit INTTMmn (interrupt), start software trigger, and count clock to the lower channels.
- (8) A slave channel can use INTTMmn (interrupt), a start software trigger, or the count clock of the master channel as a source clock, but cannot transmit its own INTTMmn (interrupt), start software trigger, or count clock to channels with lower channel numbers.
- (9) A master channel cannot use INTTMmn (interrupt), a start software trigger, or the count clock from the other higher master channel as a source clock.
- (10) To simultaneously start channels that operate in combination, the channel start trigger bit (TSmn) of the channels in combination must be set at the same time.
- (11) During the counting operation, a TSmn bit of a master channel or TSmn bits of all channels which are operating simultaneously can be set. It cannot be applied to TSmn bits of slave channels alone.
- (12) To stop the channels in combination simultaneously, the channel stop trigger bit (TTmn) of the channels in combination must be set at the same time.
- (13) CKm2/CKm3 cannot be selected while channels are operating simultaneously, because the operating clocks of master channels and slave channels have to be synchronized.
- (14) Timer mode register m0 (TMRm0) has no master bit (it is fixed as "0"). However, as channel 0 is the highest channel, it can be used as a master channel during simultaneous operation.

The rules of the simultaneous channel operation function are applied in a channel group (a master channel and slave channels forming one simultaneous channel operation function).

If two or more channel groups that do not operate in combination are specified, the basic rules of the simultaneous channel operation function in **6.4.1** Basic rules of simultaneous channel operation function do not apply to the channel groups.

Example

6.4.2 Basic rules of 8-bit timer operation function (channels 1 and 3 only)

The 8-bit timer operation function makes it possible to use a 16-bit timer channel in a configuration consisting of two 8-bit timer channels.

This function can only be used for channels 1 and 3, and there are several rules for using it.

The basic rules for this function are as follows:

- (1) The 8-bit timer operation function applies only to channels 1 and 3.
- (2) When using 8-bit timers, set the SPLIT bit of timer mode register mn (TMRmn) to 1.
- (3) The higher 8 bits can be operated as the interval timer function.
- (4) At the start of operation, the higher 8 bits output INTTMm1H/INTTMm3H (an interrupt) (which is the same operation performed when MDmn0 is set to 1).
- (5) The operation clock of the higher 8 bits is selected according to the CKSmn1 and CKSmn0 bits of the lower-bit TMRmn register.
- (6) For the higher 8 bits, the TSHm1/TSHm3 bit is manipulated to start channel operation and the TTHm1/TTHm3 bit is manipulated to stop channel operation. The channel status can be checked using the TEHm1/TEHm3 bit.
- (7) The lower 8 bits operate according to the TMRmn register settings. The following three functions support operation of the lower 8 bits:
 - Interval timer function
 - · External event counter function
 - Delay count function
- (8) For the lower 8 bits, the TSm1/TSm3 bit is manipulated to start channel operation and the TTm1/TTm3 bit is manipulated to stop channel operation. The channel status can be checked using the TEm1/TEm3 bit.
- (9) During 16-bit operation, manipulating the TSHm1, TSHm3, TTHm1, and TTHm3 bits is invalid. The TSm1, TSm3, TTm1, and TTm3 bits are manipulated to operate channels 1 and 3. The TEHm3 and TEHm1 bits are not changed.
- (10) For the 8-bit timer function, the simultaneous operation functions (one-shot pulse, PWM, and multiple PWM) cannot be used.

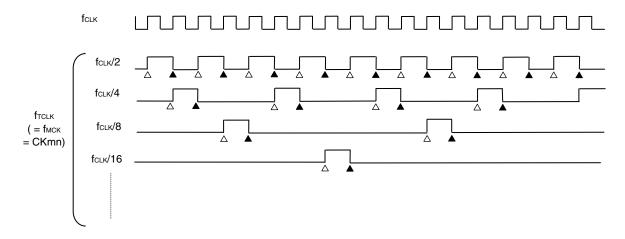
Remark m: Unit number (m = 0), n: Channel number (n = 1, 3)

6.5 Operation of Counter

6.5.1 Count clock (ftclk)

The count clock (ftclk) of the timer array unit can be selected between following by CCSmn bit of timer mode register mn (TMRmn).

- Operation clock (fmck) specified by the CKSmn0 and CKSmn1 bits
- Valid edge of input signal input from the TImn pin


Because the timer array unit is designed to operate in synchronization with fclk, the timings of the count clock (ftclk) are shown below.

(1) When operation clock (fmck) specified by the CKSmn0 and CKSmn1 bits is selected (CCSmn = 0)

The count clock (f_{TCLK}) is between f_{CLK} to f_{CLK} /2¹⁵ by setting of timer clock select register m (TPSm). When a divided f_{CLK} is selected, however, the clock selected in TPSm register, but a signal which becomes high level for one period of f_{CLK} from its rising edge. When a f_{CLK} is selected, fixed to high level

Counting of timer count register mn (TCRmn) delayed by one period of f_{CLK} from rising edge of the count clock, because of synchronization with f_{CLK} . But, this is described as "counting at rising edge of the count clock", as a matter of convenience.

Figure 6-24. Timing of fclk and count clock (ftclk) (When CCSmn = 0)

Remarks 1. △: Rising edge of the count clock

▲ : Synchronization, increment/decrement of counter

2. fclk: CPU/peripheral hardware clock

(2) When valid edge of input signal input from the Tlmn pin is selected (CCSmn = 1)

The count clock (f_{TCLK}) is between f_{CLK} to f_{CLK} /2¹⁵ by setting of timer clock select register m (TPSm). When a divided f_{CLK} is selected, however, the count clock is not a signal which is simply divided f_{CLK} by 2^m, but a signal which becomes high level for one period of f_{CLK} from its rising edge (m = 1 to 15).

Counting of timer count register mn (TCRmn) delayed by one period of fclk from rising edge of the count clock, because of synchronization with fclk. But, this is described as "counting at rising edge of the count clock", as a matter of convenience.

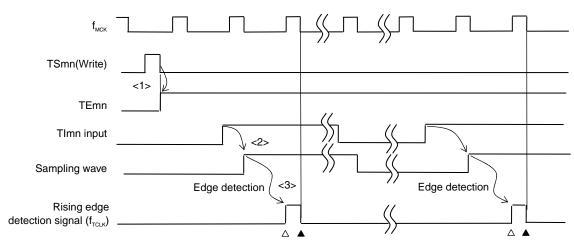


Figure 6-25. Timing of fclk and count clock (ftclk) (When CCSmn = 1, noise filter unused)

- <1> Setting TSmn bit to 1 enables the timer to be started and to become wait state for valid edge of input signal via the TImn pin.
- <2> The rise of input signal via the TImn pin is sampled by fMCK.
- <3> The edge is detected by the rising of the sampled signal and the detection signal (count clock) is output.
 - Remarks 1. △: Rising edge of the count clock
 - ▲ : Synchronization, increment/decrement of counter
 - 2. fmck: Operation clock of channel n
 - **3.** The waveform of the input signal to Tlmn pin of the input pulse interval measurement, the measurement of high/low width of input signal, the delay counter, the one-shot pulse output is the same as that shown in **Figure 6-25**.

6.5.2 Start timing of counter

Timer count register mn (TCRmn) becomes enabled to operation by setting of TSmn bit of timer channel start register m (TSm).

Operations from count operation enabled state to timer count Register mn (TCRmn) count start is shown in Table 6-6.

Table 6-6. Operations from Count Operation Enabled State to Timer count Register mn (TCRmn) Count Start

Timer operation mode	Operation when TSmn = 1 is set
Interval timer mode	No operation is carried out from start trigger detection (TSmn=1) until count clock generation.
	The first count clock loads the value of the TDRmn register to the TCRmn register and the subsequent count clock performs count down operation (see 6.5.3 (1) Operation of interval timer mode).
Event counter mode	Writing 1 to the TSmn bit loads the value of the TDRmn register to the TCRmn register. If detect edge of Tlmn input. The subsequent count clock performs count down operation (see 6.5.3 (2) Operation of event counter mode).
Capture mode	No operation is carried out from start trigger detection (TSmn = 1) until count clock generation.
	The first count clock loads 0000H to the TCRmn register and the subsequent count clock performs count up operation (see 6.5.3 (3) Operation of capture mode (input pulse interval measurement)).
One-count mode	The waiting-for-start-trigger state is entered by writing 1 to the TSmn bit while the timer is stopped (TEmn = 0). No operation is carried out from start trigger detection until count clock generation. The first count clock loads the value of the TDRmn register to the TCRmn register and the subsequent count clock performs count down operation (see 6.5.3 (4) Operation of one-count mode).
Capture & one-count mode	The waiting-for-start-trigger state is entered by writing 1 to the TSmn bit while the timer is stopped (TEmn = 0). No operation is carried out from start trigger detection until count clock generation. The first count clock loads 0000H to the TCRmn register and the subsequent count clock performs count up operation (see 6.5.3 (5) Start timing in capture & one-count mode (operation at high-level width measurement)).

6.5.3 Operation of counter

Here, the counter operation in each mode is explained.

(1) Operation of interval timer mode

- <1> Operation is enabled (TEmn = 1) by writing 1 to the TSmn bit. Timer count register mn (TCRmn) holds the initial value until count clock generation.
- <2> A start trigger is generated at the first count clock after operation is enabled.
- <3> When the MDmn0 bit is set to 1, INTTMmn is generated by the start trigger.
- <4> By the first count clock after the operation enable, the value of timer data register mn (TDRmn) is loaded to the TCRmn register and counting starts in the interval timer mode.
- <5> When the TCRmn register counts down and its count value is 0000H, INTTMmn is generated and the value of timer data register mn (TDRmn) is loaded to the TCRmn register and counting keeps on.

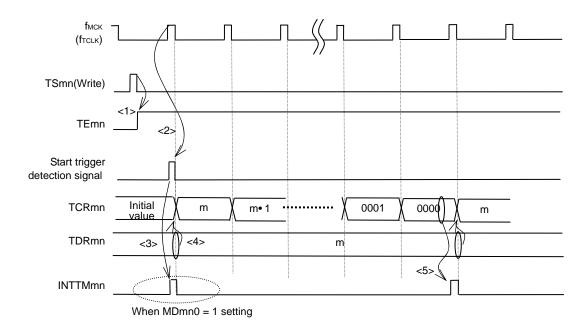


Figure 6-26. Operation Timing (In Interval Timer Mode)

Caution In the first cycle operation of count clock after writing the TSmn bit, an error at a maximum of one clock is generated since count start delays until count clock has been generated. When the information on count start timing is necessary, an interrupt can be generated at count start by setting MDmn0 = 1.

Remark fmck, the start trigger detection signal, and INTTMmn become active between one clock in synchronization with fclk.

(2) Operation of event counter mode

- <1> Timer count register mn (TCRmn) holds its initial value while operation is stopped (TEmn = 0).
- <2> Operation is enabled (TEmn = 1) by writing 1 to the TSmn bit.
- <3> As soon as 1 has been written to the TSmn bit and 1 has been set to the TEmn bit, the value of timer data register mn (TDRmn) is loaded to the TCRmn register to start counting.
- <4> After that, the TCRmn register value is counted down according to the count clock of the valid edge of the Tlmn input .

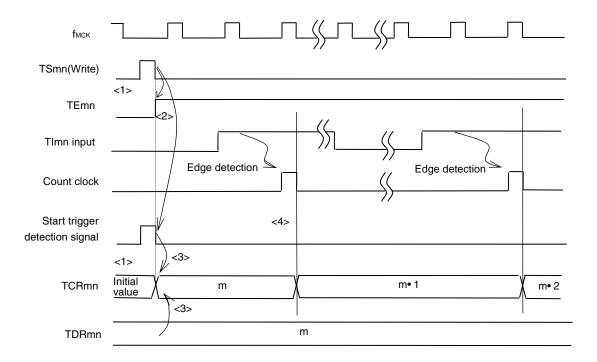


Figure 6-27. Operation Timing (In Event Counter Mode)

Remark The timing is shown in Figure 6-27 indicates while the noise filter is not used. By making the noise filter on-state, the edge detection becomes 2 fmck cycles (it sums up to 3 to 4 cycles) later than the normal cycle of Tlmn input. The error per one period occurs be the asynchronous between the period of the Tlmn input and that of the count clock (fmck).

(3) Operation of capture mode (input pulse interval measurement)

- <1> Operation is enabled (TEmn = 1) by writing 1 to the TSmn bit.
- <2> Timer count register mn (TCRmn) holds the initial value until count clock generation.
- <3> A start trigger is generated at the first count clock after operation is enabled. And the value of 0000H is loaded to the TCRmn register and counting starts in the capture mode. (When the MDmn0 bit is set to 1, INTTMmn is generated by the start trigger.)
- <4> On detection of the valid edge of the TImn input, the value of the TCRmn register is captured to timer data register mn (TDRmn) and INTTMmn is generated. However, this capture value is nomeaning. The TCRmn register keeps on counting from 0000H.
- <5> On next detection of the valid edge of the TImn input, the value of the TCRmn register is captured to timer data register mn (TDRmn) and INTTMmn is generated.

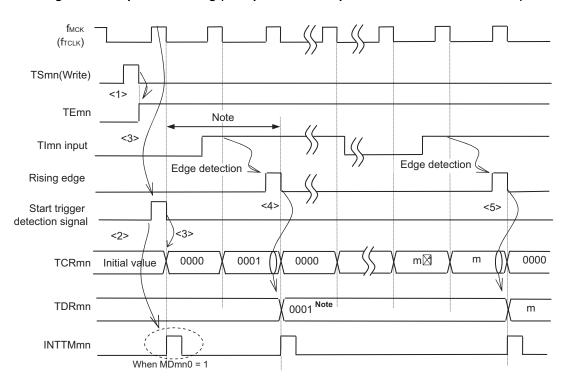


Figure 6-28. Operation Timing (In Capture Mode: Input Pulse Interval Measurement)

Note If a clock has been input to TImn (the trigger exists) when capturing starts, counting starts when a trigger is detected, even if no edge is detected. Therefore, the first captured value (<4>) does not determine a pulse interval (in the above figure, 0001 just indicates two clock cycles but does not determine the pulse interval) and so the user can ignore it.

Caution In the first cycle operation of count clock after writing the TSmn bit, an error at a maximum of one clock is generated since count start delays until count clock has been generated. When the information on count start timing is necessary, an interrupt can be generated at count start by setting MDmn0 = 1.

Remark The timing is shown in Figure 6-28 indicates while the noise filter is not used. By making the noise filter on-state, the edge detection becomes 2 fmck cycles (it sums up to 3 to 4 cycles) later than the normal cycle of Tlmn input. The error per one period occurs be the asynchronous between the period of the Tlmn input and that of the count clock (fmck).

(4) Operation of one-count mode

- <1> Operation is enabled (TEmn = 1) by writing 1 to the TSmn bit.
- <2> Timer count register mn (TCRmn) holds the initial value until start trigger generation.
- <3> Rising edge of the Tlmn input is detected.
- <4> On start trigger detection, the value of timer data register mn (TDRmn) is loaded to the TCRmn register and count starts.
- <5> When the TCRmn register counts down and its count value is 0000H, INTTMmn is generated and the value of the TCRmn register becomes FFFFH and counting stops.

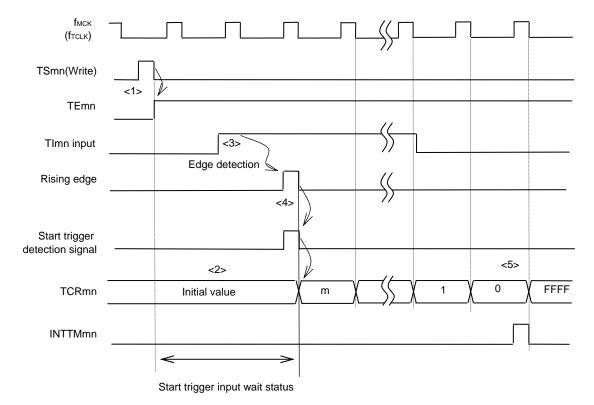
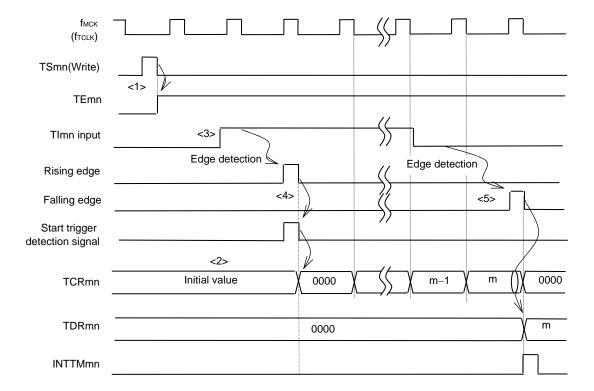


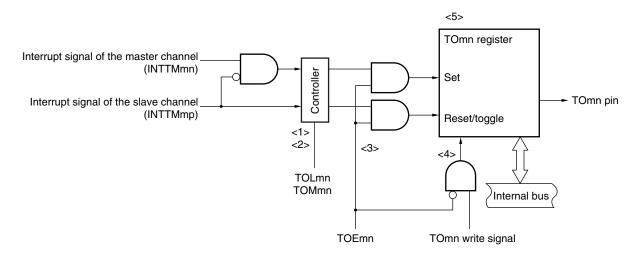
Figure 6-29. Operation Timing (In One-count Mode)

Remark The timing is shown in Figure 6-29 indicates while the noise filter is not used. By making the noise filter on-state, the edge detection becomes 2 fmck cycles (it sums up to 3 to 4 cycles) later than the normal cycle of Tlmn input. The error per one period occurs be the asynchronous between the period of the Tlmn input and that of the count clock (fmck).

(5) Start timing in capture & one-count mode (operation at high-level width measurement)

- <1> Operation is enabled (TEmn = 1) by writing 1 to the TSmn bit of timer channel start register m (TSm).
- <2> Timer count register mn (TCRmn) holds the initial value until start trigger generation.
- <3> Rising edge of the TImn input is detected.
- <4> On start trigger detection, the value of 0000H is loaded to the TCRmn register and count starts.
- <5> On detection of the falling edge of the TImn input, the value of the TCRmn register is captured to timer data register mn (TDRmn) and INTTMmn is generated.




Figure 6-30. Start Timing (In Capture & One-count Mode)

Remark The timing is shown in Figure 6-30 indicates while the noise filter is not used. By making the noise filter on-state, the edge detection becomes 2 fmck cycles (it sums up to 3 to 4 cycles) later than the normal cycle of Tlmn input. The error per one period occurs be the asynchronous between the period of the Tlmn input and that of the count clock (fmck).

6.6 Channel Output (TOmn pin) Control

6.6.1 TOmn pin output circuit configuration

Figure 6-31. Output Circuit Configuration

The following describes the TOmn pin output circuit.

- <1> When TOMmn = 0 (master channel output mode), the set value of timer output level register m (TOLm) is ignored and only INTTM0p (slave channel timer interrupt) is transmitted to timer output register m (TOm).
- <2> When TOMmn = 1 (slave channel output mode), both INTTMmn (master channel timer interrupt) and INTTM0p (slave channel timer interrupt) are transmitted to the TOm register.

At this time, the TOLm register becomes valid and the signals are controlled as follows:

When TOLmn = 0: Positive logic output (INTTMmn \rightarrow set, INTTM0p \rightarrow reset) When TOLmn = 1: Negative logic output (INTTMmn \rightarrow reset, INTTM0p \rightarrow set)

When INTTMmn and INTTM0p are simultaneously generated, (0% output of PWM), INTTM0p (reset signal) takes priority, and INTTMmn (set signal) is masked.

- <3> While timer output is enabled (TOEmn = 1), INTTMmn (master channel timer interrupt) and INTTM0p (slave channel timer interrupt) are transmitted to the TOm register. Writing to the TOm register (TOmn write signal) becomes invalid.
 - When TOEmn = 1, the TOmn pin output never changes with signals other than interrupt signals.
 - To initialize the TOmn pin output level, it is necessary to set timer operation stopped (TOEmn = 0) and to write a value to the TOm register.
- <4> While timer output is disabled (TOEmn = 0), writing to the TOmn bit to the target channel (TOmn write signal) becomes valid. When timer output is disabled (TOEmn = 0), neither INTTMmn (master channel timer interrupt) nor INTTM0p (slave channel timer interrupt) is transmitted to the TOm register.
- <5> The TOm register can always be read, and the TOmn pin output level can be checked.

Remark m: Unit number (m = 0)

n: Channel number

n = 0 to 3, 6, 7 (n = 0, 2, 6 for master channel)

p: Slave channel number

n

6.6.2 TOmn Pin Output Setting

The following figure shows the procedure and status transition of the TOmn output pin from initial setting to timer operation start.



Figure 6-32. Status Transition from Timer Output Setting to Operation Start

- <1> The operation mode of timer output is set.
 - TOMmn bit (0: Master channel output mode, 1: Slave channel output mode)
 - TOLmn bit (0: Positive logic output, 1: Negative logic output)
- <2> The timer output signal is set to the initial status by setting timer output register m (TOm).
- <3> The timer output operation is enabled by writing 1 to the TOEmn bit (writing to the TOm register is disabled).
- <4> The port I/O setting is set to output (see 6.3.15 Port mode registers 1, 3, 5, 14 (PM1, PM3, PM5, PM14).).
- <5> The timer operation is enabled (TSmn = 1).

6.6.3 Cautions on Channel Output Operation

(1) Changing values set in the registers TOm, TOEm, and TOLm during timer operation

Since the timer operations (operations of timer count register mn (TCRmn) and timer data register mn (TDRmn)) are independent of the TOmn output circuit and changing the values set in timer output register m (TOm), timer output enable register m (TOEm), and timer output level register m (TOLm), does not affect the timer operation, the values can be changed during timer operation. To output an expected waveform from the TOmn pin by timer operation, however, set the TOm, TOEm, and TOLm registers to the values stated in the register setting example of each operation described in **6.7** and **6.8**.

When the values set to the TOEm, and TOLm registers (but not the TOm register) are changed close to the occurrence of the timer interrupt (INTTMmn) of each channel, the waveform output to the TOmn pin might differ, depending on whether the values are changed immediately before or immediately after the timer interrupt (INTTMmn) occurs.

(2) Default level of TOmn pin and output level after timer operation start

The change in the output level of the TOmn pin when timer output register m (TOm) is written while timer output is disabled (TOEmn = 0), the initial level is changed, and then timer output is enabled (TOEmn = 1) before port output is enabled, is shown below.

(a) When operation starts with master channel output mode (TOMmn = 0) setting

The setting of timer output level register m (TOLm) is invalid when master channel output mode (TOMmn = 0). When the timer operation starts after setting the default level, the toggle signal is generated and the output level of the TOmn pin is reversed.

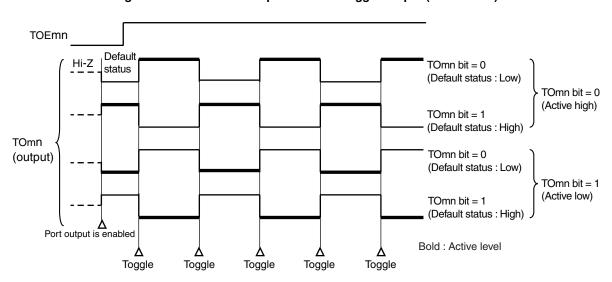


Figure 6-33. TOmn Pin Output Status at Toggle Output (TOMmn = 0)

Remarks 1. Toggle: Reverse TOmn pin output status

(b) When operation starts with slave channel output mode (TOMmp = 1) setting (PWM output))

When slave channel output mode (TOMmp = 1), the active level is determined by timer output level register m (TOLm) setting.

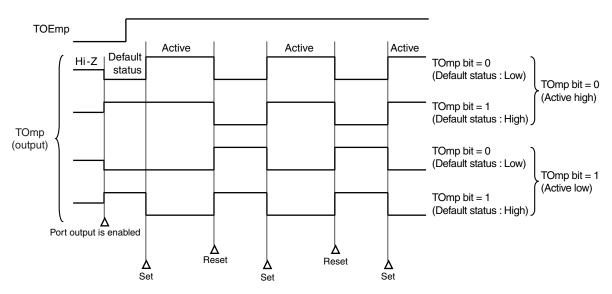
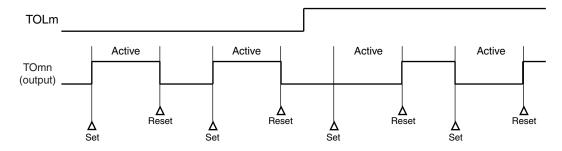


Figure 6-34. TOmn Pin Output Status at PWM Output (TOMmp = 1)

Remarks 1. Set: The output signal of the TOmp pin changes from inactive level to active level.

Reset: The output signal of the TOmp pin changes from active level to inactive level.


(3) Operation of TOmn pin in slave channel output mode (TOMmn = 1)

(a) When timer output level register m (TOLm) setting has been changed during timer operation

When the TOLm register setting has been changed during timer operation, the setting becomes valid at the generation timing of the TOmn pin change condition. Rewriting the TOLm register does not change the output level of the TOmn pin.

The operation when TOMmn is set to 1 and the value of the TOLm register is changed while the timer is operating (TEmn = 1) is shown below.

Figure 6-35. Operation when TOLm Register Has Been Changed during Timer Operation

Remarks 1. Set: The output signal of the TOmn pin changes from inactive level to active level.

Reset: The output signal of the TOmn pin changes from active level to inactive level.

2. m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

(b) Set/reset timing

To realize 0%/100% output at PWM output, the TOmn pin/TOmn bit set timing at master channel timer interrupt (INTTMmn) generation is delayed by 1 count clock by the slave channel.

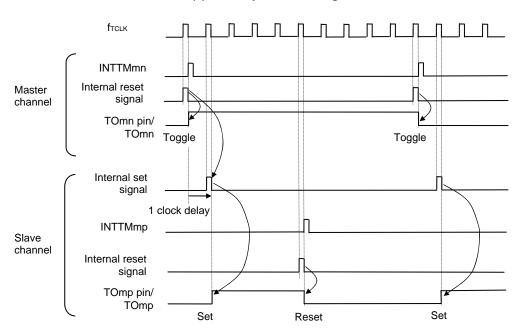

If the set condition and reset condition are generated at the same time, a higher priority is given to the latter.

Figure 6-36 shows the set/reset operating statuses where the master/slave channels are set as follows.

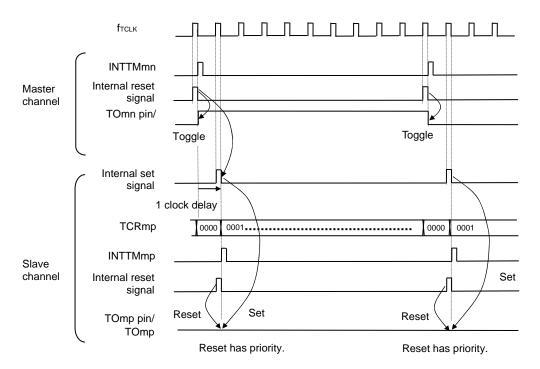

Master channel: TOEmn = 1, TOMmn = 0, TOLmn = 0
Slave channel: TOEmp = 1, TOMmp = 1, TOLmp = 0

Figure 6-36. Set/Reset Timing Operating Statuses

(1) Basic operation timing

(2) Operation timing when 0 % duty

 $\textbf{Remarks 1.} \ \ \textbf{Internal reset signal: TOmn pin reset/toggle signal}$

Internal set signal: TOmn pin set signal

2. m: Unit number (m = 0)

n: Channel number (n = 0 to 3, 6, 7)

n = 0 to 3, 6, 7 (n = 0, 2, 6 for master channel)

p: Slave channel number

n

6.6.4 Collective manipulation of TOmn bit

In timer output register m (TOm), the setting bits for all the channels are located in one register in the same way as timer channel start register m (TSm). Therefore, the TOmn bit of all the channels can be manipulated collectively.

Only the desired bits can also be manipulated by enabling writing only to the TOmn bits (TOEmn = 0) that correspond to the relevant bits of the channel used to perform output (TOmn).

Before writing TO06 TO0 0 0 0 0 0 0 0 TO07 0 TO03 TO02 TO01 TO00 0 0 0 0 TOE03 TOE02 TOE01 TOE0 0 0 0 0 0 0 0 TOE07 TOE06 0 TOE00 0 0 1 1 Data to be written 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 Φ Φ After writing TO0 0 0 0 TO03 TO02 TO01 **TO00** 0 0 0 0 0 TO07 TO06 0 0 0

Figure 6-37 Example of TO0n Bit Collective Manipulation

Writing is done only to the TOmn bit with TOEmn = 0, and writing to the TOmn bit with TOEmn = 1 is ignored.

TOmn (channel output) to which TOEmn = 1 is set is not affected by the write operation. Even if the write operation is done to the TOmn bit, it is ignored and the output change by timer operation is normally done.

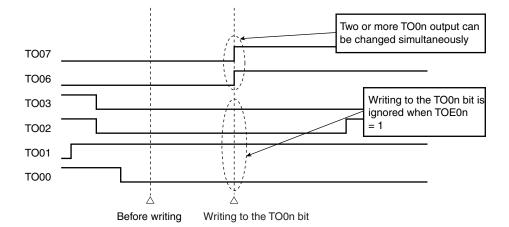


Figure 6-38. TO0n Pin Statuses by Collective Manipulation of TO0n Bit

(Caution and Remark are given on the next page.)

Caution While timer output is enabled (TOEmn = 1), even if the output by timer interrupt of each timer (INTTMmn) contends with writing to the TOmn bit, output is normally done to the TOmn pin.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

6.6.5 Timer Interrupt and TOmn Pin Output at Operation Start

In the interval timer mode or capture mode, the MDmn0 bit in timer mode register mn (TMRmn) sets whether or not to generate a timer interrupt at count start.

When MDmn0 is set to 1, the count operation start timing can be known by the timer interrupt (INTTMmn) generation. In the other modes, neither timer interrupt at count operation start nor TOmn output is controlled.

Figure 6-39 show operation examples when the interval timer mode (TOEmn = 1, TOMmn = 0) is set.

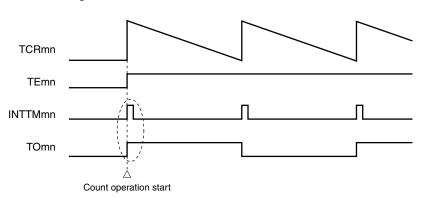


Figure 6-39. When MDmn0 is set to 1

When MDmn0 is set to 1, a timer interrupt (INTTMmn) is output at count operation start, and TOmn performs a toggle operation.

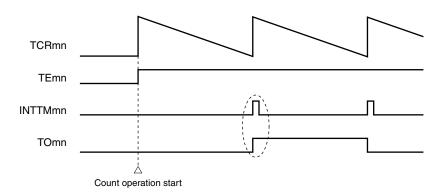


Figure 6-40. When MDmn0 is set to 0

When MDmn0 is set to 1, a timer interrupt (INTTMmn) is output at count operation start, and TOmn performs a toggle operation.

When MDmn0 is set to 0, a timer interrupt (INTTMmn) is not output at count operation start, and TOmn does not change either. After counting one cycle, INTTMmn is output and TOmn performs a toggle operation.

<R> 6.7 Timer Input (TImn) Control

6.7.1 Tlmn input circuit configuration

A signal is input from a timer input pin, goes through a noise filter and an edge detector, and is sent to a timer controller. Enable the noise filter for the pin in need of noise removal. The following shows the configuration of the input circuit.

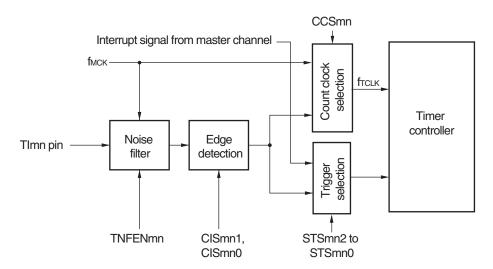


Figure 6-41. Input Circuit Configuration

6.7.2 Noise filter

When the noise filter is disabled, the input signal is only synchronized with the operating clock (fmck) for channel n. When the noise filter is enabled, after synchronization with the operating clock (fmck) for channel n, whether the signal keeps the same value for two clock cycles is detected. The following shows differences in waveforms output from the noise filter between when the noise filter is enabled and disabled.

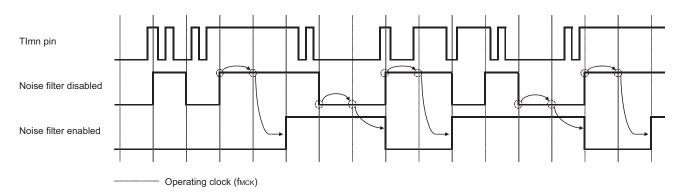


Figure 6-42. Sampling Waveforms through TImn Input Pin with Noise Filter Enabled and Disabled

6.7.3 Cautions on channel input operation

When a timer input pin is set as unused, the operating clock is not supplied to the noise filter. Therefore, after settings are made to use the timer input pin, the following wait time is necessary before a trigger is specified to enable operation of the channel corresponding to the timer input pin.

(1) Noise filter is disabled

When bits 12 (CCSmn), 9 (STSmn1), and 8 (STSmn0) in the timer mode register mn (TMRmn) are 0 and then one of them is set to 1, wait for at least two cycles of the operating clock (fMcK), and then set the operation enable trigger bit in the timer channel start register (TSm).

(2) Noise filter is enabled

When bits 12 (CCSmn), 9 (STSmn1), and 8 (STSmn0) in the timer mode register mn (TMRmn) are all 0 and then one of them is set to 1, wait for at least four cycles of the operating clock (fMcK), and then set the operation enable trigger bit in the timer channel start register (TSm).

6.8 Independent Channel Operation Function of Timer Array Unit

6.8.1 Operation as interval timer/square wave output

(1) Interval timer

The timer array unit can be used as a reference timer that generates INTTMmn (timer interrupt) at fixed intervals. The interrupt generation period can be calculated by the following expression.

Generation period of INTTMmn (timer interrupt) = Period of count clock × (Set value of TDRmn + 1)

(2) Operation as square wave output

TOmn performs a toggle operation as soon as INTTMmn has been generated, and outputs a square wave with a duty factor of 50%.

The period and frequency for outputting a square wave from TOmn can be calculated by the following expressions.

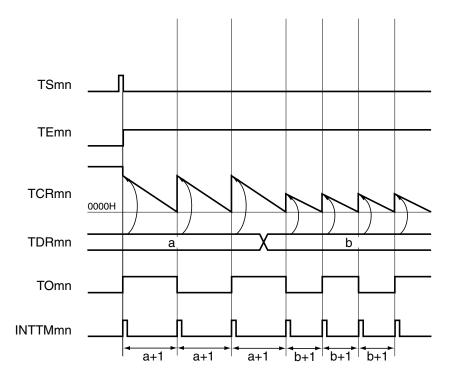
- Period of square wave output from TOmn = Period of count clock × (Set value of TDRmn + 1) × 2
- Frequency of square wave output from TOmn = Frequency of count clock/{(Set value of TDRmn + 1) × 2}

Timer count register mn (TCRmn) operates as a down counter in the interval timer mode.

The TCRmn register loads the value of timer data register mn (TDRmn) at the first count clock after the channel start trigger bit (TSmn, TSHm1, TSHm3) of timer channel start register m (TSm) is set to 1. If the MDmn0 bit of timer mode register mn (TMRmn) is 0 at this time, INTTMmn is not output and TOmn is not toggled. If the MDmn0 bit of the TMRmn register is 1, INTTMmn is output and TOmn is toggled.

After that, the TCRmn register count down in synchronization with the count clock.

When TCRmn = 0000H, INTTMmn is output and TOmn is toggled at the next count clock. At the same time, the TCRmn register loads the value of the TDRmn register again. After that, the same operation is repeated.


The TDRmn register can be rewritten at any time. The new value of the TDRmn register becomes valid from the next period.

selection Operation clock Timer counter Output Clock TOmn pin register mn (TCRmn) controller 'rigger selection Timer data Interrupt Interrupt signal **TSmn** register mn(TDRmn) controller (INTTMmn)

Figure 6-43. Block Diagram of Operation as Interval Timer/Square Wave Output

Note When channels 1 and 3, the clock can be selected from CKm0, CKm1, CKm2 and CKm3.

Figure 6-44. Example of Basic Timing of Operation as Interval Timer/Square Wave Output (MDmn0 = 1)

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

2. TSmn: Bit n of timer channel start register m (TSm)

TEmn: Bit n of timer channel enable status register m (TEm)

TCRmn: Timer count register mn (TCRmn)
TDRmn: Timer data register mn (TDRmn)

TOmn: TOmn pin output signal

(a) Timer mode register mn (TMRmn) 15 14 13 12 11 0 **TMRmn** KSmn⁻ KSmn0 CCSmn M/S No STSmn2 STSmn1 STSmn0 CISmn1 MDmn3 MDmn2 MDmn0 CISmnO MDmn1 1/0 1/0 0 0/1 O O 1/0 0 0 0 0 0 0 0 0 Operation mode of channel n 000B: Interval timer Setting of operation when counting is started 0: Neither generates INTTMmn nor inverts timer output when counting is started. 1: Generates INTTMmn and inverts timer output when counting is started. Selection of Tlmn pin input edge 00B: Sets 00B because these are not used. Start trigger selection 000B: Selects only software start. Setting of MASTERmn bit (channels 2, 6) 0: Independent channel operation function. Setting of SPLITmn bit (channels 1, 3) 1: 8-bit timer mode Count clock selection 0: Selects operation clock (fmck). Operation clock (fmck) selection 00B: Selects CKm0 as operation clock of channel n. 10B: Selects CKm1 as operation clock of channel n.

01B: Selects CKm2 as operation clock of channels 1, 3 (This can only be selected channels 1 and 3). 11B: Selects CKm3 as operation clock of channels 1, 3 (This can only be selected channels 1 and 3).

Figure 6-45. Example of Set Contents of Registers During Operation as Interval Timer/Square Wave Output (1/2)

(b) Timer output register m (TOm)

TOm TOmn 1/0

0: Outputs 0 from TOmn.1: Outputs 1 from TOmn.

(c) Timer output enable register m (TOEm)

TOEm Bit n
TOEmn
1/0

0: Stops the TOmn output operation by counting operation.

1: Enables the TOmn output operation by counting operation.

Note TMRm2, TMRm6: MASTERmn bit TMRm1, TMRm3: SPLITmn bit TMRm0, TMRm7: Fixed to 0

Figure 6-45. Example of Set Contents of Registers During Operation as Interval Timer/Square Wave Output (2/2)

(d) Timer output level register m (TOLm)

TOLm Bit n

TOLmn
0

0: Cleared to 0 when TOMmn = 0 (master channel output mode)

(e) Timer output mode register m (TOMm)

TOMm Bit n
TOMmn
0

0: Sets master channel output mode.

Operation is resumed.

Figure 6-46. Operation Procedure of Interval Timer/Square Wave Output Function (1/2)

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN bit of peripheral enable register 0 (PER0) to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets timer clock select register m (TPSm). Determines clock frequencies of CKm0 to CKm3.	
Channel default setting	Sets timer mode register mn (TMRmn) (determines operation mode of channel). Sets interval (period) value to timer data register mn (TDRmn).	Channel stops operating. (Clock is supplied and some power is consumed.)
	To use the TOmn output Clears the TOMmn bit of timer output mode register m (TOMm) to 0 (master channel output mode). Clears the TOLmn bit to 0. Sets the TOmn bit and determines default level of the	The TOmn pin goes into Hi-Z output state.
	TOmn output.	The TOmn default setting level is output when the port mode register is in the output mode and the port register is 0.
		TOmn does not change because channel stops operating. The TOmn pin outputs the TOmn set level.
Operation start	(Sets the TOEmn bit to 1 only if using TOmn output and resuming operation.).	
	Sets the TSmn (TSHm1, TSHm3) bit to 1. The TSmn (TSHm1, TSHm3) bit automatically returns to 0 because it is a trigger bit.	TEmn (TEHm1, TEHm3) = 1, and count operation starts. Value of the TDRmn register is loaded to timer count register mn (TCRmn) at the count clock input. INTTMmn is generated and TOmn performs toggle operation if the MDmn0 bit of the TMRmn register is 1.
During operation	Set values of the TMRmn register, TOMmn, and TOLmn bits cannot be changed. Set value of the TDRmn register can be changed. The TCRmn register can always be read. The TSRmn register is not used. Set values of the TOm and TOEm registers can be changed.	Counter (TCRmn) counts down. When count value reaches 0000H, the value of the TDRmn register is loaded to the TCRmn register again and the count operation is continued. By detecting TCRmn = 0000H, INTTMmn is generated and TOmn performs toggle operation. After that, the above operation is repeated.
Operation stop	The TTmn (TTHm1, TTHm3) bit is set to 1. The TTmn (TTHm1, TTHm3) bit automatically returns to 0 because it is a trigger bit.	TEmn (TEHm1, TEHm3), and count operation stops. The TCRmn register holds count value and stops. The TOmn output is not initialized but holds current status.
-	The TOEmn bit is cleared to 0 and value is set to the TOmn bit.	The TOmn pin outputs the TOmn bit set level.

(Remark is listed on the next page.)

Figure 6-46. Operation Procedure of Interval Timer/Square Wave Output Function (2/2)

	Software Operation	Hardware Status
TAU stop	To hold the TOmn pin output level Clears the TOmn bit to 0 after the value to be held is set to the port register. When holding the TOmn pin output level is not necessary Setting not required.	The TOmn pin output level is held by port function.
	The TAU0EN bit of the PER0 register is cleared to 0.	Power-off status All circuits are initialized and SFR of each channel is also initialized. (The TOmn bit is cleared to 0 and the TOmn pin is set to port mode.)

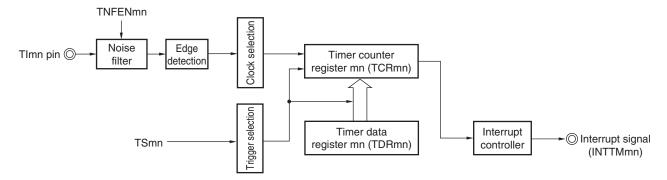
6.8.2 Operation as external event counter

The timer array unit can be used as an external event counter that counts the number of times the valid input edge (external event) is detected in the TImn pin. When a specified count value is reached, the event counter generates an interrupt. The specified number of counts can be calculated by the following expression.

Timer count register mn (TCRmn) operates as a down counter in the event counter mode.

The TCRmn register loads the value of timer data register mn (TDRmn) by setting any channel start trigger bit (TSmn, TSHm1, TSHm3) of timer channel start register m (TSm) to 1.

The TCRmn register counts down each time the valid input edge of the Tlmn pin has been detected. When TCRmn = 0000H, the TCRmn register loads the value of the TDRmn register again, and outputs INTTMmn.


After that, the above operation is repeated.

An irregular waveform that depends on external events is output from the TOmn pin. Stop the output by setting the TOEmn bit of timer output enable register m (TOEm) to 0.

The TDRmn register can be rewritten at any time. The new value of the TDRmn register becomes valid during the next count period.

<R>

Figure 6-47. Block Diagram of Operation as External Event Counter

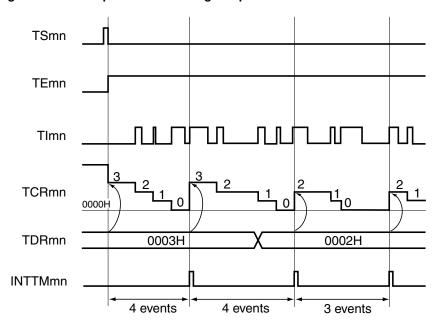


Figure 6-48. Example of Basic Timing of Operation as External Event Counter

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

2. TSmn: Bit n of timer channel start register m (TSm)

TEmn: Bit n of timer channel enable status register m (TEm)

Tlmn: Tlmn pin input signal

TCRmn: Timer count register mn (TCRmn)
TDRmn: Timer data register mn (TDRmn)

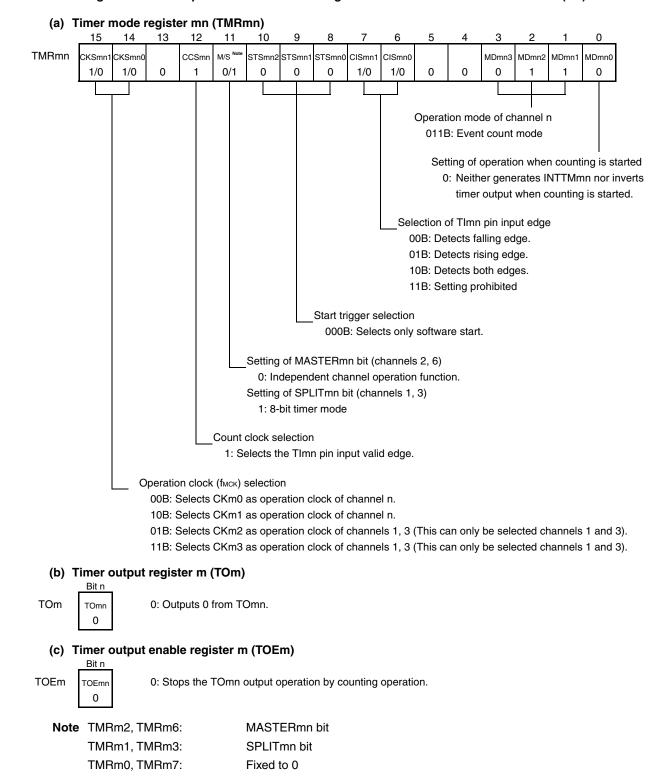


Figure 6-49. Example of Set Contents of Registers in External Event Counter Mode (1/2)

Figure 6-49. Example of Set Contents of Registers in External Event Counter Mode (2/2)

(d) Timer output level register m (TOLm)

TOLm Bit n
TOLmn
0

0: Cleared to 0 when TOMmn = 0 (master channel output mode).

(e) Timer output mode register m (TOMm)

TOMm TOMmn 0

0: Sets master channel output mode.

Figure 6-50. Operation Procedure When External Event Counter Function Is Used

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN bit of peripheral enable register 0 (PER0) to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets timer clock select register m (TPSm). Determines clock frequencies of CKm0 to CKm3.	
Channel default setting	Sets timer mode register mn (TMRmn) (determines operation mode of channel). Sets number of counts to timer data register mn (TDRmn). Clears the TOEmn bit of timer output enable register m (TOEm) to 0.	Channel stops operating. (Clock is supplied and some power is consumed.)
Operation start	Sets the TSmn bit to 1. The TSmn bit automatically returns to 0 because it is a trigger bit.	TEmn = 1, and count operation starts. Value of the TDRmn register is loaded to timer count register mn (TCRmn) and detection of the TImn pin input edge is awaited.
During operation	Set value of the TDRmn register can be changed. Sets corresponding bit of noise filter enable register 1, 2 (NFEN1, NFEN2) to 1. The TCRmn register can always be read. The TSRmn register is not used. Set values of the TMRmn register, TOMmn, TOLmn, TOmn, and TOEmn bits cannot be changed.	Counter (TCRmn) counts down each time input edge of the TImn pin has been detected. When count value reaches 0000H, the value of the TDRmn register is loaded to the TCRmn register again, and the count operation is continued. By detecting TCRmn = 0000H, the INTTMmn output is generated. After that, the above operation is repeated.
Operation stop	The TTmn bit is set to 1. The TTmn bit automatically returns to 0 because it is a trigger bit.	TEmn = 0, and count operation stops. The TCRmn register holds count value and stops.
TAU stop	The TAU0EN bit of the PER0 register is cleared to 0.	Power-off status All circuits are initialized and SFR of each channel is also initialized.

6.8.3 Operation as frequency divider (channel 0 only)

The timer array unit can be used as a frequency divider that divides a clock input to the TI00 pin and outputs the result from the TO00 pin.

The divided clock frequency output from TO00 can be calculated by the following expression.

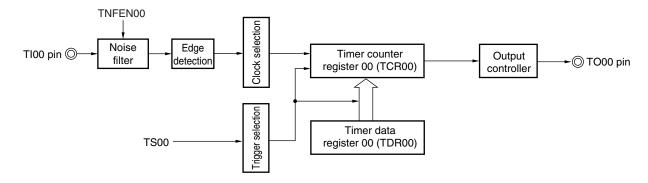
- When rising edge/falling edge is selected: Divided clock frequency = Input clock frequency/{(Set value of TDR00 + 1) \times 2}
- When both edges are selected:
 Divided clock frequency ≅ Input clock frequency/(Set value of TDR00 + 1)

Timer count register 00 (TCR00) operates as a down counter in the interval timer mode.

After the channel start trigger bit (TS00) of timer channel start register 0 (TS0) is set to 1, the TCR00 register loads the value of timer data register 00 (TDR00) when the Tl00 valid edge is detected.

If the MD000 bit of timer mode register 00 (TMR00) is 0 at this time, INTTM00 is not output and TO00 is not toggled. If the MD000 bit of timer mode register 00 (TMR00) is 1, INTTM00 is output and TO00 is toggled.

After that, the TCR00 register counts down at the valid edge of the Tl00 pin. When TCR00 = 0000H, it toggles TO00. At the same time, the TCR00 register loads the value of the TDR00 register again, and continues counting.


If detection of both the edges of the TI00 pin is selected, the duty factor error of the input clock affects the divided clock period of the TO00 output.

The period of the TO00 output clock includes a sampling error of one period of the operation clock.

Clock period of TO00 output = Ideal TO00 output clock period \pm Operation clock period (error)

The TDR00 register can be rewritten at any time. The new value of the TDR00 register becomes valid during the next count period.

Figure 6-51. Block Diagram of Operation as Frequency Divider

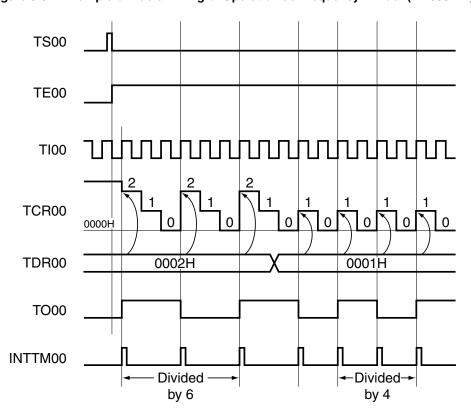


Figure 6-52. Example of Basic Timing of Operation as Frequency Divider (MD000 = 1)

Remark TS00: Bit n of timer channel start register 0 (TS0)

TE00: Bit n of timer channel enable status register 0 (TE0)

TI00: TI00 pin input signal

TCR00: Timer count register 00 (TCR00)
TDR00: Timer data register 00 (TDR00)

TO00: TO00 pin output signal

(a) Timer mode register 00 (TMR00) 15 14 13 12 0 MAS TMR00 CKS0n1 CIS001 CKS0n0 CCS00 STS002 STS001 STS000 CIS000 MD003 MD002 MD001 MD000 TER00 1/0 0 0 1 0 0 0 1/0 1/0 0 0 0 0 1/0 Operation mode of channel 0 000B: Interval timer Setting of operation when counting is started 0: Neither generates INTTM00 nor inverts timer output when counting is started. 1: Generates INTTM00 and inverts timer output when counting is started. Selection of TI00 pin input edge 00B: Detects falling edge. 01B: Detects rising edge. 10B: Detects both edges. 11B: Setting prohibited Start trigger selection 000B: Selects only software start. Slave/master selection 0: Independent channel operation function. Count clock selection 1: Selects the TI00 pin input valid edge. Operation clock (fmck) selection 00B: Selects CK00 as operation clock of channel 0.

Figure 6-53. Example of Set Contents of Registers During Operation as Frequency Divider

(b) Timer output register 0 (TO0)

TO0 Bit 0
TO00
1/0

0: Outputs 0 from TO00.

1: Outputs 1 from TO00.

(c) Timer output enable register 0 (TOE0)

TOE0 Bit 0
TOE00
1/0

0: Stops the TO00 output operation by counting operation.

10B: Selects CK01 as operation clock of channel 0.

1: Enables the TO00 output operation by counting operation.

(d) Timer output level register 0 (TOL0)

TOL0 Bit 0

TOL00
0

0: Cleared to 0 when master channel output mode (TOM00 = 0)

(e) Timer output mode register 0 (TOM0)

томо то

Bit 0 TOM00 0

0: Sets master channel output mode.

Operation is resumed.

Figure 6-54. Operation Procedure When Frequency Divider Function Is Used

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
-	Sets the TAU0EN bit of peripheral enable register 0 (PER0) to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets timer clock select register 0 (TPS0). Determines clock frequencies of CK00 to CK03.	
Channel default setting	Sets timer mode register 0n (TMR0n) (determines operation mode of channel and selects the detection edge). Sets interval (period) value to timer data register 00 (TDR00).	Channel stops operating. (Clock is supplied and some power is consumed.)
	Clears the TOM00 bit of timer output mode register 0 (TOM0) to 0 (master channel output mode). Clears the TOL00 bit to 0. Sets the TO00 bit and determines default level of the	The TO00 pin goes into Hi-Z output state.
	Sets the TOE00 bit to 1 and enables operation of TO00.—	The TO00 default setting level is output when the port mode register is in output mode and the port register is 0. TO00 does not change because channel stops operating. The TO00 pin outputs the TO00 set level.
Operation start	Sets the TOE00 bit to 1 (only when operation is resumed). Sets the TS00 bit to 1. The TS00 bit automatically returns to 0 because it is a trigger bit.	TE00 = 1, and count operation starts. Value of the TDR00 register is loaded to timer count register 00 (TCR00) at the count clock input. INTTM00 is generated and TO00 performs toggle operation if the MD000 bit of the TMR00 register is 1.
During operation	Set value of the TDR00 register can be changed. Sets corresponding bit of noise filter enable register 1, 2 (NFEN1, NFEN2) to 1. The TCR00 register can always be read. The TSR00 register is not used. Set values of the TO0 and TOE0 registers can be changed. Set values of the TMR00 register, TOM00, and TOL00 bits cannot be changed.	Counter (TCR00) counts down. When count value reaches 0000H, the value of the TDR00 register is loaded to the TCR00 register again, and the count operation is continued. By detecting TCR00 = 0000H, INTTM00 is generated and TO00 performs toggle operation. After that, the above operation is repeated.
Operation stop	The TT00 bit is set to 1. The TT00 bit automatically returns to 0 because it is a trigger bit. The TOE00 bit is cleared to 0 and value is set to the TO00 bit.	TE00 = 0, and count operation stops. The TCR00 register holds count value and stops. The TO00 output is not initialized but holds current status. The TO00 pin outputs the TO00 set level.
TAU stop	To hold the TO00 pin output level Clears the TO00 bit to 0 after the value to be held is set to the port register. When holding the TO00 pin output level is not necessary Setting not required.	The TO00 pin output level is held by port function.
		Power-off status All circuits are initialized and SFR of each channel is also initialized. (The TO00 bit is cleared to 0 and the TO00 pin is set to port mode).

6.8.4 Operation as input pulse interval measurement

<R> The count value can be captured at the TImn valid edge and the interval of the pulse input to TImn can be measured.
In addition, the count value can be captured by using software operation (TSmn = 1) as a capture trigger while the TEmn bit is set to 1. The pulse interval can be calculated by the following expression.

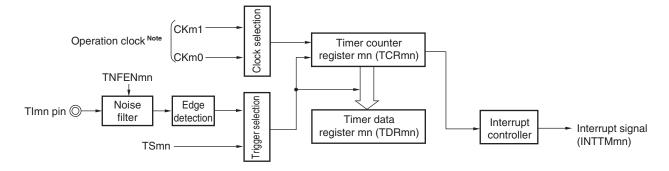
TImn input pulse interval = Period of count clock × ((10000H × TSRmn: OVF) + (Capture value of TDRmn + 1))

Caution The Tlmn pin input is sampled using the operating clock selected with the CKSmn bit of timer mode register mn (TMRmn), so an error of up to one operating clock cycle occurs.

Timer count register mn (TCRmn) operates as an up counter in the capture mode.

When the channel start trigger bit (TSmn) of timer channel start register m (TSm) is set to 1, the TCRmn register counts up from 0000H in synchronization with the count clock.

When the TImn pin input valid edge is detected, the count value of the TCRmn register is transferred (captured) to timer data register mn (TDRmn) and, at the same time, the TCRmn register is cleared to 0000H, and the INTTMmn is output. If the counter overflows at this time, the OVF bit of timer status register mn (TSRmn) is set to 1. If the counter does not overflow, the OVF bit is cleared. After that, the above operation is repeated.


As soon as the count value has been captured to the TDRmn register, the OVF bit of the TSRmn register is updated depending on whether the counter overflows during the measurement period. Therefore, the overflow status of the captured value can be checked.

If the counter reaches a full count for two or more periods, it is judged to be an overflow occurrence, and the OVF bit of the TSRmn register is set to 1. However, a normal interval value cannot be measured for the OVF bit, if two or more overflows occur.

Set the STSmn2 to STSmn0 bits of the TMRmn register to 001B to use the valid edges of Tlmn as a start trigger and a capture trigger.

When TEmn = 1, a software operation (TSmn = 1) can be used as a capture trigger, instead of using the TImn pin input.

Figure 6-55. Block Diagram of Operation as Input Pulse Interval Measurement

Note When channels 1 and 3, the clock can be selected from CKm0, CKm1, CKm2 and CKm3.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

<R>

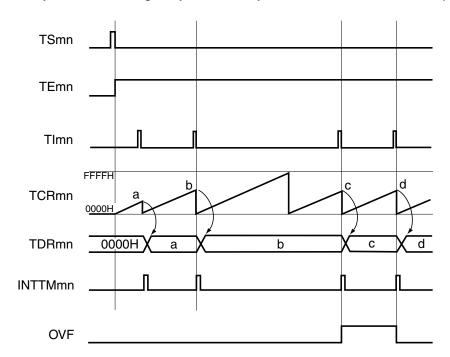


Figure 6-56. Example of Basic Timing of Operation as Input Pulse Interval Measurement (MDmn0 = 0)

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

2. TSmn: Bit n of timer channel start register m (TSm)

TEmn: Bit n of timer channel enable status register m (TEm)

TImn: TImn pin input signal

TCRmn: Timer count register mn (TCRmn)
TDRmn: Timer data register mn (TDRmn)

OVF: Bit 0 of timer status register mn (TSRmn)

(a) Timer mode register mn (TMRmn) 14 13 12 **TMRmn** CKSmn1 CKSmn0 CCSmn M/S No STSmn2 STSmn1 STSmn0 CISmn1 CISmn0 MDmn3 MDmn2 MDmn1 MDmn0 1/0 1/0 1/0 0 0 1/0 0 0 0 0 0 0 0 Operation mode of channel n 010B: Capture mode Setting of operation when counting is started 0: Does not generate INTTMmn when counting is started. 1: Generates INTTMmn when counting is started. Selection of TImn pin input edge 00B: Detects falling edge. 01B: Detects rising edge. 10B: Detects both edges. 11B: Setting prohibited Capture trigger selection 001B: Selects the TImn pin input valid edge. Setting of MASTERmn bit (channels 2, 6) 0: Independent channel operation Setting of SPLITmn bit (channels 1, 3) 0: 16-bit timer mode. Count clock selection 0: Selects operation clock (fmck). Operation clock (fmck) selection 00B: Selects CKm0 as operation clock of channel n. 10B: Selects CKm1 as operation clock of channel n. 01B: Selects CKm2 as operation clock of channels 1, 3 (This can only be selected channels 1 and 3). 11B: Selects CKm3 as operation clock of channels 1, 3 (This can only be selected channels 1 and 3). (b) Timer output register m (TOm) Bit n TOm 0: Outputs 0 from TOmn. TOmn (c) Timer output enable register m (TOEm) Bit n TOEm 0: Stops TOmn output operation by counting operation. TOEmn 0 (d) Timer output level register m (TOLm) Bit n TOLm 0: Cleared to 0 when TOMmn = 0 (master channel output mode). TOLmn 0 (e) Timer output mode register m (TOMm) Bit n **TOMm** 0: Sets master channel output mode. TOMmr 0 Note TMRm2, TMRm6: MASTERmn bit

Figure 6-57. Example of Set Contents of Registers to Measure Input Pulse Interval

TMRm1, TMRm3:

TMRm0, TMRm7:

SPLITmn bit

Fixed to 0

<R>

Figure 6-58. Operation Procedure When Input Pulse Interval Measurement Function Is Used

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN bit of peripheral enable register 0 (PER0) to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets timer clock select register m (TPSm). Determines clock frequencies of CKm0 to CKm3.	
Channel default setting	Sets the corresponding bit of the noise filter enable registers 1, 2 (NFEN1, NFEN2) to 0 (off) or 1 (on). Sets timer mode register mn (TMRmn) (determines operation mode of channel).	Channel stops operating. (Clock is supplied and some power is consumed.)
Operation start	Sets TSmn bit to 1. The TSmn bit automatically returns to 0 because it is a trigger bit.	TEmn = 1, and count operation starts. Timer count register mn (TCRmn) is cleared to 0000H at the count clock input. When the MDmn0 bit of the TMRmn register is 1, INTTMmn is generated.
During operation	Set values of only the CISmn1 and CISmn0 bits of the TMRmn register can be changed. The TDRmn register can always be read. The TCRmn register can always be read. The TSRmn register can always be read. Set values of the TOMmn, TOLmn, TOmn, and TOEmn bits cannot be changed.	Counter (TCRmn) counts up from 0000H. When the TImn pin input valid edge is detected, the count value is transferred (captured) to timer data register mn (TDRmn). At the same time, the TCRmn register is cleared to 0000H, and the INTTMmn signal is generated. If an overflow occurs at this time, the OVF bit of timer status register mn (TSRmn) is set; if an overflow does not occur, the OVF bit is cleared. After that, the above operation is repeated.
Operation stop	The TTmn bit is set to 1. The TTmn bit automatically returns to 0 because it is a trigger bit.	TEmn = 0, and count operation stops. The TCRmn register holds count value and stops. The OVF bit of the TSRmn register is also held.
TAU stop	The TAU0EN bit of the PER0 register is cleared to 0.	Power-off status All circuits are initialized and SFR of each channel is also initialized.

6.8.5 Operation as input signal high-/low-level width measurement

By starting counting at one edge of the TImn pin input and capturing the number of counts at another edge, the signal width (high-level width/low-level width) of TImn can be measured. The signal width of TImn can be calculated by the following expression.

Signal width of Tlmn input = Period of count clock × ((10000H × TSRmn: OVF) + (Capture value of TDRmn + 1))

Caution The Tlmn pin input is sampled using the operating clock selected with the CKSmn bit of timer mode register mn (TMRmn), so an error equivalent to one operation clock occurs.

Timer count register mn (TCRmn) operates as an up counter in the capture & one-count mode.

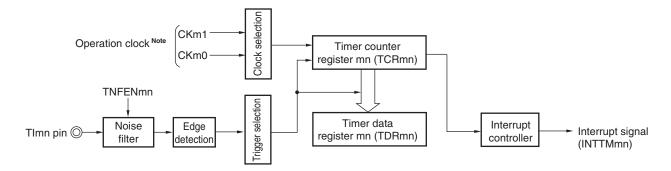
When the channel start trigger bit (TSmn) of timer channel start register m (TSm) is set to 1, the TEmn bit is set to 1 and the TImn pin start edge detection wait status is set.

When the TImn pin input start edge (rising edge of the TImn pin input when the high-level width is to be measured) is detected, the counter counts up from 0000H in synchronization with the count clock. When the valid capture edge (falling edge of the TImn pin input when the high-level width is to be measured) is detected later, the count value is transferred to timer data register mn (TDRmn) and, at the same time, INTTMmn is output. If the counter overflows at this time, the OVF bit of timer status register mn (TSRmn) is set to 1. If the counter does not overflow, the OVF bit is cleared. The TCRmn register stops at the value "value transferred to the TDRmn register + 1", and the TImn pin start edge detection wait status is set. After that, the above operation is repeated.

As soon as the count value has been captured to the TDRmn register, the OVF bit of the TSRmn register is updated depending on whether the counter overflows during the measurement period. Therefore, the overflow status of the captured value can be checked.

If the counter reaches a full count for two or more periods, it is judged to be an overflow occurrence, and the OVF bit of the TSRmn register is set to 1. However, a normal interval value cannot be measured for the OVF bit, if two or more overflows occur.

Whether the high-level width or low-level width of the Tlmn pin is to be measured can be selected by using the CISmn1 and CISmn0 bits of the TMRmn register.


Because this function is used to measure the signal width of the Tlmn pin input, the TSmn bit cannot be set to 1 while the TEmn bit is 1.

CISmn1, CISmn0 of TMRmn register = 10B: Low-level width is measured.

CISmn1, CISmn0 of TMRmn register = 11B: High-level width is measured.

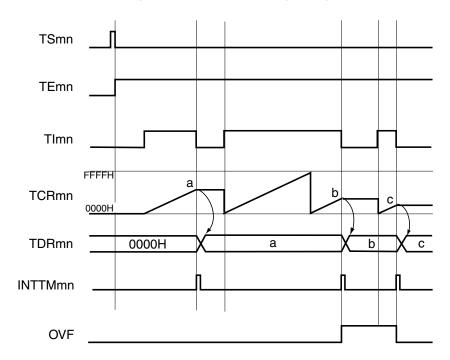

<R>

Figure 6-59. Block Diagram of Operation as Input Signal High-/Low-Level Width Measurement

Note For channels 1 and 3, the clock can be selected from CKm0, CKm1, CKm2 and CKm3.

Figure 6-60. Example of Basic Timing of Operation as Input Signal High-/Low-Level Width Measurement

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

2. TSmn: Bit n of timer channel start register m (TSm)

TEmn: Bit n of timer channel enable status register m (TEm)

TImn: TImn pin input signal

TCRmn: Timer count register mn (TCRmn)
TDRmn: Timer data register mn (TDRmn)

OVF: Bit 0 of timer status register mn (TSRmn)

(a) Timer mode register mn (TMRmn) 15 14 13 12 **TMRmn** CKSmn1 CKSmn0 CCSmn M/S No STSmn2 STSmn1 STSmn0 CISmn1 CISmn0 MDmn3 MDmn2 MDmn1 MDmn0 1/0 0 0 0 O 0 0 1/0 O 0 0 Operation mode of channel n 110B: Capture & one-count Setting of operation when counting is started 0: Does not generate INTTMmn when counting is started. Selection of TImn pin input edge 10B: Both edges (to measure low-level width) 11B: Both edges (to measure high-level width) Start trigger selection 010B: Selects the TImn pin input valid edge. Setting of MASTERmn bit (channels 2, 6) 0: Independent channel operation function. Setting of SPLITmn bit (channels 1, 3) 1: 16-bit timer mode. Count clock selection 0: Selects operation clock (fmck). Operation clock (fmck) selection 00B: Selects CKm0 as operation clock of channel n. 10B: Selects CKm1 as operation clock of channel n.

01B: Selects CKm2 as operation clock of channels 1, 3 (This can only be selected channels 1 and 3). 11B: Selects CKm3 as operation clock of channels 1, 3 (This can only be selected channels 1 and 3).

Figure 6-61. Example of Set Contents of Registers to Measure Input Signal High-/Low-Level Width

(b) Timer output register m (TOm)

TOm Bit n
TOmn
0

0: Outputs 0 from TOmn.

(c) Timer output enable register m (TOEm)

TOEm TOEmn 0

0: Stops the TOmn output operation by counting operation.

(d) Timer output level register m (TOLm)

TOLm Bit n
TOLmn
0

0: Cleared to 0 when TOMmn = 0 (master channel output mode).

(e) Timer output mode register m (TOMm)

TOMm Bit n
TOMmn
0

0: Sets master channel output mode.

Note TMRm2, TMRm6: MASTERmn bit TMRm1, TMRm3: SPLITmn bit TMRm0, TMRm7: Fixed to 0

<R> Figure 6-62. Operation Procedure When Input Signal High-/Low-Level Width Measurement Function Is Used

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN bit of peripheral enable register 0 (PER0) to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets timer clock select register m (TPSm). Determines clock frequencies of CKm0 to CKm3.	
Channel default setting	Sets the corresponding bit of the noise filter enable registers 1 (NFEN1) to 0 (off) or 1 (on). Sets timer mode register mn (TMRmn) (determines operation mode of channel). Clears the TOEmn bit to 0 and stops operation of TOmn.	Channel stops operating. (Clock is supplied and some power is consumed.)
Operation start	Sets the TSmn bit to 1. The TSmn bit automatically returns to 0 because it is a trigger bit.	TEmn = 1, and the TImn pin start edge detection wait status is set.
	Detects the TImn pin input count start valid edge.	Clears timer count register mn (TCRmn) to 0000H and starts counting up.
During operation	Set value of the TDRmn register can be changed. The TCRmn register can always be read. The TSRmn register is not used. Set values of the TMRmn register, TOMmn, TOLmn, TOmn, and TOEmn bits cannot be changed.	When the TImn pin start edge is detected, the counter (TCRmn) counts up from 0000H. If a capture edge of the TImn pin is detected, the count value is transferred to timer data register mn (TDRmn) and INTTMmn is generated. If an overflow occurs at this time, the OVF bit of timer status register mn (TSRmn) is set; if an overflow does not occur, the OVF bit is cleared. The TCRmn register stops the count operation until the next TImn pin start edge is detected.
Operation stop	The TTmn bit is set to 1. The TTmn bit automatically returns to 0 because it is a trigger bit.	TEmn = 0, and count operation stops. The TCRmn register holds count value and stops. The OVF bit of the TSRmn register is also held.
TAU stop	The TAU0EN bit of the PER0 register is cleared to 0.	Power-off status All circuits are initialized and SFR of each channel is also initialized.

6.8.6 Operation as delay counter

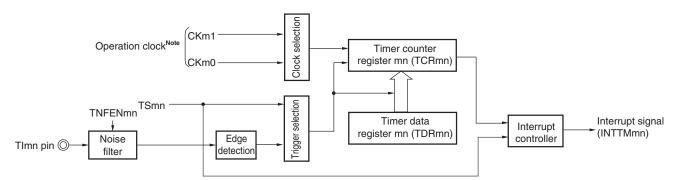
It is possible to start counting down when the valid edge of the Tlmn pin input is detected (an external event), and then generate INTTMmn (a timer interrupt) after any specified interval.

It can also generate INTTMmn (timer interrupt) at any interval by making a software set TSmn = 1 and the count down start during the period of TEmn = 1.

The interrupt generation period can be calculated by the following expression.

Generation period of INTTMmn (timer interrupt) = Period of count clock × (Set value of TDRmn + 1)

Timer count register mn (TCRmn) operates as a down counter in the one-count mode.


When the channel start trigger bit (TSmn, TSHm1, TSHm3) of timer channel start register m (TSm) is set to 1, the TEmn, TEHm1, TEHm3 bits are set to 1 and the TImn pin input valid edge detection wait status is set.

Timer count register mn (TCRmn) starts operating upon Tlmn pin input valid edge detection and loads the value of timer data register mn (TDRmn). The TCRmn register counts down from the value of the TDRmn register it has loaded, in synchronization with the count clock. When TCRmn = 0000H, it outputs INTTMmn and stops counting until the next Tlmn pin input valid edge is detected.

The TDRmn register can be rewritten at any time. The new value of the TDRmn register becomes valid from the next period.

<R>

Figure 6-63. Block Diagram of Operation as Delay Counter

Note For using channels 1 and 3, the clock can be selected from CKm0, CKm1, CKm2 and CKm3.

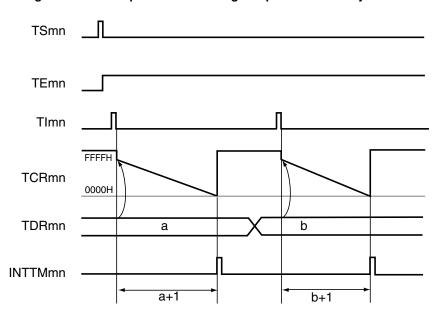


Figure 6-64. Example of Basic Timing of Operation as Delay Counter

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

2. TSmn: Bit n of timer channel start register m (TSm)

TEmn: Bit n of timer channel enable status register m (TEm)

TImn: TImn pin input signal

TCRmn: Timer count register mn (TCRmn)
TDRmn: Timer data register mn (TDRmn)

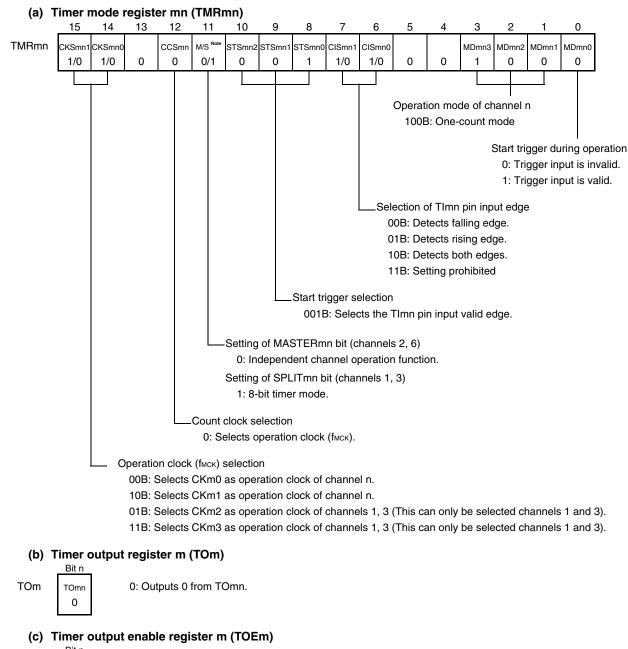


Figure 6-65. Example of Set Contents of Registers to Delay Counter (1/2)

TOEm TOEmn 0

0: Stops the TOmn output operation by counting operation.

Note TMRm2, TMRm6: MASTERmn bit TMRm1, TMRm3: SPLITmn bit TMRm0, TMRm7: Fixed to 0

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

Figure 6-65. Example of Set Contents of Registers to Delay Counter (2/2)

(d) Timer output level register m (TOLm)

TOLm Bit n
TOLmn
0

0: Cleared to 0 when TOMmn = 0 (master channel output mode).

(e) Timer output mode register m (TOMm)

TOMm TOMmn

0: Sets master channel output mode.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

<R>

Figure 6-66. Operation Procedure When Delay Counter Function Is Used

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN bit of peripheral enable register 0 (PER0) to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets timer clock select register m (TPSm). Determines clock frequencies of CKm0 to CKm3.	
Channel default setting	Sets the corresponding bit of the noise filter enable registers 1 (NFEN1) to 0 (off) or 1 (on). Sets timer mode register mn (TMRmn) (determines operation mode of channel). INTTMmn output delay is set to timer data register mn (TDRmn). Clears the TOEmn bit to 0 and stops operation of TOmn.	Channel stops operating. (Clock is supplied and some power is consumed.)
Operation start	Sets the TSmn bit to 1. The TSmn bit automatically returns to 0 because it is a trigger bit.	TEmn = 1, and the TImn pin input valid edge detection wait status is set.
	Detects the Tlmn pin input valid edge.	Value of the TDRmn register is loaded to the timer count register mn (TCRmn).
During operation	Set value of the TDRmn register can be changed. The TCRmn register can always be read. The TSRmn register is not used.	The counter (TCRmn) counts down. When TCRmn counts down to 0000H, INTTMmn is output, and counting stops (which leaves TCRmn at 0000H) until the next Tlmn pin input.
Operation stop	The TTmn bit is set to 1. The TTmn bit automatically returns to 0 because it is a trigger bit.	TEmn = 0, and count operation stops. The TCRmn register holds count value and stops.
TAU stop	The TAU0EN bit of the PER0 register is cleared to 0.	Power-off status All circuits are initialized and SFR of each channel is also initialized.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 3, 6, 7)

6.9 Simultaneous Channel Operation Function of Timer Array Unit

6.9.1 Operation as one-shot pulse output function

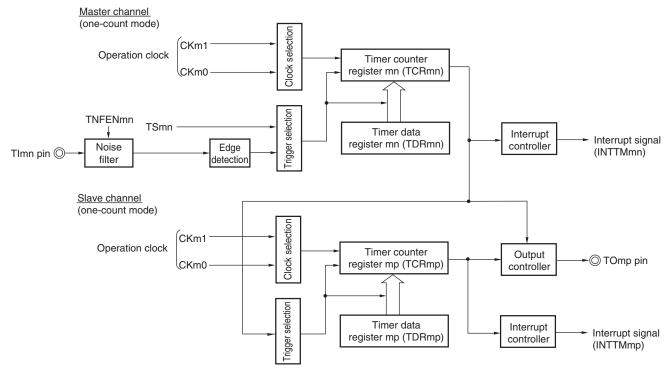
By using two channels as a set, a one-shot pulse having any delay pulse width can be generated from the signal input to the TImn pin.

The delay time and pulse width can be calculated by the following expressions.

Delay time = {Set value of TDRmn (master) + 2} \times Count clock period Pulse width = {Set value of TDRmp (slave)} \times Count clock period

The master channel operates in the one-count mode and counts the delays. Timer count register mn (TCRmn) of the master channel starts operating upon start trigger detection and loads the value of timer data register mn (TDRmn).

The TCRmn register counts down from the value of the TDRmn register it has loaded, in synchronization with the count clock. When TCRmn = 0000H, it outputs INTTMmn and stops counting until the next start trigger is detected.


The slave channel operates in the one-count mode and counts the pulse width. The TCRmp register of the slave channel starts operation using INTTMmn of the master channel as a start trigger, and loads the value of the TDRmp register. The TCRmp register counts down from the value of The TDRmp register it has loaded, in synchronization with the count value. When count value = 0000H, it outputs INTTMmp and stops counting until the next start trigger (INTTMmn of the master channel) is detected. The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmp = 0000H.

Instead of using the TImn pin input, a one-shot pulse can also be output using the software operation (TSmn = 1) as a start trigger.

Caution The timing of loading of timer data register mn (TDRmn) of the master channel is different from that of the TDRmp register of the slave channel. If the TDRmn and TDRmp registers are rewritten during operation, therefore, an illegal waveform is output. Rewrite the TDRmn register after INTTMmn is generated and the TDRmp register after INTTMmp is generated.

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2, 6) p: Slave channel number (n

<R> Figure 6-67. Block Diagram of Operation as One-Shot Pulse Output Function

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2, 6)

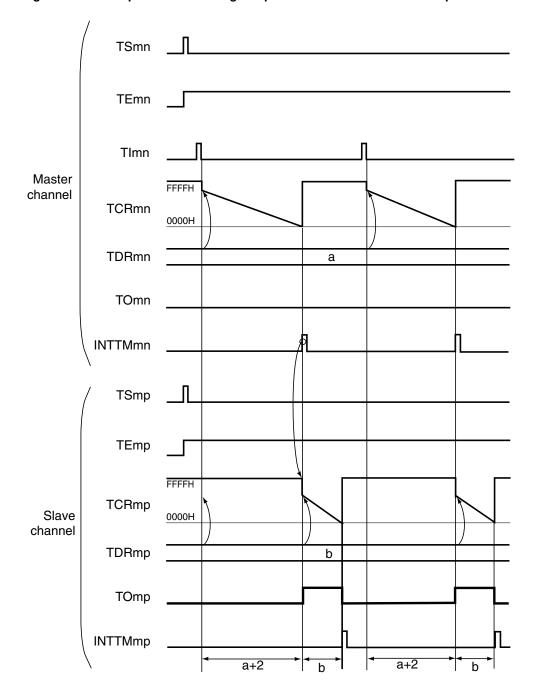


Figure 6-68. Example of Basic Timing of Operation as One-Shot Pulse Output Function

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 2, 6)

p: Slave channel number (n \leq 7)

2. TSmn, TSmp: Bit n, p of timer channel start register m (TSm)

TEmn, TEmp: Bit n, p of timer channel enable status register m (TEm)

Tlmn, Tlmp: Tlmn and Tlmp pins input signal

TCRmn, TCRmp: Timer count registers mn, mp (TCRmn, TCRmp)

TDRmn, TDRmp: Timer data registers mn, mp (TDRmn, TDRmp)

TOmn, TOmp: TOmn and TOmp pins output signal

Figure 6-69. Example of Set Contents of Registers When One-Shot Pulse Output Function Is Used (Master Channel)

(a) Timer mode register mn (TMRmn) 14 12 MAS **TMRmn** KSmn⁻ KSmn0 CCSmn STSmn2 STSmn1 STSmn0 CISmn1 CISmn0 MDmn3 MDmn2 MDmn1 MDmn0 ΓERm 1/0 0 0 0 1/0 1/0 0 0 0 0 0 0 Operation mode of channel n 100B: One-count mode Start trigger during operation 0: Trigger input is invalid. Selection of Tlmn pin input edge 00B: Detects falling edge. 01B: Detects rising edge. 10B: Detects both edges. 11B: Setting prohibited Start trigger selection 001B: Selects the Tlmn pin input valid edge. Slave/master selection 1: Master channel. Count clock selection 0: Selects operation clock (fmck). Operation clock (fmck) selection 00B: Selects CKm0 as operation clock of channels n. 10B: Selects CKm1 as operation clock of channels n.

(b) Timer output register m (TOm)

0: Outputs 0 from TOmn.

(c) Timer output enable register m (TOEm)

Bit n **TOEm** TOEmr 0

0: Stops the TOmn output operation by counting operation.

(d) Timer output level register m (TOLm)

TOLm TOLmr 0

0: Cleared to 0 when TOMmn = 0 (master channel output mode).

RENESAS

(e) Timer output mode register m (TOMm)

Bit n **TOMm** TOMmn 0

0: Sets master channel output mode.

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2, 6)

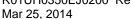
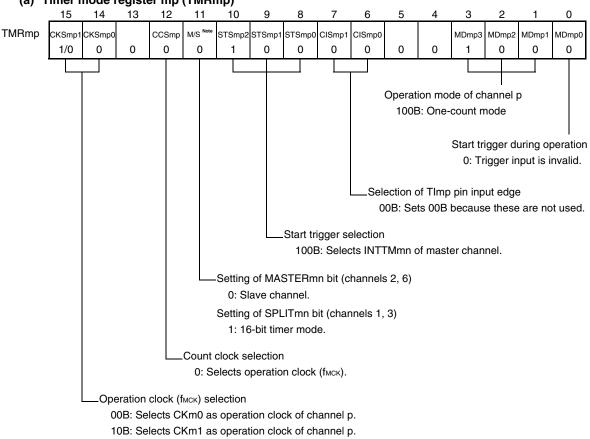



Figure 6-70. Example of Set Contents of Registers When One-Shot Pulse Output Function Is Used (Slave Channel)

(a) Timer mode register mp (TMRmp)

(b) Timer output register m (TOm)

TOm Bit p

TOmp
1/0

0: Outputs 0 from TOmp.

1: Outputs 1 from TOmp.

* Make the same setting as master channel.

(c) Timer output enable register m (TOEm)

TOEm

Bit p
TOEmp
1/0

- 0: Stops the TOmp output operation by counting operation.
- 1: Enables the TOmp output operation by counting operation.

(d) Timer output level register m (TOLm) Bit p

TOLm

TOLmp

- 0: Positive logic output (active-high)
- 1: Negative logic output (active-low)

(e) Timer output mode register m (TOMm)

TOMm

Bit p
TOMmp

1: Sets the slave channel output mode.

Note TMRm2, TMRm6: MASTERmn bit TMRm1, TMRm3: SPLITmp bit TMRm7: Fixed to 0

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2, 6)

<R>

Figure 6-71. Operation Procedure of One-Shot Pulse Output Function (1/2)

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN bit of peripheral enable registers 0 (PER0) to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets timer clock select register m (TPSm). Determines clock frequencies of CKm0 and CKm1.	
Channel default	Sets the corresponding bit of the noise filter enable registers 1 (NFEN1) to 0 (off) or 1 (on).	Channel stops operating. (Clock is supplied and some power is consumed.)
setting	Sets timer mode register mn, mp (TMRmn, TMRmp) of two channels to be used (determines operation mode of channels). An output delay is set to timer data register mn (TDRmn) of the master channel, and a pulse width is set to the TDRmp register of the slave channel.	
	Sets slave channel. The TOMmp bit of timer output mode register m (TOMm) is set to 1 (slave channel output mode). Sets the TOLmp bit. Sets the TOmp bit and determines default level of the	The TOmp pin goes into Hi-Z output state.
	TOmp output.	The TOmp default setting level is output when the port mode register is in output mode and the port register is 0.
		TOmp does not change because channel stops operating. The TOmp pin outputs the TOmp set level.

(Remark is listed on the next page.)

<R>

Figure 6-71. Operation Procedure of One-Shot Pulse Output Function (2/2)

	Software Operation	Hardware Status
Operation start	Sets the TOEmp bit (slave) to 1 (only when operation is resumed). The TSmn (master) and TSmp (slave) bits of timer channel start register m (TSm) are set to 1 at the same time.	The TEmn and TEmp bits are set to 1 and the master
	The TSmn and TSmp bits automatically return to 0 because they are trigger bits.	channel enters the Timn input edge detection wait status. Counter stops operating.
	Count operation of the master channel is started by start- trigger detection of the master channel.	Master channel starts counting.
	 Detects the TImn pin input valid edge. Sets the TSmn bit of the master channel to 1 by 	
	software Note.	
During operation	Note Do not set the TSmn bit of the slave channel to 1. Set values of only the CISmn1 and CISmn0 bits of the TMRmn register can be changed. Sets corresponding bit of noisefilter enable register 1 (NFEN1) to 1. Set values of the TMRmp, TDRmn, TDRmp registers, TOMmn, TOMmp, TOLmn, and TOLmp bits cannot be changed.	Master channel loads the value of the TDRmn register to timer count register mn (TCRmn) when the TImn pin valid input edge is detected, and the counter starts counting down. When the count value reaches TCRmn = 0000H, the INTTMmn output is generated, and the counter stops until the next valid edge is input to the TImn pin. The slave channel, triggered by INTTMmn of the master
	The TCRmn and TCRmp registers can always be read. The TSRmn and TSRmp registers are not used. Set values of the TOm and TOEm registers by slave channel can be changed.	channel, loads the value of the TDRmp register to the TCRmp register, and the counter starts counting down. The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel. It becomes inactive when TCRmp = 0000H, and the counting operation is stopped. After that, the above operation is repeated.
Operation stop	The TTmn (master) and TTmp (slave) bits are set to 1 at the same time. The TTmn and TTmp bits automatically return to 0 because they are trigger bits.	TEmn, TEmp = 0, and count operation stops. The TCRmn and TCRmp registers hold count value and stop. The TOmp output is not initialized but holds current status.
	The TOEmp bit of slave channel is cleared to 0 and value is set to the TOmp bit.	The TOmp pin outputs the TOmp set level.
TAU stop	To hold the TOmp pin output level Clears the TOmp bit to 0 after the value to be held is set to the port register. When holding the TOmp pin output level is not necessary Setting not required.	The TOmp pin output level is held by port function.
	The TAU0EN bit of the PER0 register is cleared to 0.——•	Power-off status All circuits are initialized and SFR of each channel is also initialized. (The TOmp bit is cleared to 0 and the TOmp pin is set to port mode.)

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2, 6)

6.9.2 Operation as PWM function

Two channels can be used as a set to generate a pulse of any period and duty factor.

The period and duty factor of the output pulse can be calculated by the following expressions.

Pulse period = {Set value of TDRmn (master) + 1} × Count clock period

Duty factor [%] = {Set value of TDRmp (slave)}/{Set value of TDRmn (master) + 1} × 100

0% output: Set value of TDRmp (slave) = 0000H

100% output: Set value of TDRmp (slave) ≥ {Set value of TDRmn (master) + 1}

Remark The duty factor exceeds 100% if the set value of TDRmp (slave) > (set value of TDRmn (master) + 1), it summarizes to 100% output.

The master channel operates in the interval timer mode. If the channel start trigger bit (TSmn) of timer channel start register m (TSm) is set to 1, an interrupt (INTTMmn) is output, the value set to timer data register mn (TDRmn) is loaded to timer count register mn (TCRmn), and the counter counts down in synchronization with the count clock. When the counter reaches 0000H, INTTMmn is output, the value of the TDRmn register is loaded again to the TCRmn register, and the counter counts down. This operation is repeated until the channel stop trigger bit (TTmn) of timer channel stop register m (TTm) is set to 1.

If two channels are used to output a PWM waveform, the period until the master channel counts down to 0000H is the PWM output (TOmp) cycle.

The slave channel operates in one-count mode. By using INTTMmn from the master channel as a start trigger, the TCRmp register loads the value of the TDRmp register and the counter counts down to 0000H. When the counter reaches 0000H, it outputs INTTMmp and waits until the next start trigger (INTTMmn from the master channel) is generated.

If two channels are used to output a PWM waveform, the period until the slave channel counts down to 0000H is the PWM output (TOmp) duty.

PWM output (TOmp) goes to the active level one clock after the master channel generates INTTMmn and goes to the inactive level when the TCRmp register of the slave channel becomes 0000H.

Caution To rewrite both timer data register mn (TDRmn) of the master channel and the TDRmp register of the slave channel, a write access is necessary two times. The timing at which the values of the TDRmn and TDRmp registers are loaded to the TCRmn and TCRmp registers is upon occurrence of INTTMmn of the master channel. Thus, when rewriting is performed split before and after occurrence of INTTMmn of the master channel, the TOmp pin cannot output the expected waveform. To rewrite both the TDRmn register of the master and the TDRmp register of the slave, therefore, be sure to rewrite both the registers immediately after INTTMmn is generated from the master channel.

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2, 6)

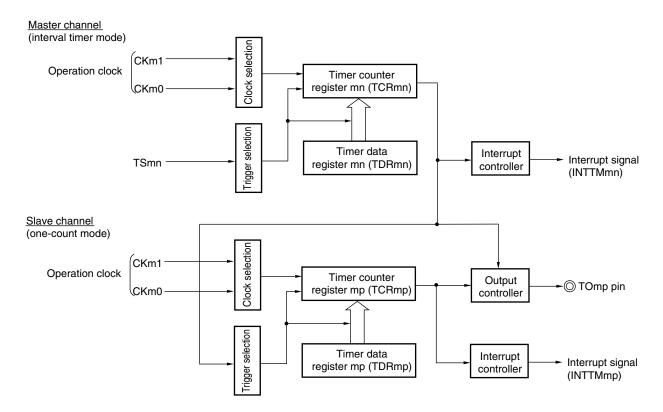


Figure 6-72. Block Diagram of Operation as PWM Function

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2, 6)

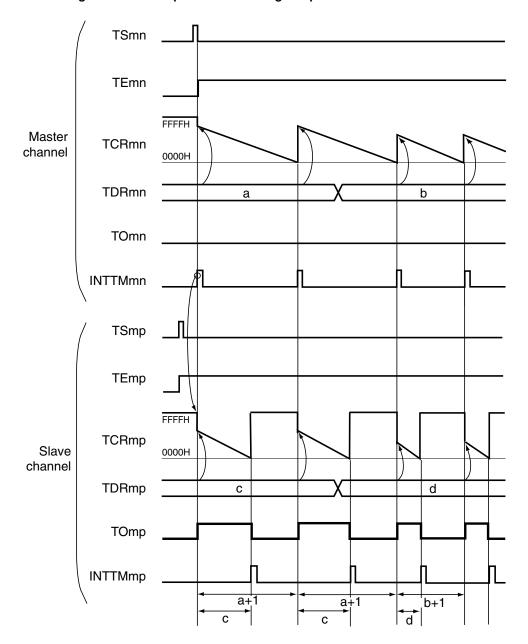


Figure 6-73. Example of Basic Timing of Operation as PWM Function

Remark 1. m: Unit number (m = 0), n: Channel number (n = 0, 2, 6) p: Slave channel number (n

2. TSmn, TSmp: Bit n, p of timer channel start register m (TSm)

TEmn, TEmp: Bit n, p of timer channel enable status register m (TEm)

TCRmn, TCRmp: Timer count registers mn, mp (TCRmn, TCRmp)
TDRmn, TDRmp: Timer data registers mn, mp (TDRmn, TDRmp)

TOmn, TOmp: TOmn and TOmp pins output signal

00B: Sets 00B because these are not used.

(a) Timer mode register mn (TMRmn) 9 8 3 2 0 15 14 13 12 10 MAS **TMRmn** CKSmn KSmn0 CCSmi STSmn2 STSmn1 STSmn0 CISmn1 CISmn MDmn3 MDmn2 MDmn1 MDmn0 TERmr 0 1/0 0 0 0 0 0 0 0 0 0 0 0 1 Operation mode of channel n 000B: Interval timer Setting of operation when counting is started 1: Generates INTTMmn when counting is started. Selection of Tlmn pin input edge

Start trigger selection

000B: Selects only software start.

Figure 6-74. Example of Set Contents of Registers When PWM Function (Master Channel) Is Used

00B: Selects CKm0 as operation clock of channel n. 10B: Selects CKm1 as operation clock of channel n.

Count clock selection

Slave/master selection

1: Master channel.

0: Selects operation clock (fmck).

(b) Timer output register m (TOm)

TOm Bit n
TOmn
0

0: Outputs 0 from TOmn.

Operation clock (fmck) selection

(c) Timer output enable register m (TOEm)

TOEm Bit n
TOEmn
0

 $\ensuremath{\text{0:}}$ Stops the TOmn output operation by counting operation.

(d) Timer output level register m (TOLm)

TOLm Bit n
TOLmn
0

0: Cleared to 0 when TOMmn = 0 (master channel output mode).

(e) Timer output mode register m (TOMm)

TOMm TOM

Bit n
TOMmn
0

0: Sets master channel output mode.

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2, 6)

(a) Timer mode register mp (TMRmp) 15 14 13 12 10 0 **TMRmp** CKSmp⁻ KSmp0 CCSmp M/S STSmp2 STSmp1 CISmp1 MDmp3 STSmp0 CISmp(MDmp2 MDmp1 MDmp0 1/0 0 0 0 O 0 0 0 0 0 0 0 1 Operation mode of channel p 100B: One-count mode Start trigger during operation 1: Trigger input is valid. Selection of TImp pin input edge 00B: Sets 00B because these are not used. Start trigger selection 100B: Selects INTTMmn of master channel. Setting of MASTERmp or SPLITmp bit 0: Slave channel. Count clock selection 0: Selects operation clock (fmck). Operation clock (fmck) selection 00B: Selects CKm0 as operation clock of channel p. 10B: Selects CKm1 as operation clock of channel p. * Make the same setting as master channel.

Figure 6-75. Example of Set Contents of Registers When PWM Function (Slave Channel) Is Used

(b) Timer output register m (TOm)

TOm Bit p
TOmp
1/0

0: Outputs 0 from TOmp.

1: Outputs 1 from TOmp.

(c) Timer output enable register m (TOEm)

TOEm Bit p
TOEmp
1/0

- 0: Stops the TOmp output operation by counting operation.
- 1: Enables the TOmp output operation by counting operation.

(d) Timer output level register m (TOLm)

TOLm TOLmp

- 0: Positive logic output (active-high)
- 1: Negative logic output (active-low)

(e) Timer output mode register m (TOMm)

TOMm Bit p

TOMmp
1

1: Sets the slave channel output mode.

Note TMRm7: Fixed to 0

TMRm1, TMRm3: SPLITmp bit

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2, 6)

Figure 6-76. Operation Procedure When PWM Function Is Used (1/2)

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN bit of peripheral enable register 0 (PER0) to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets timer clock select register m (TPSm). Determines clock frequencies of CKm0 and CKm1.	
Channel default setting	Sets timer mode registers mn, mp (TMRmn, TMRmp) of two channels to be used (determines operation mode of channels). An interval (period) value is set to timer data register mn (TDRmn) of the master channel, and a duty factor is set to the TDRmp register of the slave channel.	Channel stops operating. (Clock is supplied and some power is consumed.)
	Sets slave channel. The TOMmp bit of timer output mode register m (TOMm) is set to 1 (slave channel output mode). Sets the TOLmp bit. Sets the TOmp bit and determines default level of the	The TOmp pin goes into Hi-Z output state.
		The TOmp default setting level is output when the port mode register is in output mode and the port register is 0.
	·	TOmp does not change because channel stops operating. The TOmp pin outputs the TOmp set level.

(Remark is listed on the next page.)

Figure 6-76. Operation Procedure When PWM Function Is Used (2/2)

		Software Operation	Hardware Status
•	Operation start	Sets the TOEmp bit (slave) to 1 (only when operation is resumed). The TSmn (master) and TSmp (slave) bits of timer channel start register m (TSm) are set to 1 at the same time. The TSmn and TSmp bits automatically return to 0 because they are trigger bits.	TEmn = 1, TEmp = 1 ➤ When the master channel starts counting, INTTMmn is generated. Triggered by this interrupt, the slave channel also starts counting.
	During operation	Set values of the TMRmn and TMRmp registers, TOMmn, TOMmp, TOLmn, and TOLmp bits cannot be changed. Set values of the TDRmn and TDRmp registers can be changed after INTTMmn of the master channel is generated. The TCRmn and TCRmp registers can always be read. The TSRmn and TSRmp registers are not used.	The counter of the master channel loads the TDRmn register value to timer count register mn (TCRmn), and counts down. When the count value reaches TCRmn = 0000H, INTTMmn output is generated. At the same time, the value of the TDRmn register is loaded to the TCRmn register, and the counter starts counting down again. At the slave channel, the value of the TDRmp register is loaded to the TCRmp register, triggered by INTTMmn of the master channel, and the counter starts counting down. The output level of TOmp becomes active one count clock after generation of the INTTMmn output from the master channel. It becomes inactive when TCRmp = 0000H, and the counting operation is stopped.
	Operation stop	The TTmn (master) and TTmp (slave) bits are set to 1 at the same time. The TTmn and TTmp bits automatically return to 0 because they are trigger bits.	TEmn, TEmp = 0, and count operation stops. The TCRmn and TCRmp registers hold count value and stop. The TOmp output is not initialized but holds current status.
	-	The TOEmp bit of slave channel is cleared to 0 and value is set to the TOmp bit.	The TOmp pin outputs the TOmp set level.
	TAU stop	To hold the TOmp pin output level Clears the TOmp bit to 0 after the value to be held is set to the port register. When holding the TOmp pin output level is not necessary Setting not required.	The TOmp pin output level is held by port function.
		The TAU0EN bit of the PER0 register is cleared to 0.	

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2, 6)

6.9.3 Operation as multiple PWM output function

By extending the PWM function and using multiple slave channels, many PWM waveforms with different duty values can be output.

For example, when using two slave channels, the period and duty factor of an output pulse can be calculated by the following expressions.

```
Pulse period = {Set value of TDRmn (master) + 1} × Count clock period

Duty factor 1 [%] = {Set value of TDRmp (slave 1)}/{Set value of TDRmn (master) + 1} × 100

Duty factor 2 [%] = {Set value of TDRmq (slave 2)}/{Set value of TDRmn (master) + 1} × 100
```

Remark Although the duty factor exceeds 100% if the set value of TDRmp (slave 1) > {set value of TDRmn (master) + 1} or if the {set value of TDRmq (slave 2)} > {set value of TDRmn (master) + 1}, it is summarized into 100% output.

Timer count register mn (TCRmn) of the master channel operates in the interval timer mode and counts the periods.

The TCRmp register of the slave channel 1 operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmp pin. The TCRmp register loads the value of timer data register mp (TDRmp), using INTTMmn of the master channel as a start trigger, and starts counting down. When TCRmp = 0000H, TCRmp outputs INTTMmp and stops counting until the next start trigger (INTTMmn of the master channel) has been input. The output level of TOmp becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmp = 0000H.

In the same way as the TCRmp register of the slave channel 1, the TCRmq register of the slave channel 2 operates in one-count mode, counts the duty factor, and outputs a PWM waveform from the TOmq pin. The TCRmq register loads the value of the TDRmq register, using INTTMmn of the master channel as a start trigger, and starts counting down. When TCRmq = 0000H, the TCRmq register outputs INTTMmq and stops counting until the next start trigger (INTTMmn of the master channel) has been input. The output level of TOmq becomes active one count clock after generation of INTTMmn from the master channel, and inactive when TCRmq = 0000H.

When channel 0 is used as the master channel as above, up to seven types of PWM signals can be output at the same time.

Caution To rewrite both timer data register mn (TDRmn) of the master channel and the TDRmp register of the slave channel 1, write access is necessary at least twice. Since the values of the TDRmn and TDRmp registers are loaded to the TCRmn and TCRmp registers after INTTMmn is generated from the master channel, if rewriting is performed separately before and after generation of INTTMmn from the master channel, the TOmp pin cannot output the expected waveform. To rewrite both the TDRmn register of the master and the TDRmp register of the slave, be sure to rewrite both the registers immediately after INTTMmn is generated from the master channel (This applies also to the TDRmq register of the slave channel 2).

```
Remark m: Unit number (m = 0), n: Channel number (n = 0, 2) p: Slave channel number 1, q: Slave channel number 2 n  (Where p and q are integers greater than n)
```

Master channel (interval timer mode) selection CKm1 Operation clock Timer counter Clock register mn (TCRmn) CKm0 rigger selection Timer data Interrupt Interrupt signal **TSmn** register mn (TDRmn) controller (INTTMmn) Slave channel 1 (one-count mode) selection CKm1 Operation clock Timer counter Output Clock ·O TOmp pin CKm0 register mp (TCRmp) controller rigger selection Timer data Interrupt Interrupt signal register mp (TDRmp) controller (INTTMmp) Slave channel 2 (one-count mode) selection CKm1 Operation clock Timer counter Output -OTOmq pin Clock register mq (TCRmq) CKm0 controller **Irigger** selection Timer data Interrupt Interrupt signal register mq (TDRmq) controller (INTTMmq)

Figure 6-77. Block Diagram of Operation as Multiple PWM Output Function (output two types of PWMs)

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2)

p: Slave channel number 1, q: Slave channel number 2

n (Where p and q are integers greater than n)

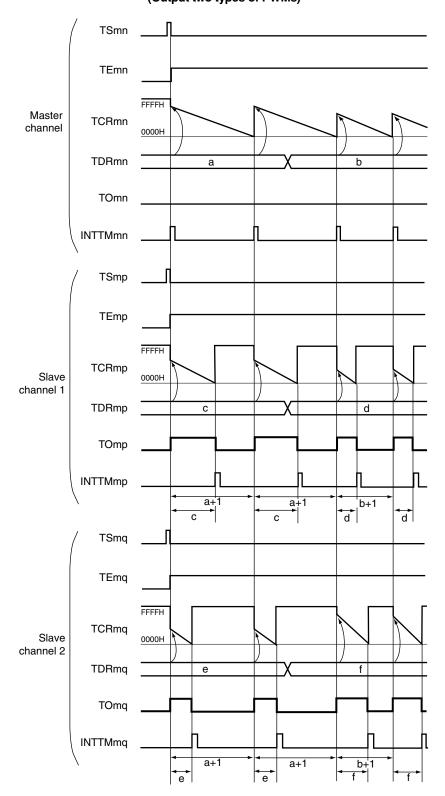
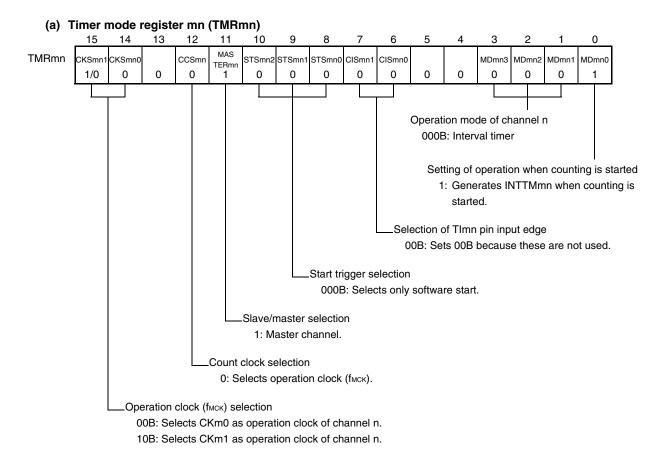


Figure 6-78. Example of Basic Timing of Operation as Multiple PWM Output Function (Output two types of PWMs)

(Remark is listed on the next page.)


Remark 1. m: Unit number (m = 0), n: Channel number (n = 0, 2) p: Slave channel number 1, q: Slave channel number 2 n (Where p and q are integers greater than n)

2. TSmn, TSmp, TSmq: Bit n, p, q of timer channel start register m (TSm)

TEmn, TEmp, TEmq: Bit n, p, q of timer channel enable status register m (TEm)
TCRmn, TCRmp, TCRmq: Timer count registers mn, mp, mq (TCRmn, TCRmp, TCRmq)
TDRmn, TDRmp, TDRmq: Timer data registers mn, mp, mq (TDRmn, TDRmp, TDRmq)

TOmn, TOmp, TOmq: TOmn, TOmp, and TOmq pins output signal

Figure 6-79. Example of Set Contents of Registers
When Multiple PWM Output Function (Master Channel) Is Used

(b) Timer output register m (TOm)

TOm Bit n
TOmn
0

0: Outputs 0 from TOmn.

(c) Timer output enable register m (TOEm)

TOEm TOEmr

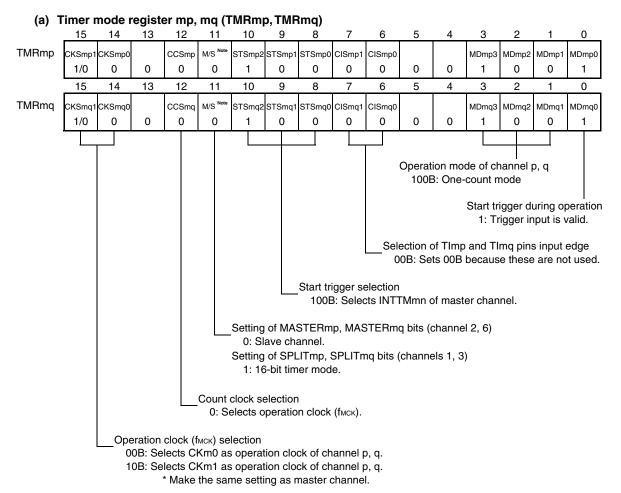
0: Stops the TOmn output operation by counting operation.

(d) Timer output level register m (TOLm)

TOLm TOLmn

Bit n

0: Cleared to 0 when TOMmn = 0 (master channel output mode).


(e) Timer output mode register m (TOMm)

TOMm TOMmn

0: Sets master channel output mode.

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2)

Figure 6-80. Example of Set Contents of Registers
When Multiple PWM Output Function (Slave Channel) Is Used (output two types of PWMs)

(b) Timer output register m (TOm)

TOm | Bit q | Bit p | TOmq | TOmp | 1/0 | 1/0

0: Outputs 0 from TOmp or TOmq.

1: Outputs 1 from TOmp or TOmq.

(c) Timer output enable register m (TOEm)

TOEm

Bit q	Bit p
TOEmq	TOEmp
1/0	1/0

- 0: Stops the TOmp or TOmq output operation by counting operation.
- 1: Enables the TOmp or TOmg output operation by counting operation.

(d) Timer output level register m (TOLm)

TOLm

Bit q	Bit p
TOLmq	TOLmp
1/0	1/0

- 0: Positive logic output (active-high)
- 1: Negative logic output (active-low)

(e) Timer output mode register m (TOMm)

TOMm

Bit q	Bit p
TOMmq	TOMmp
1	1

1: Sets the slave channel output mode.

Note TMRm7: Fixed to 0

TMRm1, TMRm3: SPLITmp, SPLIT0q bit

TMRm2, TMRm6: MASTERmp, MASTERmq bit

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2)

p: Slave channel number 1, q: Slave channel number 2 n (Where p and q are integers greater than n)

Figure 6-81. Operation Procedure When Multiple PWM Output Function Is Used (1/2)

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN bit of peripheral enable register 0 (PER0) to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets timer clock select register m (TPSm). Determines clock frequencies of CKm0 and CKm1.	
Channel default setting	Sets timer mode registers mn, mp, 0q (TMRmn, TMRmp, TMRmq) of each channel to be used (determines operation mode of channels). An interval (period) value is set to timer data register mn (TDRmn) of the master channel, and a duty factor is set to the TDRmp and TDRmq registers of the slave channels.	Channel stops operating. (Clock is supplied and some power is consumed.)
	Sets slave channels. The TOMmp and TOMmq bits of timer output mode register m (TOMm) are set to 1 (slave channel output mode). Sets the TOLmp and TOLmq bits. Sets the TOmp and TOmq bits and determines default	The TOmp and TOmq pins go into Hi-Z output state.
	level of the TOmp and TOmq outputs.	The TOmp and TOmq default setting levels are output when the port mode register is in output mode and the port register is 0.
	Sets the TOEmp and TOEmq bits to 1 and enables	
	operation of TOmp and TOmq.	TOmp and TOmq do not change because channels stop operating.
	Clears the port register and port mode register to 0. —	The TOmp and TOmq pins output the TOmp and TOmq set levels.

(Note and Remark are listed on the next page.)

Figure 6-81. Operation Procedure When Multiple PWM Output Function Is Used (2/2)

		Software Operation	Hardware Status
	Operation start	(Sets the TOEmp and TOEmq (slave) bits to 1 only when resuming operation.) The TSmn bit (master), and TSmp and TSmq (slave) bits of timer channel start register m (TSm) are set to 1 at the same time. The TSmn, TSmp, and TSmq bits automatically return to 0 because they are trigger bits.	TEmn = 1, TEmp, TEmq = 1 When the master channel starts counting, INTTMmn is generated. Triggered by this interrupt, the slave channel also starts counting.
Operation is resumed.	During operation	Set values of the TMRmn, TMRmp, TMRmq registers, TOMmn, TOMmp, TOMmq, TOLmn, TOLmp, and TOLmq bits cannot be changed. Set values of the TDRmn, TDRmp, and TDRmq registers can be changed after INTTMmn of the master channel is generated. The TCRmn, TCRmp, and TCRmq registers can always be read. The TSRmn, TSRmp, and TSR0q registers are not used.	The counter of the master channel loads the TDRmn register value to timer count register mn (TCRmn) and counts down. When the count value reaches TCRmn = 0000H, INTTMmn output is generated. At the same time, the value of the TDRmn register is loaded to the TCRmn register, and the counter starts counting down again. At the slave channel 1, the values of the TDRmp register are transferred to the TCRmp register, triggered by INTTMmn of the master channel, and the counter starts counting down. The output levels of TOmp become active one count clock after generation of the INTTMmn output from the master channel. It becomes inactive when TCRmp = 0000H, and the counting operation is stopped. At the slave channel 2, the values of the TDRmq register are transferred to TCRmq register, triggered by INTTMmn of the master channel, and the counter starts counting down. The output levels of TOmq become active one count clock after generation of the INTTMmn output from the master channel. It becomes inactive when TCRmq = 0000H, and the counting operation is stopped. After that, the above operation is repeated.
	Operation stop	The TTmn bit (master), TTmp, and TTmq (slave) bits are set to 1 at the same time. The TTmn, TTmp, and TTmq bits automatically return to 0 because they are trigger bits.	TEmn, TEmp, TEmq = 0, and count operation stops. The TCRmn, TCRmp, and TCRmq registers hold count value and stop. The TOmp and TOmq output are not initialized but hold current status.
		The TOEmp and TOEmq bits of slave channels are cleared to 0 and value is set to the TOmp and TOmq bits.	The TOmp and TOmq pins output the TOmp and TOmq set levels.
	TAU stop	To hold the TOmp and TOmq pin output levels Clears the TOmp and TOmq bits to 0 after the value to be held is set to the port register. When holding the TOmp and TOmq pin output levels are not necessary Setting not required	The TOmp and TOmq pin output levels are held by port function.
		The TAU0EN bit of the PER0 register is cleared to 0.	Power-off status All circuits are initialized and SFR of each channel is also initialized. (The TOmp and TOmq bits are cleared to 0 and the TOmp and TOmq pins are set to port mode.)

Remark m: Unit number (m = 0), n: Channel number (n = 0, 2)

p: Slave channel number 1, q: Slave channel number 2

n (Where p and q are a integer greater than n)

6.9.4 Remote control output function

The PWM output function is applied to the remote control output function.

The pairings of channels 2 and 3 and channels 6 and 7 are used to output the PWM signal (See 6.9.2 Operation as PWM function for how to set up each channel.). The PWM signal output from channel 3 is used as a mask wave, the PWM signal output from channel 7 is used as a carrier waves, and the logical products of these signals are output as remote control output.

The high level width output part of the remote control output is composed of a 20 to 60 kHz carrier signal.

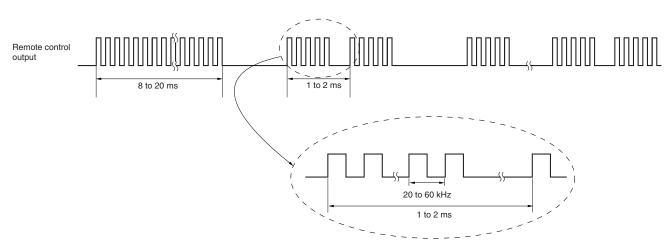


Figure 6-82. Remote Control Output

Figure 6-83 shows the steps for setting the remote control output.

Figure 6-83. Procedure for Setting Remote Control Output (1/2)

	Software Operation	Hardware Status
Pin mode setting	Sets the PFSEG17 bit of PFSEG2 register, PM32 bit of PM3 register, PU3 bit of PFSEG2 register and P32 bit of P3 register to 1	Remote control output is invaild P32/TO03 pin is low-level output
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN bit of peripheral enable register 0 (PER0) to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets timer clock select register 0 (TPS0). Determines clock frequencies of CK00 and CK01.	
Remote control output setting	The TOS0 bit of the Timer output select register (TOS) is set to 1.	Remote control output is valid The P32/TO03 pin outputs the result (Low) of ANDing TO03 (Low) and TO07 (Low). P32/TO03 pin can only be used as a remote control output P53/TO07 pin can only be used as a alternative function other than timer output
Channel default setting	Sets timer mode register mn (TMRmn) to 0801H and sets timer mode register mp (TMRmp) to 0409H determines operation mode of channels).	Channel stops operating. (Clock is supplied and some power is consumed.)
	Sets master channels. The TOMmn bit of timer output mode register m (TOMm) is set to 0 (master channel output mode). Sets the TOLmn bit. Sets the TOmn bit and determines default level of the TOmn output.	The TOmn pin goes into Hi-Z output state. The TOmn default setting level is output when the port
	Tomin output.	mode register is in output mode and the port register is 0.
	Sets the TOEmn bit to 1 and enables operation of TOmn.	TOmn does not change because channels stop operating.
	Clears the port register and port mode register to 0. —I	The TOmn pin outputs the TOmn set level.
	Sets slave channels. The TOMmp bit of timer output mode register m (TOMm) is set to 1 (slave channel output mode). Sets the TOLmp bit. Sets the TOmp bit and determines default level of the TOmp output.	The TOmp pin goes into Hi-Z output state. The TOmp default setting level is output when the port mode register is in output mode and the port register is 0.
	Sets the TOEmp bit to 1 and enables operation of TOmp.	TOmp does not change because channels stop operating.
	Clears the port register and port mode register to 0.	The TOmp pin outputs the TOmp set level.

(Remark is listed on the next page.)

Figure 6-83. Procedure for Setting Remote Control Output (2/2)

			Software Operation	Hardware Status
	-	Operation start	The cycle of the mask waveform (start code) and its high- level width are set. TDR02 = The cycle of the mask waveform - 1 TDR03 = High-level width of the mask waveform	
			The cycle of the carrier waveform and its high-level width are set. TDR06 = The cycle of the carrier waveform - 1 TDR07 = High-level width of the carrier waveform	
			The TSmn bit (master), and TSmp (slave) bits of timer channel start register m (TSm) are set to 1 at the same time.	► TEmn = 1, TEmp, TEmq = 1
			The TSmn and TSmp bits automatically return to 0 because they are trigger bits.	When the master channel starts counting, INTTM02 is generated. Triggered by this interrupt, the slave channel also starts counting.
Operation is resumed.	•	During operation	The setting of the TMRmn and TMRmp registers, and the TOMmn, TOMmp, TOLmn, and TOLmp bits must not be changed. The TCRmn and TCRmp registers can always be read.	TO03 outputs the mask waveform and TO07 outputs the carrier waveform in accordance with the settings of the cycle and high-level width. The P32/TO03 pin outputs the result of ANDing the TO03 and TO07 outputs (a remote control output (carrier waveform) until TCR03 reaches 0000H; a low-level remote control output until TCR02 reaches 0000H and
peration is			Wait for an interrupt signal (INTTM02)	TCR03 equals FFFFH). Interrupt signal (INTTM02) to be generated at TCR02 = 0000H.
5			Last code bit? • If it is not the end code bit, the cycle and high-level width of the next mask waveform are specified. TDR02 = The cycle of the mask waveform - 1 TDR03 = High-level width of the mask waveform	
			Caution Setting must finish before the TCR02 value reaches 0000H.	
			• If it is the end code bit, the operation stops	
		Operation stop	The duty of the mask waveform is set to 0%. TDR02 = 0000H TDR03 is setting not required.	The P32/T003 pin outputs the result of ANDing the T003 and T007 outputs (a remote control output (carrier waveform) until TCR03 reaches 0000H; a low-level remote control output after TCR03 reaches 0000H).
			Caution Setting must finish before the TCR02 value reaches 0000H.	
			Wait for an interrupt signal (INTTM02)	Interrupt signal (INTTM02) to be generated at TCR02 = 0000H.
			The TTmn bit (master) and TTmp (slave) bits are set to 1 at the same time. The TTmn and TTmp bits automatically return to 0 because they are trigger bits.	TEmn, TEmp, TEmq = 0, and count operation stops.
			The TOEmn and TOEmp bits are cleared to 0 and TOmn and TOmp bits are cleared to 0 Note.	The TOmp pin is clear to low-level.
		Transmission restart	To resume transmission, set the TOEmp bit of timer output enable register m (TOEm) to 1. (The TOEmn bit remains 0.)	

Note If these bits are not used by any TAU channel, clock supply may be stopped by clearing the TAU0EN bit of peripheral enable register 0 (PER0) to 0. In this case, to resume transmission, the settings for transmission must be re-specified after the power is turned on.

Remark m: Unit number (m = 0), n: Master channel number (n = 2, 6)

p: Slave channel number (p = 3, 7)

(When mask waveform: n = 2, n = 3; When carrier waveform: n = 6, p = 7)

CHAPTER 7 REAL-TIME CLOCK

7.1 Functions of Real-time Clock

The real-time clock has the following features.

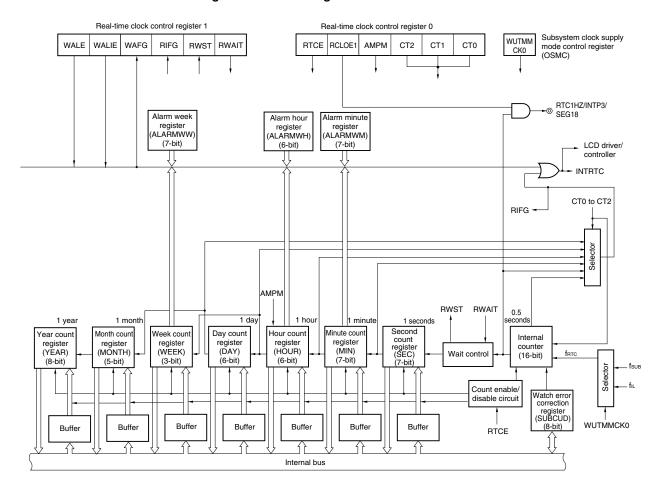
- · Having counters of year, month, week, day, hour, minute, and second, and can count up to 99 years.
- Constant-period interrupt function (period: 0.5 seconds, 1 second, 1 minute, 1 hour, 1 day, 1 month)
- Alarm interrupt function (alarm: week, hour, minute)
- Pin output function of 1 Hz
- <R> The real-time clock interrupt signal (INTRTC) can be utilized for wakeup from STOP mode and triggering an A/D converter's SNOOZE mode.

Caution The count of year, month, week, day, hour, minutes and second can only be performed when a subsystem clock (fsub = 32.768 kHz) is selected as the operation clock of the real-time clock. When the low-speed on-chip oscillator clock (fill = 15 kHz) is selected, only the constant-period interrupt function is available.

However, the constant-period interrupt interval when f_{IL} is selected will be calculated with the constant-period (the value selected with RTCC0 register) \times f_{SUB}/f_{IL} .

7.2 Configuration of Real-time Clock

The real-time clock includes the following hardware.


Table 7-1. Configuration of Real-time Clock

Item	Configuration				
Counter	Counter (16-bit)				
Control registers	Peripheral enable register 0 (PER0)				
	Subsystem clock supply mode control register (OSMC)				
	Real-time clock control register 0 (RTCC0)				
	Real-time clock control register 1 (RTCC1)				
	Second count register (SEC)				
	Minute count register (MIN)				
	Hour count register (HOUR)				
	Day count register (DAY)				
	Week count register (WEEK)				
	Month count register (MONTH)				
	Year count register (YEAR)				
	Watch error correction register (SUBCUD)				
	Alarm minute register (ALARMWM)				
	Alarm hour register (ALARMWH)				
	Alarm week register (ALARMWW)				

<R>

<R>

Figure 7-1. Block Diagram of Real-time Clock

Caution The count of year, month, week, day, hour, minutes and second can only be performed when a subsystem clock (fsub = 32.768 kHz) is selected as the operation clock of the real-time clock. When the low-speed on-chip oscillator clock (fill = 15 kHz) is selected, only the constant-period interrupt function is available

However, the constant-period interrupt interval when f_{IL} is selected will be calculated with the constant-period (the value selected with RTCC0 register) \times f_{SUB}/f_{IL} .

7.3 Registers Controlling Real-time Clock

The real-time clock is controlled by the following registers.

- Peripheral enable register 0 (PER0)
- <R>
 - Subsystem clock supply mode control register (OSMC)
 - Real-time clock control register 0 (RTCC0)
 - Real-time clock control register 1 (RTCC1)
 - Second count register (SEC)
 - Minute count register (MIN)
 - Hour count register (HOUR)
 - Day count register (DAY)
 - Week count register (WEEK)
 - Month count register (MONTH)
 - Year count register (YEAR)
 - Watch error correction register (SUBCUD)
 - Alarm minute register (ALARMWM)
 - Alarm hour register (ALARMWH)
 - Alarm week register (ALARMWW)
- <R> • Port mode register 3 (PM3)
- <R> • Port register 3 (P3)

7.3.1 Peripheral enable register 0 (PER0)

This register is used to enable or disable supplying the clock to the peripheral hardware. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

When the real-time clock is used, be sure to set bit 7 (RTCEN) of this register to 1.

The PER0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-2. Format of Peripheral Enable Register 0 (PER0)

Address: F00F0H After reset: 00H			R/W						
Symbol	<7>	6	<5>	4	3	<2>	1	<0>	
PER0	RTCEN	0	ADCEN	0	0	SAU0EN	0	TAU0EN	

RTCEN	Real-time clock (RTC) and	LCD driver/controller and clock output/buzzer output controller			
	12-bit interval timer	When subsystem clock (fsub) is selected	When subsystem clock (fsub) is not selected		
0	Stops input clock supply. SFR used by the real-time clock (RTC) and 12-bit interval timer cannot be written. The real-time clock (RTC) and 12-bit interval timer are in the reset status.	Stops input clock and subsystem clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.	Enables input clock and main system clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.		
1	Enables input clock supply. SFR used by the real-time clock (RTC) and 12-bit interval timer can be read and written.	Enables input clock and subsystem clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.			

- Cautions 1. When using the real-time clock, first set the RTCEN bit to 1 and then set the following registers, while oscillation of the count clock (frtc) is stable. If RTCEN = 0, writing to the control registers of the real-time clock is ignored, and, even if the registers are read, only the default values are read (except for the subsystem clock supply mode control register (OSMC), port mode register 3 (PM3), port
 - Real-time clock control register 0 (RTCC0)
 - Real-time clock control register 1 (RTCC1)
 - Second count register (SEC)
 - Minute count register (MIN)

register 3 (P3)).

- Hour count register (HOUR)
- Day count register (DAY)
- Week count register (WEEK)
- Month count register (MONTH)
- Year count register (YEAR)
- Watch error correction register (SUBCUD)
- Alarm minute register (ALARMWM)
- Alarm hour register (ALARMWH)
- Alarm week register (ALARMWW)
- 2. The subsystem clock supply to peripheral functions other than the real-time clock, 12-bit interval timer, and LCD driver/controller can be stopped in STOP

<R>

<R>

mode and HALT mode when the subsystem clock is used, by setting the RTCLPC bit of the subsystem clock supply mode control register (OSMC) to 1. In this case, set the RTCEN bit of the PER0 register to 1 and the other bits (bits 0 to 6) to 0.

3. Be sure to clear the bits 1, 3, 4 and 6 to 0.

<R>

7.3.2 Subsystem clock supply mode control register (OSMC)

The WUTMMCK0 bit can be used to select the real-time clock operation clock (frc).

In addition, by stopping clock functions that are an unnecessary, the RTCLPC bit can be used to reduce power consumption. For details about setting the RTCLPC bit, see **CHAPTER 5 CLOCK GENERATOR**.

The OSMC register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-3. Format of Subsystem Clock Supply Mode Control Register (OSMC)

Address: F0	00F3H After	reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
OSMC	RTCLPC	0	0	WUTMMCK0	0	0	0	0

WUTMMCK0 Note	Selection of operation clock for real-time clock, 12-bit interval timer, and LCD river/controller.	Selection of clock output from PCLBUZn pin of clock output/buzzer output
0	Subsystem clock (fsub)	Selecting the subsystem clock (fsub) is enabled.
1	Low-speed on-chip oscillator clock (fiL)	Selecting the subsystem clock (fsub) is disabled.

Note Be sure to select the subsystem clock (WUTMMCK0 bit = 0) if the subsystem clock is oscillating.

Cautions 1. The count of year, month, week, day, hour, minutes and second can only be performed when a subsystem clock (fsub = 32.768 kHz) is selected as the operation clock of the real-time clock. When the low-speed on-chip oscillator clock (fill = 15 kHz) is selected, only the constant-period interrupt function is available. The 32-pin products have the constant-period interrupt function only, because these products have no subsystem clock.

However, the constant-period interrupt interval when f_{IL} is selected will be calculated with the constant-period (the value selected with RTCC0 register) \times f_{SUB}/f_{IL} .

The subsystem clock and low-speed on-chip oscillator clock can only be switched by using the WUTMMCK0 bit if the real-time clock, 12-bit interval timer, and LCD driver/controller are all stopped.

These are stopped as follows:

Real-time clock: Set the RTCE bit to 0. 12-bit interval timer: Set the RINTE bit to 0.

LCD driver/controller: Set the SCOC and VLCON bits to 0.

Remark RTCE: Bit 7 of real-time clock control register 0 (RTCC0)

RINTE: Bit 15 of the interval timer control register (ITMC)

SCOC: Bit 6 of LCD mode register 1 (LCDM1)
VLCON: Bit 5 of LCD mode register 1 (LCDM1)

CT0

7.3.3 Real-time clock control register 0 (RTCC0)

The RTCC0 register is an 8-bit register that is used to start or stop the real-time clock operation, control the RTC1HZ pin, and set a 12- or 24-hour system and the constant-period interrupt function.

The RTCC0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-4. Format of Real-time Clock Control Register 0 (RTCC0)

Address: FFF9DH After reset: 00H R/W

Symbol <7> 6 <5> 4 3 2 1 0

RTCC0 RTCE 0 RCLOE1 0 AMPM CT2 CT1

RTCE	Real-time clock operation control	
0	Stops counter operation.	
1	Starts counter operation.	

RCLOE1	RTC1HZ pin output control	
0	Disables output of the RTC1HZ pin (1 Hz).	
1	Enables output of the RTC1HZ pin (1 Hz).	

AMPM	Selection of 12-/24-hour system
0	12-hour system (a.m. and p.m. are displayed.)
1	24-hour system

- Rewrite the AMPM bit value after setting the RWAIT bit (bit 0 of real-time clock control register 1 (RTCC1)) to 1. If
 the AMPM bit value is changed, the values of the hour count register (HOUR) change according to the specified
 time system.
- Table 7-2 shows the displayed time digits that are displayed.

CT2	CT1	СТО	Constant-period interrupt (INTRTC) selection
0	0	0	Does not use constant-period interrupt function.
0	0	1	Once per 0.5 s (synchronized with second count up)
0	1	0	Once per 1 s (same time as second count up)
0	1	1	Once per 1 m (second 00 of every minute)
1	0	0	Once per 1 hour (minute 00 and second 00 of every hour)
1	0	1	Once per 1 day (hour 00, minute 00, and second 00 of every day)
1	1	×	Once per 1 month (Day 1, hour 00 a.m., minute 00, and second 00 of every month)

When changing the values of the CT2 to CT0 bits while the counter operates (RTCE = 1), rewrite the values of the CT2 to CT0 bits after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, after rewriting the values of the CT2 to CT0 bits, enable interrupt servicing after clearing the RIFG and RTCIF flags.

Cautions 1. Do not change the value of the RCLOE1 bit when RTCE = 1.

2. 1 Hz is not output even if RCLOE1 is set to 1 when RTCE = 0.

Remark x: don't care

7.3.4 Real-time clock control register 1 (RTCC1)

The RTCC1 register is an 8-bit register that is used to control the alarm interrupt function and the wait time of the counter.

The RTCC1 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-5. Format of Real-time Clock Control Register 1 (RTCC1) (1/2)

Address: FFF9EH After reset: 00H Symbol <0> <7> 5 <4> <3> 2 <1> RTCC1 WALE WALIE WAFG **RWST RWAIT** 0 **RIFG** 0

WALE	Alarm operation control
0	Match operation is invalid.
1	Match operation is valid.

When setting a value to the WALE bit while the counter operates (RTCE = 1) and WALIE = 1, rewrite the WALE bit after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG and RTCIF flags after rewriting the WALE bit. When setting each alarm register (WALIE flag of real-time clock control register 1 (RTCC1), the alarm minute register (ALARMWM), the alarm hour register (ALARMWH), and the alarm week register (ALARMWW)), set match operation to be invalid ("0") for the WALE bit.

WALIE	Control of alarm interrupt (INTRTC) function operation
0	Does not generate interrupt on matching of alarm.
1	Generates interrupt on matching of alarm.

WAFG	Alarm detection status flag
0	Alarm mismatch
1	Detection of matching of alarm

This is a status flag that indicates detection of matching with the alarm. It is valid only when WALE = 1 and is set to "1" one clock (32.768 kHz) after matching of the alarm is detected. This flag is cleared when "0" is written to it. Writing "1" to it is invalid.

Figure 7-5. Format of Real-time Clock Control Register 1 (RTCC1) (2/2)

RIFG	Constant-period interrupt status flag			
0	Constant-period interrupt is not generated.			
1	1 Constant-period interrupt is generated.			
This flag indic	This flag indicates the status of generation of the constant-period interrupt. When the constant-period interrupt is			

generated, it is set to "1".

This flag is cleared when "0" is written to it. Writing "1" to it is invalid.

RWST	Wait status flag of real-time clock	
0	Counter is operating.	
1	Mode to read or write counter value	
This status flag indicates whether the setting of the RWAIT bit is valid. Before reading or writing the counter value, confirm that the value of this flag is 1.		

RWAIT	Wait control of real-time clock
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value

This bit controls the operation of the counter.

Be sure to write "1" to it to read or write the counter value.

As the counter (16-bit) is continuing to run, complete reading or writing within one second and turn back to 0.

When RWAIT = 1, it takes up to 1 clock (fatc) until the counter value can be read or written (RWST = 1).

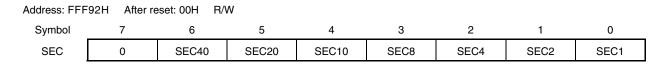
When the counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts

However, when it wrote a value to second count register, it will not keep the overflow event.

Caution If writing is performed to the RTCC1 register with a 1-bit manipulation instruction, the RIFG flag and WAFG flag may be cleared. Therefore, to perform writing to the RTCC1 register, be sure to use an 8-bit manipulation instruction. To prevent the RIFG flag and WAFG flag from being cleared during writing, disable writing by setting 1 to the corresponding bit. If the RIFG flag and WAFG flag are not used and the value may be changed, the RTCC1 register may be written by using a 1-bit manipulation instruction.

Remark Fixed-cycle interrupts and alarm match interrupts use the same interrupt source (INTRTC). When using these two types of interrupts at the same time, which interrupt occurred can be judged by checking the fixed-cycle interrupt status flag (RIFG) and the alarm detection status flag (WAFG) upon INTRTC occurrence.

7.3.5 Second count register (SEC)


The SEC register is an 8-bit register that takes a value of 0 to 59 (decimal) and indicates the count value of seconds. It counts up when the counter (16-bit) overflows.

When data is written to this register, it is written to a buffer and then to the counter up to two cycles of fatc later. Set a decimal value of 00 to 59 to this register in BCD code.

The SEC register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-6. Format of Second Count Register (SEC)

Cautions 1. When it reads or writes from/to the register while the counter is in operation (RTCE = 1), follow the procedures described in the section 7.4.3 Reading/writing real-time clock.

2. The internal counter (16 bits) is cleared when the second count register (SEC) is written.

7.3.6 Minute count register (MIN)

<R>

The MIN register is an 8-bit register that takes a value of 0 to 59 (decimal) and indicates the count value of minutes. It counts up when the second counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (frc) later. Even if the second count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 59 to this register in BCD code.

The MIN register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-7. Format of Minute Count Register (MIN)

Address: FFF93H After reset: 00H		eset: 00H R	/W					
Symbol	7	6	5	4	3	2	1	0
MIN	0	MIN40	MIN20	MIN10	MIN8	MIN4	MIN2	MIN1

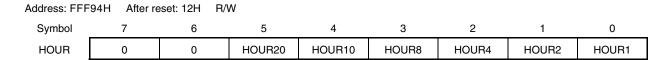
Caution When it reads or writes from/to the register while the counter is in operation (RTCE = 1), follow the procedures described in the section 7.4.3 Reading/writing real-time clock.

7.3.7 Hour count register (HOUR)

The HOUR register is an 8-bit register that takes a value of 00 to 23 or 01 to 12 and 21 to 32 (decimal) and indicates the count value of hours.

It counts up when the minute counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to two cycles of farc later. Even if the minute count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Specify a decimal value of 00 to 23, 01 to 12, or 21 to 32 by using BCD code according to the time system specified using bit 3 (AMPM) of real-time clock control register 0 (RTCC0).


If the AMPM bit value is changed, the values of the HOUR register change according to the specified time system.

The HOUR register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 12H.

However, the value of this register is 00H if the AMPM bit (bit 3 of the RTCC0 register) is set to 1 after reset.

Figure 7-8. Format of Hour Count Register (HOUR)

- Cautions 1. Bit 5 (HOUR20) of the HOUR register indicates AM(0)/PM(1) if AMPM = 0 (if the 12-hour system is selected).
 - 2. When it reads or writes from/to the register while the counter is in operation (RTCE = 1), follow the procedures described in the section 7.4.3 Reading/writing real-time clock.

Table 7-2 shows the relationship between the setting value of the AMPM bit, the hour count register (HOUR) value, and time.

Table 7-2. Displayed Time Digits

24-Hour Displa	ay (AMPM = 1)	12-Hour Display (AMPM = 1)		
Time	HOUR Register	Time	HOUR Register	
0	00H	12 a.m.	12H	
1	01H	1 a.m.	01H	
2	02H	2 a.m.	02H	
3	03H	3 a.m.	03H	
4	04H	4 a.m.	04H	
5	05H	5 a.m.	05H	
6	06H	6 a.m.	06H	
7	07H	7 a.m.	07H	
8	08H	8 a.m.	08H	
9	09H	9 a.m.	09H	
10	10H	10 a.m.	10H	
11	11H	11 a.m.	11H	
12	12H	12 p.m.	32H	
13	13H	1 p.m.	21H	
14	14H	2 p.m.	22H	
15	15H	3 p.m.	23H	
16	16H	4 p.m.	24H	
17	17H	5 p.m.	25H	
18	18H	6 p.m.	26H	
19	19H	7 p.m.	27H	
20	20H	8 p.m.	28H	
21	21H	9 p.m.	29H	
22	22H	10 p.m.	30H	
23	23H	11 p.m.	31H	

The HOUR register value is set to 12-hour display when the AMPM bit is "0" and to 24-hour display when the AMPM bit is "1".

In 12-hour display, the fifth bit of the HOUR register displays 0 for AM and 1 for PM.

7.3.8 Day count register (DAY)

The DAY register is an 8-bit register that takes a value of 1 to 31 (decimal) and indicates the count value of days. It counts up when the hour counter overflows.

This counter counts as follows.

- 01 to 31 (January, March, May, July, August, October, December)
- 01 to 30 (April, June, September, November)
- 01 to 29 (February, leap year)
- 01 to 28 (February, normal year)

When data is written to this register, it is written to a buffer and then to the counter up to two cycles of farc later. Even if the hour count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 01 to 31 to this register in BCD code.

The DAY register can be set by an 8-bit memory manipulation instruction.

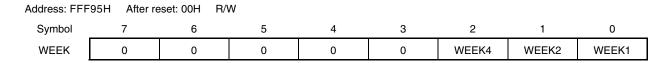
Reset signal generation clears this register to 01H.

Figure 7-9. Format of Day Count Register (DAY)

Address: FFF	96H After re	eset: 01H	R/W					
Symbol	7	6	5	4	3	2	1	0
DAY	0	0	DAY20	DAY10	DAY8	DAY4	DAY2	DAY1

Caution When it reads or writes from/to the register while the counter is in operation (RTCE = 1), follow the procedures described in the section 7.4.3 Reading/writing real-time clock.

7.3.9 Week count register (WEEK)


The WEEK register is an 8-bit register that takes a value of 0 to 6 (decimal) and indicates the count value of weekdays. It counts up in synchronization with the day counter.

When data is written to this register, it is written to a buffer and then to the counter up to two cycles of fatc later. Set a decimal value of 00 to 06 to this register in BCD code.

The WEEK register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-10. Format of Week Count Register (WEEK)

Cautions 1. The value corresponding to the month count register (MONTH) or the day count register (DAY) is not stored in the week count register (WEEK) automatically. After reset release, set the week count register as follow.

Day	WEEK
Sunday	00H
Monday	01H
Tuesday	02H
Wednesday	03H
Thursday	04H
Friday	05H
Saturday	06H

2. When it reads or writes from/to the register while the counter is in operation (RTCE = 1), follow the procedures described in the section 7.4.3 Reading/writing real-time clock.

7.3.10 Month count register (MONTH)


The MONTH register is an 8-bit register that takes a value of 1 to 12 (decimal) and indicates the count value of months. It counts up when the day counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to two cycles of fatc later. Even if the day count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 01 to 12 to this register in BCD code.

The MONTH register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 01H.

Figure 7-11. Format of Month Count Register (MONTH)

Caution When it reads or writes from/to the register while the counter is in operation (RTCE = 1), follow the procedures described in the section 7.4.3 Reading/writing real-time clock.

7.3.11 Year count register (YEAR)

The YEAR register is an 8-bit register that takes a value of 0 to 99 (decimal) and indicates the count value of years.

It counts up when the month count register (MONTH) overflows. Values 00, 04, 08, ..., 92, and 96 indicate a leap year.

When data is written to this register, it is written to a buffer and then to the counter up to two cycles of farc later. Even if the MONTH register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 99 to this register in BCD code.

The YEAR register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-12. Format of Year Count Register (YEAR)

Caution When it reads or writes from/to the register while the counter is in operation (RTCE = 1), follow the procedures described in the section 7.4.3 Reading/writing real-time clock.

7.3.12 Watch error correction register (SUBCUD)

This register is used to correct the watch with high accuracy when it is slow or fast by changing the value that overflows from the internal counter (16-bit) to the second count register (SEC) (reference value: 7FFFH).

The SUBCUD register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-13. Format of Watch Error Correction Register (SUBCUD)

Address: FFF99H After reset: 00H Symbol 5 4 3 2 0 7 1 **SUBCUD** DEV F6 F5 F4 F3 F2 F1 F0

DEV	DEV Setting of watch error correction timing		
O Corrects watch error when the second digits are at 00, 20, or 40 (every 20 seconds).			
1	Corrects watch error only when the second digits are at 00 (every 60 seconds).		
Writing to the SUBCUD register at the following timing is prohibited.			
• When DEV = 0 is set: For a period of SEC = 00H, 20H, 40H			
• When DEV = 1 is set: For a period of SEC = 00H			

F6	Setting of watch error correction value		
0	Increases by $\{(F5, F4, F3, F2, F1, F0) - 1\} \times 2$.		
1	Decreases by {(/F5, /F4, /F3, /F2, /F1, /F0) + 1} × 2.		
1	When (F6, F5, F4, F3, F2, F1, F0) = (*, 0, 0, 0, 0, 0, *), the watch error is not corrected. * is 0 or 1. /F5 to /F0 are the inverted values of the corresponding bits (000011 when 111100).		
Range of correction value: (when F6 = 0) 2, 4, 6, 8,, 120, 122, 124			
(when F6 = 1) -2, -4, -6, -8,, -120, -122, -124			

The range of value that can be corrected by using the watch error correction register (SUBCUD) is shown below.

	DEV = 0 (correction every 20 seconds)	DEV = 1 (correction every 60 seconds)
Correctable range	−189.2 ppm to 189.2 ppm	-63.1 ppm to 63.1 ppm
Maximum excludes	± 1.53 ppm	± 0.51 ppm
quantization error		
Minimum resolution	$\pm3.05~\text{ppm}$	\pm 1.02 ppm

Remark If a correctable range is -63.1 ppm or lower and 63.1 ppm or higher, set 0 to DEV.

7.3.13 Alarm minute register (ALARMWM)

This register is used to set minutes of alarm.

The ALARMWM register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Caution Set a decimal value of 00 to 59 to this register in BCD code. If a value outside the range is set, the alarm is not detected.

Figure 7-14. Format of Alarm Minute Register (ALARMWM)

Address: FFF9AH After reset: 00H		eset: 00H R/	W					
Symbol	7	6	5	4	3	2	1	0
ALARMWM	0	WM40	WM20	WM10	WM8	WM4	WM2	WM1

7.3.14 Alarm hour register (ALARMWH)

This register is used to set hours of alarm.

The ALARMWH register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 12H.

However, the value of this register is 00H if the AMPM bit (bit 3 of the RTCC0 register) is set to 1 after reset.

Caution Set a decimal value of 00 to 23, 01 to 12, or 21 to 32 to this register in BCD code. If a value outside the range is set, the alarm is not detected.

Figure 7-15. Format of Alarm Hour Register (ALARMWH)

Address: FFF9BH After reset: 12H		eset: 12H	R/W						
Symbol	7	6	5	4	3	2	1	0	_
ALARMWH	0	0	WH20	WH10	WH8	WH4	WH2	WH1	l

Caution Bit 5 (WH20) of the ALARMWH register indicates AM(0)/PM(1) if AMPM = 0 (if the 12-hour system is selected).

7.3.15 Alarm week register (ALARMWW)

This register is used to set date of alarm.

The ALARMWW register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-16. Format of Alarm Week Register (ALARMWW)

Address: FFF	9CH After r	eset: 00H R/	W .					
Symbol	7	6	5	4	3	2	1	0
ALARMWW	0	WW6	WW5	WW4	WW3	WW2	WW1	WW0

Here is an example of setting the alarm.

Time of Alarm				Day				12-Hour Display			у	2	24-Hou	Displa	у
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Hour	Hour	Minute	Minute	Hour	Hour	Minute	Minute
		147	147	147	147		147	10	1	10	1	10	1	10	1
	W	W	W	W	W	W	W								
	0	1	2	3	4	5	6								
Every day, 0:00 a.m.	1	1	1	1	1	1	1	1	2	0	0	0	0	0	0
Every day, 1:30 a.m.	1	1	1	1	1	1	1	0	1	3	0	0	1	3	0
Every day, 11:59 a.m.	1	1	1	1	1	1	1	1	1	5	9	1	1	5	9
Monday through Friday, 0:00 p.m.	0	1	1	1	1	1	0	3	2	0	0	1	2	0	0
Sunday, 1:30 p.m.	1	0	0	0	0	0	0	2	1	3	0	1	3	3	0
Monday, Wednesday, Friday, 11:59 p.m.	0	1	0	1	0	1	0	3	1	5	9	2	3	5	9

<R> 7.3.16 Port mode register 3 (PM3)

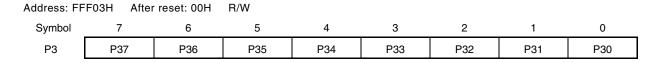
The PM3 register can be set by a 1-bit or 8-bit manipulation instruction.

Reset signal generation sets this register to FFH.

When using the port 3 as the RTC1HZ pin for output of 1 Hz, set the PM30 bit to 0.

Figure 7-17. Format of Port Mode Register 3 (PM3)

Address: FF	F23H After	reset: FFH	R/W						
Symbol	7	6	5	4	3	2	1	0	
PM3	1	1	1	1	1	1	PM31	PM30	

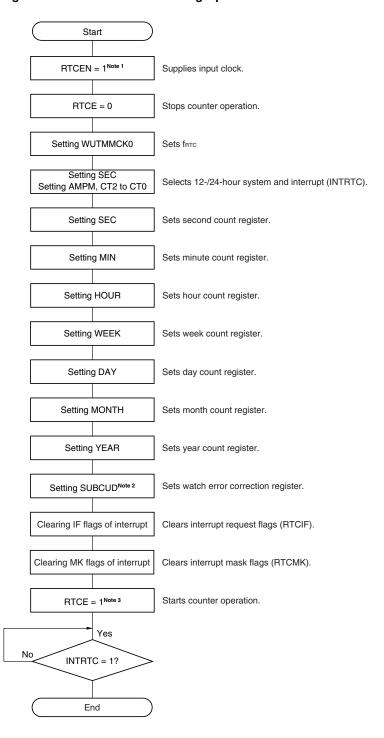

<R> 7.3.17 Port register 3 (P3)

The PM3 register can be set by a 1-bit or 8-bit manipulation instruction.

Reset signal generation sets this register to 00H.

When using the port 3 as 1-Hz output to the RTC1Hz pin, set the P30 bit to 0.

Figure 7-18. Format of Port Register 3 (P3)

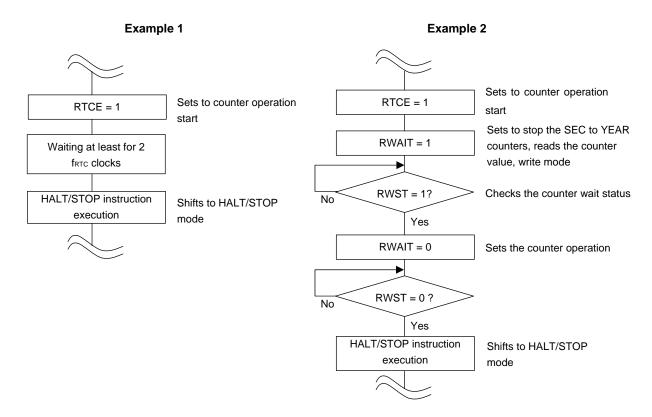


Caution Be sure to set bits that are not mounted to their initial values.

7.4 Real-time Clock Operation

7.4.1 Starting operation of real-time clock

Figure 7-19. Procedure for Starting Operation of Real-time Clock


- <R> Notes 1. First set the RTCEN bit to 1, while oscillation of the count clock (frtc) is stable.
 - 2. Set up the SUBCUD register only if the watch error must be corrected. For details about how to calculate the correction value, see 7.4.6 Example of watch error correction of real-time clock.
 - 3. Confirm the procedure described in 7.4.2 Shifting to HALT/STOP mode after starting operation when shifting to HALT/STOP mode without waiting for INTRTC = 1 after RTCE = 1.

7.4.2 Shifting to HALT/STOP mode after starting operation

Perform one of the following processing when shifting to HALT/STOP mode immediately after setting the RTCE bit to 1. However, after setting the RTCE bit to 1, this processing is not required when shifting to HALT/STOP mode after the first INTRTC interrupt has occurred.

- Shifting to HALT/STOP mode when at least two input clocks (frc) have elapsed after setting the RTCE bit to 1 (see Figure 7-20, Example 1).
- Checking by polling the RWST bit to become 1, after setting the RTCE bit to 1 and then setting the RWAIT bit to 1. Afterward, setting the RWAIT bit to 0 and shifting to HALT/STOP mode after checking again by polling that the RWST bit has become 0 (see **Figure 7-20**, **Example 2**).

Figure 7-20. Procedure for Shifting to HALT/STOP Mode After Setting RTCE bit to 1

7.4.3 Reading/writing real-time clock

Read or write the counter after setting 1 to RWAIT first.

Set RWAIT to 0 after completion of reading or writing the counter.

Start Stops SEC to YEAR counters. RWAIT = 1 Mode to read and write count values No RWST = 1?Checks wait status of counter. Yes Reading SEC Reads second count register. Reading MIN Reads minute count register. Reading HOUR Reads hour count register. Reading WEEK Reads week count register. Reading DAY Reads day count register. Reading MONTH Reads month count register. Reading YEAR Reads year count register. RWAIT = 0 Sets counter operation. No RWST = 0?Note Yes End

Figure 7-21. Procedure for Reading Real-time Clock

Note Be sure to confirm that RWST = 0 before setting STOP mode.

Caution Complete the series of process of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.

Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be read in any sequence.

All the registers do not have to read and only some registers may be read.

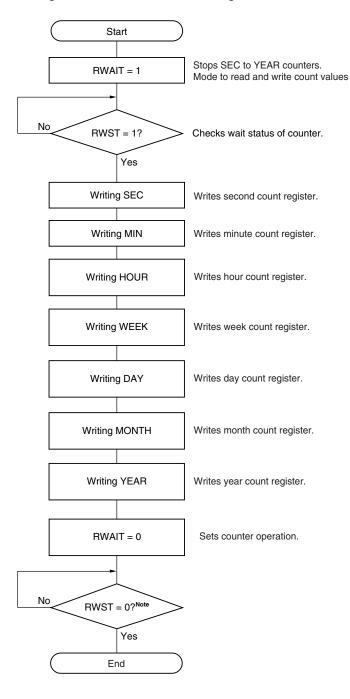


Figure 7-22. Procedure for Writing Real-time Clock

Note Be sure to confirm that RWST = 0 before setting STOP mode.

- Cautions 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.
 - 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counter operates (RTCE = 1), rewrite the values of the MIN register after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.

Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be written in any sequence.

All the registers do not have to be set and only some registers may be written.

7.4.4 Setting alarm of real-time clock

Set time of alarm after setting 0 to WALE (alarm operation invalid.) first.

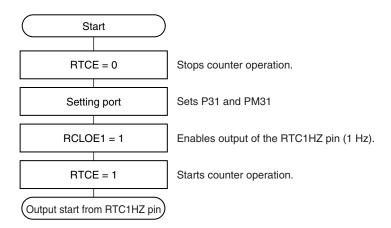

Start WALE = 0Match operation of alarm is invalid. Alarm match interrupts is valid. WALIE = 1 Setting ALARMWM Sets alarm minute register. Sets alarm hour register. Setting ALARMWH Setting ALARMWW Sets alarm week register. WALE = 1 Match operation of alarm is valid. No INTRTC = 1? Yes No WAFG = 1?Match detection of alarm Yes Alarm processing Constant-period interrupt servicing

Figure 7-23. Alarm processing Procedure

- **Remarks 1.** The alarm week register (ALARMWW), alarm hour register (ALARMWH), and alarm week register (ALARMWW) may be written in any sequence.
 - 2. Fixed-cycle interrupts and alarm match interrupts use the same interrupt source (INTRTC). When using these two types of interrupts at the same time, which interrupt occurred can be judged by checking the fixed-cycle interrupt status flag (RIFG) and the alarm detection status flag (WAFG) upon INTRTC occurrence.

7.4.5 1 Hz output of real-time clock

Figure 7-24. 1 Hz Output Setting Procedure

Cautions First set the RTCEN bit to 1, while oscillation of the input clock (fsub) is stable.

7.4.6 Example of watch error correction of real-time clock

The watch can be corrected with high accuracy when it is slow or fast, by setting a value to the watch error correction register.

Example of calculating the correction value

The correction value used when correcting the count value of the internal counter (16-bit) is calculated by using the following expression.

Set the DEV bit to 0 when the correction range is -63.1 ppm or less, or 63.1 ppm or more.

(When DEV = 0)

Correction value^{Note} = Number of correction counts in 1 minute \div 3 = (Oscillation frequency \div Target frequency – 1) \times 32768 \times 60 \div 3

(When DEV = 1)

Correction value^{Note} = Number of correction counts in 1 minute = (Oscillation frequency \div Target frequency - 1) \times 32768 \times 60

Note The correction value is the watch error correction value calculated by using bits 6 to 0 of the watch error correction register (SUBCUD).

```
(When F6 = 0) Correction value = \{(F5, F4, F3, F2, F1, F0) - 1\} \times 2
(When F6 = 1) Correction value = -\{(/F5, /F4, /F3, /F2, /F1, /F0) + 1\} \times 2
```

When (F6, F5, F4, F3, F2, F1, F0) is (*, 0, 0, 0, 0, 0, 0, *), watch error correction is not performed. "*" is 0 or 1. /F5 to /F0 are bit-inverted values (000011 when 111100).

- **Remarks 1.** The correction value is 2, 4, 6, 8, ... 120, 122, 124 or -2, -4, -6, -8, ... -120, -122, -124.
 - 2. The oscillation frequency is the input clock (frc).
 It can be calculated from the output frequency of the RTC1HZ pin × 32768 when the watch error correction register is set to its initial value (00H).
 - **3.** The target frequency is the frequency resulting after correction performed by using the watch error correction register.

<R> Correction example 1

Example of correcting from 32772.3 Hz to 32768 Hz (32772.3 Hz - 131.2 ppm)

[Measuring the oscillation frequency]

The oscillation frequency^{Note} of each product is measured by outputting about 32.768 kHz from the PCLBUZ0 pin, or by outputting about 1 Hz from the RTC1HZ pin when the watch error correction register (SUBCUD) is set to its initial value (00H).

Note See 7.4.5 1 Hz output of real-time clock for the setting procedure of the RTC1Hz output, and see 9.4

Operations of Clock Output/Buzzer Output Controller for the setting procedure of outputting about 32 kHz from the PCLBUZ0 pin.

[Calculating the correction value]

(When the output frequency from the PCLBUZ0 pin is 32772.3 Hz)

Assume the target frequency to be 32768 Hz (32772.3 Hz-131.2 ppm) and DEV to be 0, because the correctable range of -131.2 ppm is -63.1 ppm or lower.

The expression for calculating the correction value when DEV is 0 is applied.

```
Correction value = Number of correction counts in 1 minute \div 3 
= (Oscillation frequency \div target frequency - 1) \times 32768 \times 60 \div 3 
= (32772.3 \div 32768 - 1) \times 32768 \times 60 \div 3 
= 86
```

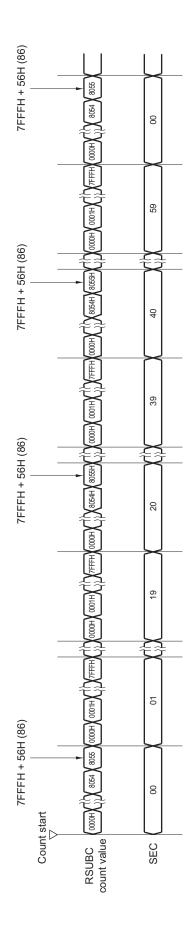
[Calculating the values to be set to (F6 to F0)]

(When the correction value is 86)

If the correction value is 0 or larger (when slowing), assume F6 to be 0.

Calculate (F5, F4, F3, F2, F1, F0) from the correction value.

```
\{ (F5, F4, F3, F2, F1, F0) - 1 \} \times 2 = 86


(F5, F4, F3, F2, F1, F0) = 44

(F5, F4, F3, F2, F1, F0) = (1, 0, 1, 1, 0, 0)
```

Consequently, when correcting from 32772.3 Hz to 32768 Hz (32772.3 Hz - 131.2 ppm), setting the correction register such that DEV is 0 and the correction value is 86 (bits 6 to 0 of the SUBCUD register: 0101100) results in 32768 Hz (0 ppm).

Figure 7-25 shows the operation when (DEV, F6, F5, F4, F3, F2, F1, F0) is (0, 0, 1, 0, 1, 1, 0, 0).

Figure 7-25. Correction Operation when (DEV, F6, F5, F4, F3, F2, F1, F0) = (0, 0, 1, 0, 1, 1, 0, 0)

÷

Correction example 2

Example of correcting from 32767.4 Hz to 32768 Hz (32767.4 Hz + 18.3 ppm)

[Measuring the oscillation frequency]

The oscillation frequency^{Note} of each product is measured by outputting about 1 Hz from the RTC1HZ pin when the watch error correction register (SUBCUD) is set to its initial value (00H).

Note See 7.4.5 1 Hz output of real-time clock for the setting procedure of outputting about 1 Hz from the RTC1HZ pin.

[Calculating the correction value]

(When the output frequency from the RTCCL pin is 0.9999817 Hz)

Oscillation frequency = $32768 \times 0.9999817 \approx 32767.4 \text{ Hz}$

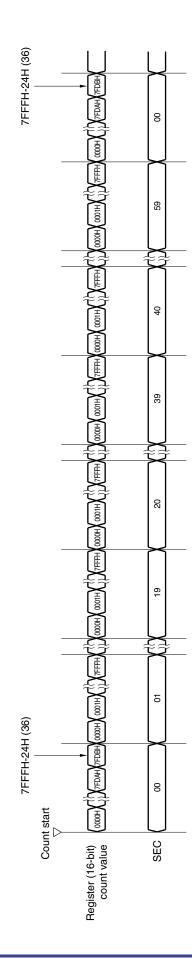
Assume the target frequency to be 32768 Hz (32767.4 Hz + 18.3 ppm) and DEV to be 1.

The expression for calculating the correction value when DEV is 1 is applied.

```
Correction value = Number of correction counts in 1 minute 
= (Oscillation frequency \div Target frequency - 1) \times 32768 \times 60 
= (32767.4 \div 32768 - 1) \times 32768 \times 60 
= -36
```

[Calculating the values to be set to (F6 to F0)]

(When the correction value is -36)


If the correction value is 0 or less (when quickening), assume F6 to be 1.

Calculate (F5, F4, F3, F2, F1, F0) from the correction value.

Consequently, when correcting from 32767.4 Hz to 32768 Hz (32767.4 Hz + 18.3 ppm), setting the correction register such that DEV is 1 and the correction value is -36 (bits 6 to 0 of the SUBCUD register: 1101110) results in 32768 Hz (0 ppm).

Figure 7-26 shows the operation when (DEV, F6, F5, F4, F3, F2, F1, F0) is (1, 1, 1, 0, 1, 1, 1, 0).

Figure 7-26. Correcting Operation when (DEV, F6, F5, F4, F3, F2, F1, F0) = (1, 1, 1, 0, 1, 1, 1, 0)

CHAPTER 8 12-BIT INTERVAL TIMER

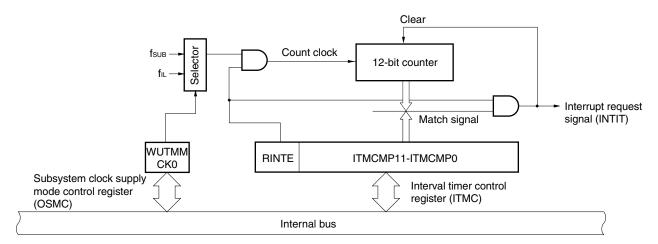
8.1 Functions of 12-bit Interval Timer

An interrupt (INTIT) is generated at any previously specified time interval. It can be utilized for wakeup from STOP mode and triggering an A/D converter's SNOOZE mode.

8.2 Configuration of 12-bit Interval Timer

The 12-bit interval timer includes the following hardware.

Table 8-1. Configuration of 12-bit Interval Timer


Item	Configuration			
Counter	12-bit counter			
Control registers	Peripheral enable register 0 (PER0)			
	Subsystem clock supply mode control register (OSMC)			
	Interval timer control register (ITMC)			

<R>

<R>

<R>

Figure 8-1. Block Diagram of 12-bit Interval Timer

8.3 Registers Controlling 12-bit Interval Timer

The 12-bit interval timer is controlled by the following registers.

- Peripheral enable register 0 (PER0)
- Subsystem clock supply mode control register (OSMC)
- Interval timer control register (ITMC)

8.3.1 Peripheral enable register 0 (PER0)

This register is used to enable or disable supplying the clock to the peripheral hardware. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

When the 12-bit interval timer is used, be sure to set bit 7 (RTCEN) of this register to 1.

The PER0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 8-2. Format of Peripheral Enable Register 0 (PER0)

Address: F0	00F0H After	reset: 00H	R/W					
Symbol	<7>	6	<5>	4	3	<2>	1	<0>
PER0	RTCEN	0	ADCEN	0	0	SAU0EN	0	TAU0EN

RTCEN	Control of clock supply to	LCD driver/controller and clock	output/buzzer output controller
	real-time clock (RTC) and 12-bit interval timer	When subsystem clock (ISOB)	
0	Stops input clock supply. SFR used by the real-time clock (RTC) and 12-bit interval timer cannot be written. The real-time clock (RTC) and 12-bit interval timer are in the reset status.	Stops input clock and subsystem clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.	Enables input clock and main system clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.
1	Enables input clock supply. SFR used by the real-time clock (RTC) and 12-bit interval timer can be read and written.	Enables input clock and subsystem clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.	

- Cautions 1. When using the 12-bit interval timer, first set the RTCEN bit to 1, while oscillation of the input clock (frc) is stable. If RTCEN = 0, writing to a control register of the real-time clock, 12-bit interval timer, or LCD driver/controller is ignored, and, even if the register is read, only the default value is read (except the subsystem clock supply mode control register (OSMC)).
 - 2. Clock supply to peripheral functions other than the real-time clock, 12-bit interval timer, and LCD driver/controller can be stopped in STOP mode and HALT mode when the subsystem clock is used, by setting the RTCLPC bit of the subsystem clock supply mode control register (OSMC) to 1. In this case, set the RTCEN bit of the PER0 register to 1 and the other bits (bits 0 to 6) to 0.
 - 3. Be sure to clear the bits 1, 3, 4 and 6 to 0.

<R>

<R>

<R>

<R>> 8.3.2 Subsystem clock supply mode control register (OSMC)

The WUTMMCK0 bit can be used to select the 12-bit interval timer operation clock.

In addition, by stopping clock functions that are unnecessary, the RTCLPC bit can be used to reduce power consumption. For details about setting the RTCLPC bit, see **CHAPTER 5 CLOCK GENERATOR**.

The OSMC register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 8-3. Format of Subsystem Clock Supply Mode Control Register (OSMC)

Address: F0	00F3H After	reset: 00H	R/W						
Symbol	7	6	5	4	3	2	1	0	
OSMC	RTCLPC	0	0	WUTMMCK0	0	0	0	0	

WUTMMCK0 Note	Selection of operation clock for real-time clock, 12-bit interval timer, and LCD river/controller.	Selection of clock output from PCLBUZn pin of clock output/buzzer output
0	Subsystem clock (fsuB)	Selecting the subsystem clock (fsub) is enabled.
1	Low-speed on-chip oscillator clock (fiL)	Selecting the subsystem clock (fsub) is disabled.

Note Be sure to select the subsystem clock (WUTMMCK0 bit = 0) if the subsystem clock is oscillating.

Caution The subsystem clock and low-speed on-chip oscillator clock can only be switched by using the WUTMMCK0 bit if the real-time clock, 12-bit interval timer, and LCD driver/controller are all stopped.

These are stopped as follows:

Real-time clock: Set the RTCE bit to 0. Interval timer: Set the RINTE bit to 0.

LCD driver/controller: Set the SCOC and VLCON bits to 0.

Remark RTCE: Bit 7 of real-time clock control register 0 (RTCC0)

RINTE: Bit 15 of the interval timer control register (ITMC)

SCOC: Bit 6 of LCD mode register 1 (LCDM1) VLCON: Bit 5 of LCD mode register 1 (LCDM1)

8.3.3 Interval timer control register (ITMC)

This register is used to set up the starting and stopping of the 12-bit interval timer operation and to specify the timer compare value.

The ITMC register can be set by a 16-bit memory manipulation instruction.

Reset signal generation clears this register to 0FFFH.

Figure 8-4. Format of Interval Timer Control Register (ITMC)

Address: FFF	90H After re	set: 0FFFH	R/W		
Symbol	15	14	13	12	11 to 0
ITMC	RINTE	0	0	0	ITCMP11 to ITCMP0

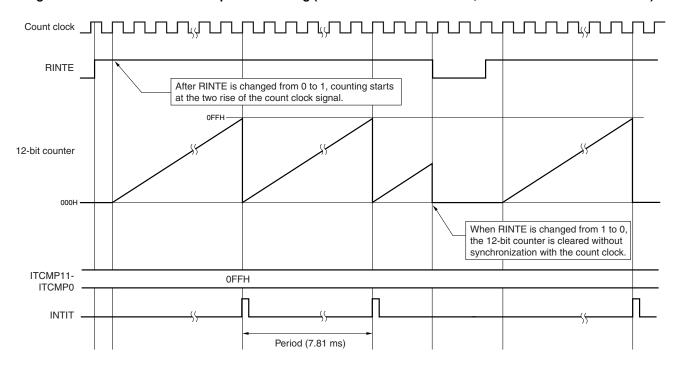
RINTE	12-bit interval timer operation control				
0	Count operation stopped (count clear)				
1	Count operation started				

ITCMP11 to ITCMP0	Specification of the 12-bit interval timer compare value				
001H	These bits generate an interrupt at the fixed cycle (count clock cycles x (ITCMP				
•	setting + 1)).				
•					
•					
FFFH					
000H	Setting prohibit				
Example interrupt cycles when 001H or FFFH is specified for ITCMP11 to ITCMP0					
• ITCMP11 to ITCMP0 = 001H, count clock: when $f_{SUB} = 32.768 \text{ kHz}$ 1/32.768 [kHz] × (1 + 1) = 0.06103515625 [ms] \cong 61.03 [μ s]					

- ITCMP11 to ITCMP0 = FFFH, count clock: when fsuB = 32.768 kHz
- 1/32.768 [kHz] × (4095 + 1) = 125 [ms]
- Cautions 1. Before changing the RINTE bit from 1 to 0, use the interrupt mask flag register to disable the INTIT interrupt servicing. When the operation starts (from 0 to 1) again, clear the ITIF flag, and then enable the interrupt servicing.
 - 2. The value read from the RINTE bit is applied one count clock cycle after setting the RINTE bit.
 - 3. When setting the RINTE bit to start operation of the counter after returning from a standby mode and then shifting to a standby mode again, either confirm that the value written to the RINTE bit has been applied, or make sure that at least one count clock cycle elapses between returning from a standby mode and shifting to a standby mode again.
 - 4. Only change the setting of the ITCMP11 to ITCMP0 bits when RINTE = 0. However, it is possible to change the settings of the ITCMP11 to ITCMP0 bits at the same time as when changing RINTE from 0 to 1 or 1 to 0.

8.4 12-bit Interval Timer Operation

8.4.1 12-bit interval timer operation timing

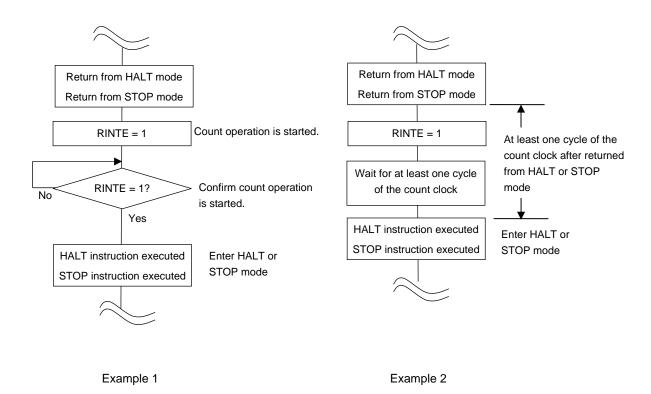

The count value specified for the ITCMP11 to ITCMP0 bits is used as an interval to operate an 12-bit interval timer that repeatedly generates interrupt requests (INTIT).

When the RINTE bit is set to 1, the 12-bit counter starts counting.

When the 12-bit counter value matches the value specified for the ITCMP11 to ITCMP0 bits, the 12-bit counter value is cleared to 0, counting continues, and an interrupt request signal (INTIT) is generated at the same time.

The basic operation of the 12-bit interval timer is as follows.

Figure 8-5. 12-bit Interval Timer Operation Timing (ITCMP11 to ITCMP0 = 0FFH, count clock: fsuB = 32.768 kHz)



<R> 8.4.2 Start of count operation and re-enter to HALT/STOP mode after returned from HALT/STOP mode

When setting the RINTE bit after returned from HALT or STOP mode and entering HALT or STOP mode again, write 1 to the RINTE bit, and confirm the written value of the RINTE bit is reflected or wait for at least one cycle of the count clock. Then, enter HALT or STOP mode.

- After setting RINTE to 1, confirm by polling that the RINTE bit has become 1, and then enter HALT or STOP mode (see Example 1 in Figure 8-6).
- After setting RINTE to 1, wait for at least one cycle of the count clock and then enter HALT or STOP mode (see Example 2 in Figure 8-6).

Figure 8-6. Procedure of Entering to HALT or STOP Mode after Setting RINTE to 1

CHAPTER 9 CLOCK OUTPUT/BUZZER OUTPUT CONTROLLER

9.1 Functions of Clock Output/Buzzer Output Controller

The clock output controller is intended for carrier output during remote controlled transmission and clock output for supply to peripheral ICs.

Buzzer output is a function to output a square wave of buzzer frequency.

One pin can be used to output a clock or buzzer sound.

Two output pins, PCLBUZ0 and PCLBUZ1, are available.

The PCLBUZn pin outputs a clock selected by clock output select register n (CKSn).

Figure 9-1 shows the block diagram of clock output/buzzer output controller.

Caution It is not possible to output the subsystem clock (fsub) from the PCLBUZn pin while the RTCLPC bit of the subsystem clock supply mode control register (OSMC), which controls the supply of the subsystem clock, is set to 1 and moreover while HALT mode is set with the subsystem clock (fsub) selected as CPU clock.

Remark n = 0, 1

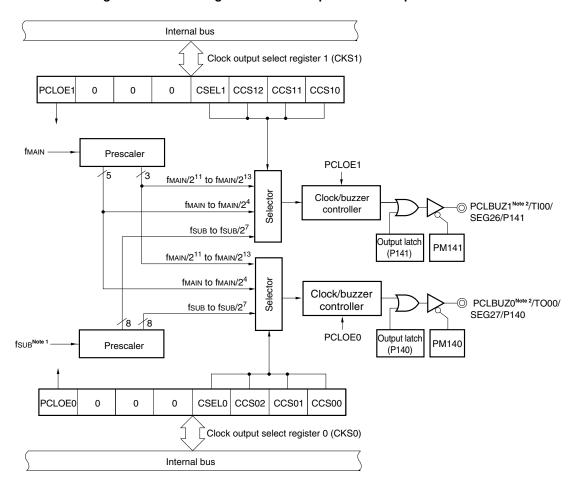


Figure 9-1. Block Diagram of Clock Output/Buzzer Output Controller

- Notes 1. Do not select fsub as the clock output from the clock output/buzzer output controller when the WUTMMCK0 bit of the OSMC register is set to 1.
 - 2. For output frequencies available from PCLBUZ0 and PCLBUZ1, refer 27.4 AC Characteristics.

Remark PCLBUZ0 pin in above diagram shows the information with PIOR1 = 0.

In other cases, the name of pins, output latches (Pxx) and PMxx should be read differently (xx = 50).

9.2 Configuration of Clock Output/Buzzer Output Controller

The clock output/buzzer output controller includes the following hardware.

Table 9-1. Configuration of Clock Output/Buzzer Output Controller

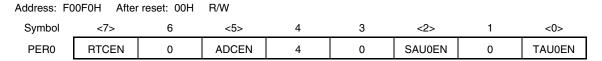
Item	Configuration
Control registers	Peripheral enable register 0 (PER0) Clock output select registers n (CKSn)
	Port mode registers 5, 14 (PM5, PM14)
	Port registers 5, 14 (P5, P14)

9.3 Registers Controlling Clock Output/Buzzer Output Controller

The following three registers are used to control the clock output/buzzer output controller.

- Peripheral enable register 0 (PER0)
- Clock output select registers n (CKSn)
- Port mode registers 5, 14 (PM5, PM14)

9.3.1 Peripheral enable register 0 (PER0)


This register is used to enable or disable supplying the clock to the peripheral hardware. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

When the clock output/buzzer output controller is used in subsystem clock (fsub), be sure to set bit 7 (RTCEN) of this register to 1.

The PER0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 9-2. Format of Peripheral Enable Register 0 (PER0)

RTCEN	Real-time clock (RTC) and	LCD driver/controller and clock output/buzzer output controller			
	12-bit interval timer	When subsystem clock (fsub) is selected	When subsystem clock (fsub) is not selected		
0	Stops input clock supply. SFR used by the real-time clock (RTC) and 12-bit interval timer cannot be written. The real-time clock (RTC) and 12-bit interval timer are in the reset status.	Stops input clock and subsystem clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.	Enables input clock and main system clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.		
1	Enables input clock supply. • SFR used by the real-time clock (RTC) and 12-bit interval timer can be read and written.	Enables input clock and subsystem clock supply. • SFR used by the LCD driver/controller and clock output/buzzer output can be read and written.			

Caution Be sure to clear the bits 1, 3, 4 and 6 to 0.

9.3.2 Clock output select registers n (CKSn)

These registers set output enable/disable for clock output or for the buzzer frequency output pin (PCLBUZn), and set the output clock.

Select the clock to be output from the PCLBUZn pin by using the CKSn register.

The CKSn register are set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H.

Figure 9-3. Format of Clock Output Select Register n (CKSn)

Address: FFFA5H (CKS0), FFFA6H (CKS1) After reset: 00H R/W Symbol 3 2 0 <7> 5 1 CKSn **PCLOEn** 0 0 0 CSELn CCSn2 CCSn1 CCSn0

PCLOEn	PCLBUZn pin output enable/disable specification				
0	Output disable (default)				
1	Output enable				

CSELn	CCSn2	CCSn1	CCSn0	PCLBUZn pin output clock selection				
					fmain = 5 MHz	fmain = 10 MHz	fmain = 20 MHz	fmain = 24 MHz
0	0	0	0	fmain	5 MHz	10 MHz ^{Note 1}	Setting prohibited Note 1	Setting prohibited ^{Note 1}
0	0	0	1	fmain/2	2.5 MHz	5 MHz	10 MHz ^{Note 1}	12 MHz ^{Note 1}
0	0	1	0	fmain/2 ²	1.25 MHz	2.5 MHz	5 MHz	6 MHz
0	0	1	1	fmain/2 ³	625 kHz	1.25 MHz	2.5 MHz	3 MHz
0	1	0	0	fmain/24	312.5 kHz	625 kHz	1.25 MHz	1.5 MHz
0	1	0	1	fmain/2 ¹¹	2.44 kHz	4.88 kHz	9.76 kHz	11.7 kHz
0	1	1	0	fmain/2 ¹²	1.22 kHz	2.44 kHz	4.88 kHz	5.86 kHz
0	1	1	1	fmain/2 ¹³	610 Hz	1.22 kHz	2.44 kHz	2.93 kHz
1	0	0	0	fsus Note 2	32.768 kHz			
1	0	0	1	fsub/2 Note 2	16.384 kHz			
1	0	1	0	fsus/2 ^{2 Note 2}		8.192 kHz		
1	0	1	1	fsub/2 ^{3 Note 2}	4.096 kHz			
1	1	0	0	fsub/24 Note 2	2.048 kHz			
1	1	0	1	fsub/2 ^{5 Note 2}	1.024 kHz			
1	1	1	0	fsub/2 ^{6 Note 2}	² 512 Hz			
1	1	1	1	fsub/2 ^{7 Note 2}	² 256 Hz			

- Notes 1. Use the output clock within a range of 16 MHz. Furthermore, when using the output clock at 2.7 V ≤ V_{DD} < 4.0 V, can be use it within 8 MHz only. See 27.4 AC Characteristics for details.
 - 2. Do not select fsub as the clock output from the clock output/buzzer output controller when the WUTMMCK0 bit of the OSMC register is set to 1.
- Cautions 1. Change the output clock after disabling clock output (PCLOEn = 0).
 - 2. To shift to STOP mode when the main system clock is selected (CSELn = 0), set PCLOEn = 0 before executing the STOP instruction. When the subsystem clock is selected (CSELn = 1), PCLOEn = 1 can be set because the clock can be output while the RTCLPC bit of the subsystem clock supply mode control (OSMC) register is set to 0 and moreover while STOP mode is set.
 - 3. It is not possible to output the subsystem clock (fsub) from the PCLBUZn pin while the RTCLPC bit of the subsystem clock supply mode control register (OSMC) is set to 1 and moreover while HALT mode is set with the subsystem clock (fsub) selected as CPU clock.

Remarks 1. n = 0, 1

2. fmain: Main system clock frequency fsub: Subsystem clock frequency

<R>

9.3.3 Port mode registers 5, 14 (PM5, PM14)

These registers set input/output of port 5, 14 in 1-bit units.

When using the P50/INTP5/SEG7/(PCLBUZ0), P140/PCLBUZ0/TO00/SEG27 and P141/PCLBUZ1/TI00/SEG26 pins for clock output and buzzer output, clear PM50, PM140 and PM141 bits and the output latches of P50, P140 and P141 to 0.

The PM5 and PM14 registers can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets these registers to FFH.

Figure 9-4. Format of Port Mode Registers 5, 14 (PM5, PM14)

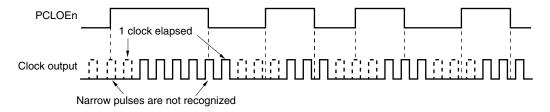
Address: FFF25H After reset: FFH			R/W					
Symbol	7	6	5	4	3	2	1	0
PM5	1	1	1	PM54	PM53	PM52	PM51	PM50
Address: FFF2EH After reset: FFH R/W								
Symbol	7	6	5	4	3	2	1	0
PM14	PM147	PM146	PM145	PM144	PM143	PM142	PM141	PM140

F	PMmn	Pmn pin I/O mode selection (mn = 50 to 54, 140 to 147)					
	0	Output mode (output buffer on)					
	1	Input mode (output buffer off)					

9.4 Operations of Clock Output/Buzzer Output Controller

One pin can be used to output a clock or buzzer sound.

The PCLBUZ0 pin outputs a clock/buzzer selected by the clock output select register 0 (CKS0).


The PCLBUZ1 pin outputs a clock/buzzer selected by the clock output select register 1 (CKS1).

9.4.1 Operation as output pin

The PCLBUZn pin is output as the following procedure.

- <R> <1> Set 0 in the bit of the port mode register (PMxx) and port register (Px) which correspond to the port which has a pin used as the PCLBUZ0 pin.
 - <2> Select the output frequency with bits 0 to 3 (CCSn0 to CCSn2, CSELn) of the clock output select register (CKSn) of the PCLBUZn pin (output in disabled status).
 - <3> Set bit 7 (PCLOEn) of the CKSn register to 1 to enable clock/buzzer output.
 - **Remarks 1.** The controller used for outputting the clock starts or stops outputting the clock one clock after enabling or disabling clock output (PCLOEn bit) is switched. At this time, pulses with a narrow width are not output. Figure 9-5 shows enabling or stopping output using the PCLOEn bit and the timing of outputting the clock.
 - **2.** n = 0.1

Figure 9-5. Timing of Outputting Clock from PCLBUZn Pin

9.5 Cautions of clock output/buzzer output controller

When the main system clock is selected for the PCLBUZn output (CSELn = 0), if STOP or HALT mode is entered within 1.5 main system clock cycles after the output is disabled (PCLOEn = 0), the PCLBUZn output width becomes shorter.

CHAPTER 10 WATCHDOG TIMER

10.1 Functions of Watchdog Timer

<R> The counting operation of the watchdog timer is set by the option byte (000C0H).

The watchdog timer operates on the low-speed on-chip oscillator clock (fil.).

The watchdog timer is used to detect an inadvertent program loop. If a program loop is detected, an internal reset signal is generated.

Program loop is detected in the following cases.

- If the watchdog timer counter overflows
- If a 1-bit manipulation instruction is executed on the watchdog timer enable register (WDTE)
- If data other than "ACH" is written to the WDTE register
- If data is written to the WDTE register during a window close period

When a reset occurs due to the watchdog timer, bit 4 (WDTRF) of the reset control flag register (RESF) is set to 1. For details of the RESF register, see **CHAPTER 17 RESET FUNCTION**.

When 75% + 1/2fill of the overflow time is reached, an interval interrupt can be generated.

<R>

10.2 Configuration of Watchdog Timer

The watchdog timer includes the following hardware.

Table 10-1. Configuration of Watchdog Timer

Item	Configuration
Counter	Internal counter (17 bits)
Control register Watchdog timer enable register (WDTE)	

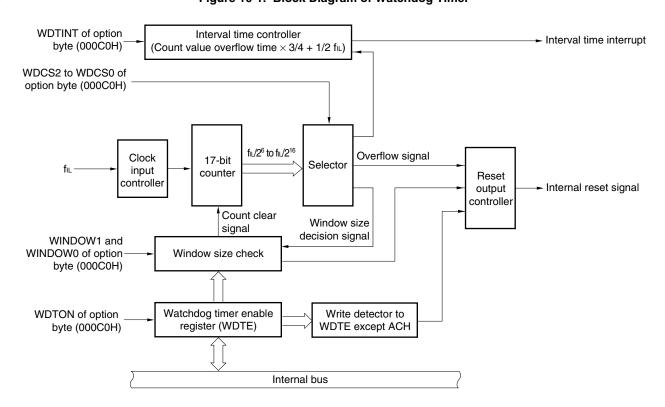

How the counter operation is controlled, overflow time, window open period, and interval interrupt are set by the option byte.

Table 10-2. Setting of Option Bytes and Watchdog Timer

Setting of Watchdog Timer	Option Byte (000C0H)
Watchdog timer interval interrupt	Bit 7 (WDTINT)
Window open period	Bits 6 and 5 (WINDOW1, WINDOW0)
Controlling counter operation of watchdog timer	Bit 4 (WDTON)
Overflow time of watchdog timer	Bits 3 to 1 (WDCS2 to WDCS0)
Controlling counter operation of watchdog timer (in HALT/STOP mode)	Bit 0 (WDSTBYON)

Remark For the option byte, see CHAPTER 22 OPTION BYTE.

<R> Figure 10-1. Block Diagram of Watchdog Timer

Remark fil: Low-speed on-chip oscillator clock frequency

10.3 Register Controlling Watchdog Timer

The watchdog timer is controlled by the watchdog timer enable register (WDTE).

(1) Watchdog timer enable register (WDTE)

Writing "ACH" to the WDTE register clears the watchdog timer counter and starts counting again.

This register can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets this register to 9AH or 1AH^{Note}.

Figure 10-2. Format of Watchdog Timer Enable Register (WDTE)

Address:	FFFABH A	After reset: 9A	AH/1AH ^{Note}	R/W				
Symbol	7	6	5	4	3	2	1	0
WDTE								

Note The WDTE register reset value differs depending on the WDTON bit setting value of the option byte (000C0H). To operate watchdog timer, set the WDTON bit to 1.

WDTON Bit Setting Value	WDTE Register Reset Value
0 (watchdog timer count operation disabled)	1AH
1 (watchdog timer count operation enabled)	9AH

- Cautions 1. If a value other than "ACH" is written to the WDTE register, an internal reset signal is generated.
 - 2. If a 1-bit memory manipulation instruction is executed for the WDTE register, an internal reset signal is generated.
 - 3. The value read from the WDTE register is 9AH/1AH (this differs from the written value (ACH)).

10.4 Operation of Watchdog Timer

10.4.1 Controlling operation of watchdog timer

- 1. When the watchdog timer is used, its operation is specified by the option byte (000C0H).
 - Enable counting operation of the watchdog timer by setting bit 4 (WDTON) of the option byte (000C0H) to 1 (the counter starts operating after a reset release) (for details, see **CHAPTER 22**).

WDTON	Watchdog Timer Counter	
0	Counter operation disabled (counting stopped after reset)	
1	Counter operation enabled (counting started after reset)	

- Set an overflow time by using bits 3 to 1 (WDCS2 to WDCS0) of the option byte (000C0H) (for details, see 10.4.2 and CHAPTER 22).
- Set a window open period by using bits 6 and 5 (WINDOW1 and WINDOW0) of the option byte (000C0H) (for details, see 10.4.3 and CHAPTER 22).
- 2. After a reset release, the watchdog timer starts counting.
- 3. By writing "ACH" to the watchdog timer enable register (WDTE) after the watchdog timer starts counting and before the overflow time set by the option byte, the watchdog timer is cleared and starts counting again.
- 4. After that, write the WDTE register the second time or later after a reset release during the window open period. If the WDTE register is written during a window close period, an internal reset signal is generated.
- 5. If the overflow time expires without "ACH" written to the WDTE register, an internal reset signal is generated. An internal reset signal is generated in the following cases.
 - If a 1-bit manipulation instruction is executed on the WDTE register
 - . If data other than "ACH" is written to the WDTE register
- Cautions 1. When data is written to the watchdog timer enable register (WDTE) for the first time after reset release, the watchdog timer is cleared in any timing regardless of the window open time, as long as the register is written before the overflow time, and the watchdog timer starts counting again.
 - 2. After "ACH" is written to the WDTE register, an error of up to 2 clocks (f⊥) may occur before the watchdog timer counter is cleared.
 - 3. The watchdog timer can be cleared immediately before the count value overflows.

<R>

Cautions 4. The operation of the watchdog timer in the HALT, STOP, and SNOOZE modes differs as follows depending on the set value of bit 0 (WDSTBYON) of the option byte (000C0H).

	WDSTBYON = 0	WDSTBYON = 1
In HALT mode	Watchdog timer operation stops.	Watchdog timer operation continues.
In STOP mode		
In SNOOZE mode		

If WDSTBYON = 0, the watchdog timer resumes counting after the HALT or STOP mode is released. At this time, the counter is cleared to 0 and counting starts.

When operating with the X1 oscillation clock after releasing the STOP mode, the CPU starts operating after the oscillation stabilization time has elapsed.

Therefore, if the period between the STOP mode release and the watchdog timer overflow is short, an overflow occurs during the oscillation stabilization time, causing a reset.

Consequently, set the overflow time in consideration of the oscillation stabilization time when operating with the X1 oscillation clock and when the watchdog timer is to be cleared after the STOP mode release by an interval interrupt.

10.4.2 Setting overflow time of watchdog timer

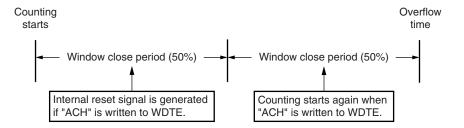
Set the overflow time of the watchdog timer by using bits 3 to 1 (WDCS2 to WDCS0) of the option byte (000C0H).

If an overflow occurs, an internal reset signal is generated. The present count is cleared and the watchdog timer starts counting again by writing "ACH" to the watchdog timer enable register (WDTE) during the window open period before the overflow time.

The following overflow times can be set.

Table 10-3. Setting of Overflow Time of Watchdog Timer

WDCS2	WDCS1	WDCS0	Overflow Time of Watchdog Timer
			(fiL = 17.25 kHz (MAX.))
0	0	0	2 ⁶ /fi∟ (3.71 ms)
0	0	1	2 ⁷ /f₁∟ (7.42 ms)
0	1	0	2 ⁸ /fı∟ (14.84 ms)
0	1	1	2 ⁹ /fı∟ (29.68 ms)
1	0	0	2 ¹¹ /fi∟ (118.72 ms)
1	0	1	2 ¹³ /f _{IL} (474.89 ms)
1	1	0	2 ¹⁴ /f _{IL} (949.79 ms)
1	1	1	2 ¹⁶ /f _{IL} (3799.18 ms)


Remark fil: Low-speed on-chip oscillator clock frequency

10.4.3 Setting window open period of watchdog timer

Set the window open period of the watchdog timer by using bits 6 and 5 (WINDOW1, WINDOW0) of the option byte (000C0H). The outline of the window is as follows.

- If "ACH" is written to the watchdog timer enable register (WDTE) during the window open period, the watchdog timer is cleared and starts counting again.
- Even if "ACH" is written to the WDTE register during the window close period, an abnormality is detected and an internal reset signal is generated.

Example: If the window open period is 50%

Caution When data is written to the WDTE register for the first time after reset release, the watchdog timer is cleared in any timing regardless of the window open time, as long as the register is written before the overflow time, and the watchdog timer starts counting again.

The window open period can be set is as follows.

Table 10-4. Setting Window Open Period of Watchdog Timer

WINDOW1	WINDOW0	Window Open Period of Watchdog Timer
0	0	Setting prohibited
0	1	50%
1	0	75%
1	1	100%

Caution When bit 0 (WDSTBYON) of the option byte (000C0H) = 0, the window open period is 100% regardless of the values of the WINDOW1 and WINDOW0 bits.

Remark If the overflow time is set to 29/fill, the window close time and open time are as follows.

<When window open period is 50%>

- · Overflow time:
 - $2^{9}/f_{IL}$ (MAX.) = $2^{9}/17.25$ kHz = 29.68 ms
- Window close time:

0 to $2^9/f_{IL}$ (MIN.) × (1 - 0.5) = 0 to $2^9/12.75$ kHz × 0.5 = 0 to 20.08 ms

· Window open time:

 $2^9/f_{IL}$ (MIN.) \times (1 - 0.5) to $2^9/f_{IL}$ (MAX.) = $2^9/12.75$ kHz \times 0.5 to $2^9/17.25$ kHz = 20.08 to 29.68 ms

10.4.4 Setting watchdog timer interval interrupt

Depending on the setting of bit 7 (WDTINT) of an option byte (000C0H), an interval interrupt (INTWDTI) can be generated when $75\% + 1/2f_{IL}$ of the overflow time is reached.

Table 10-5. Setting of Watchdog Timer Interval Interrupt

WDTINT	Use of Watchdog Timer Interval Interrupt
0	Interval interrupt is used.
1	Interval interrupt is generated when 75% + 1/2f L of overflow time is reached.

Caution When operating with the X1 oscillation clock after releasing the STOP mode, the CPU starts operating after the oscillation stabilization time has elapsed.

Therefore, if the period between the STOP mode release and the watchdog timer overflow is short, an overflow occurs during the oscillation stabilization time, causing a reset.

Consequently, set the overflow time in consideration of the oscillation stabilization time when operating with the X1 oscillation clock and when the watchdog timer is to be cleared after the STOP mode release by an interval interrupt.

Remark The watchdog timer continues counting even after INTWDTI is generated (until ACH is written to the watchdog timer enable register (WDTE)). If ACH is not written to the WDTE register before the overflow time, an internal reset signal is generated.

CHAPTER 11 A/D CONVERTER

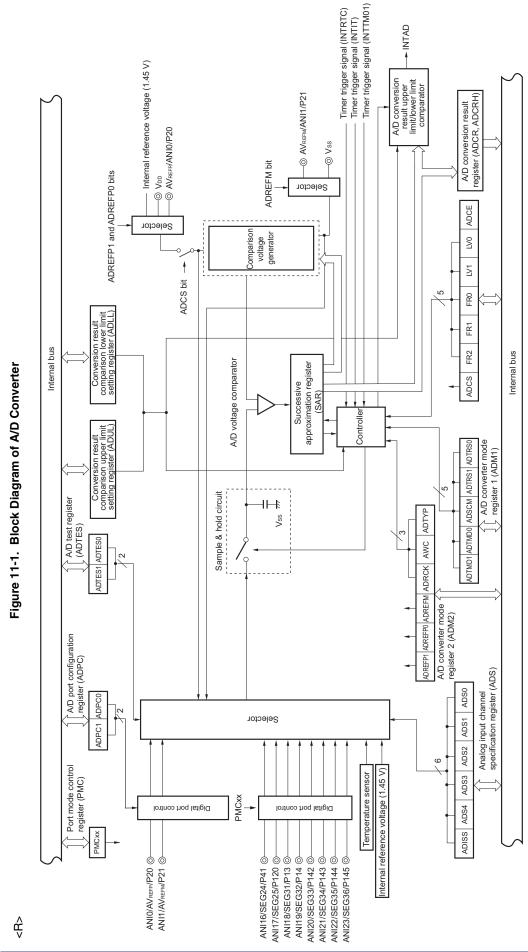
The number of analog input channels of the A/D converter differs, depending on the product.

	48-pin	64-pin
Analog input channels	9 ch	10 ch
	(ANI0, ANI1, ANI16 to ANI22)	(ANI0, ANI1, ANI16 to ANI23)

Caution Most of the following descriptions in this chapter use the 64-pin as an example.

11.1 Function of A/D Converter

The A/D converter is used to convert analog input signals into digital values, and is configured to control analog inputs, <R> including up to 10 channels of A/D converter analog inputs (ANI0, ANI1 and ANI16 to ANI23). 10-bit or 8-bit resolution can be selected by the ADTYP bit of the A/D converter mode register 2 (ADM2).


The A/D converter has the following function.

• 10-bit resolution A/D conversion Note

<R> 10-bit resolution A/D conversion is carried out repeatedly for one analog input channel selected from ANI0, ANI1 and ANI16 to ANI23. Each time an A/D conversion operation ends, an interrupt request (INTAD) is generated.

Various A/D conversion modes can be specified by using the mode combinations below.

<r></r>	Trigger mode	Software trigger	Conversion is started by software.
		Hardware trigger no-wait mode	Conversion is started by detecting a hardware trigger.
		Hardware trigger wait mode	The power is turned on by detecting a hardware trigger while the system is off and in the conversion standby state, and conversion is then started automatically after the stabilization wait time passes. When using the SNOOZE mode function, specify the hardware trigger wait mode.
	Conversion operation	One-shot conversion mode	A/D conversion is performed on the selected channel once.
	mode	Sequential conversion mode	A/D conversion is sequentially performed on the selected channels until it is stopped by software.
	Operation voltage mode	Standard 1 or standard 2 mode	Conversion is done in the operation voltage range of 2.7 V \leq V _{DD} \leq 5.5 V.
		Low voltage 1 or low voltage 2 mode	Conversion is done in the operation voltage range of 1.6 V \leq V _{DD} \leq 5.5 V. Select this mode for conversion at a low voltage. Because the operation voltage is low, it is internally boosted during conversion.
	Sampling time selection	Sampling clock cycles: 7 f _{AD}	The sampling time in standard 1 or low voltage 1 mode is seven cycles of the conversion clock (fad). Select this mode when the output impedance of the analog input source is high and the sampling time should be long.
		Sampling clock cycles: 5 f _{AD}	The sampling time in standard 2 or low voltage 2 mode is five cycles of the conversion clock (fad). Select this mode when enough sampling time is ensured (for example, when the output impedance of the analog input source is low).

Remark Analog input pin for figure 11-1 when a 64-pin product is used.

11.2 Configuration of A/D Converter

The A/D converter includes the following hardware.

(1) ANIO, ANI1 and ANI16 to ANI23 pins

These are the analog input pins of the 10 channels of the A/D converter. They input analog signals to be converted into digital signals. Pins other than the one selected as the analog input pin can be used as I/O port pins.

(2) Sample & hold circuit

The sample & hold circuit samples each of the analog input voltages sequentially sent from the input circuit, and sends them to the A/D voltage comparator. This circuit also holds the sampled analog input voltage during A/D conversion.

(3) A/D voltage comparator

This A/D voltage comparator compares the voltage generated from the voltage tap of the comparison voltage generator with the analog input voltage. If the analog input voltage is found to be greater than the reference voltage (1/2 AVREF) as a result of the comparison, the most significant bit (MSB) of the successive approximation register (SAR) is set. If the analog input voltage is less than the reference voltage (1/2 AVREF), the MSB bit of the SAR is reset.

After that, bit 8 of the SAR register is automatically set, and the next comparison is made. The voltage tap of the comparison voltage generator is selected by the value of bit 9, to which the result has been already set.

```
Bit 9 = 0: (1/4 \text{ AV}_{REF})
Bit 9 = 1: (3/4 \text{ AV}_{REF})
```

The voltage tap of the comparison voltage generator and the analog input voltage are compared and bit 8 of the SAR register is manipulated according to the result of the comparison.

```
Analog input voltage \geq Voltage tap of comparison voltage generator: Bit 8 = 1 Analog input voltage \leq Voltage tap of comparison voltage generator: Bit 8 = 0
```

Comparison is continued like this to bit 0 of the SAR register.

When performing A/D conversion at a resolution of 8 bits, the comparison continues until bit 2 of the SAR register.

Remark AV_{REF}: The + side reference voltage of the A/D converter. This can be selected from AV_{REFP}, the internal reference voltage (1.45 V), and V_{DD}.

(4) Comparison voltage generator

The comparison voltage generator generates the comparison voltage input from an analog input pin.

(5) Successive approximation register (SAR)

The SAR register is a register that sets voltage tap data whose values from the comparison voltage generator match the voltage values of the analog input pins, 1 bit at a time starting from the most significant bit (MSB).

If data is set in the SAR register all the way to the least significant bit (LSB) (end of A/D conversion), the contents of the SAR register (conversion results) are held in the A/D conversion result register (ADCR). When all the specified A/D conversion operations have ended, an A/D conversion end interrupt request signal (INTAD) is generated.

(6) 10-bit A/D conversion result register (ADCR)

The A/D conversion result is loaded from the successive approximation register to this register each time A/D conversion is completed, and the ADCR register holds the A/D conversion result in its higher 10 bits (the lower 6 bits are fixed to 0).

(7) 8-bit A/D conversion result register (ADCRH)

The A/D conversion result is loaded from the successive approximation register to this register each time A/D conversion is completed, and the ADCRH register stores the higher 8 bits of the A/D conversion result.

<R> (8) Controller

This circuit controls the conversion time of an input analog signal that is to be converted into a digital signal, as well as starting and stopping of the conversion operation. When A/D conversion has been completed, this controller generates INTAD through the A/D conversion result upper limit/lower limit comparator.

<R> (9) AVREFP pin

This pin inputs an external reference voltage (AVREFP).

If using AVREFP as the + side reference voltage of the A/D converter, set the ADREFP1 and ADREFP0 bits of A/D converter mode register 2 (ADM2) to 0 and 1, respectively.

The analog signals input to ANI16 to ANI23 are converted to digital signals based on the voltage applied between AVREFP and the - side reference voltage (AVREFM/Vss).

In addition to AVREFP, it is possible to select VDD or the internal reference voltage (1.45 V) as the + side reference voltage of the A/D converter.

(10) AVREFM pin

This pin inputs an external reference voltage (AVREFM). If using AVREFM as the - side reference voltage of the A/D converter, set the ADREFM bit of the ADM2 register to 1.

In addition to AVREFM, it is possible to select Vss as the - side reference voltage of the A/D converter.

11.3 Registers Used in A/D Converter

The A/D converter uses the following registers.

- Peripheral enable register 0 (PER0)
- A/D converter mode register 0 (ADM0)
- A/D converter mode register 1 (ADM1)
- A/D converter mode register 2 (ADM2)
- 10-bit A/D conversion result register (ADCR)
- 8-bit A/D conversion result register (ADCRH)
- Analog input channel specification register (ADS)
- Conversion result comparison upper limit setting register (ADUL)
- Conversion result comparison lower limit setting register (ADLL)
- A/D test register (ADTES)
- A/D port configuration register (ADPC)
- Port mode control registers 1, 4, 12, and 14 (PMC1, PMC4, PMC12, PMC14)
- Port mode registers 1, 2, 4, 12, and 14 (PM1, PM2, PM4, PM12, PM14)

11.3.1 Peripheral enable register 0 (PER0)

This register is used to enable or disable supplying the clock to the peripheral hardware. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

When the A/D converter is used, be sure to set bit 5 (ADCEN) of this register to 1.

The PER0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

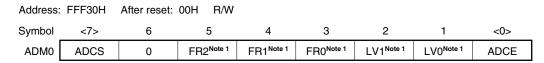
Reset signal generation clears this register to 00H.

Figure 11-2. Format of Peripheral Enable Register 0 (PER0)

Address: F00F0H After reset: 00H R/W Symbol <7> <5> 3 <2> <0> 1 PER0 **RTCEN** 0 **ADCEN** 0 0 SAU0EN 0 TAU0EN

ADCEN	Control of A/D converter input clock supply	
0	Stops input clock supply. • SFR used by the A/D converter cannot be written. • The A/D converter is in the reset status.	
1	Enables input clock supply. • SFR used by the A/D converter can be read/written.	

- Cautions 1. When setting the A/D converter, be sure to set the following registers first while the ADCEN bit is set to 1. If ADCEN = 0, writing to a control register of the A/D converter is ignored, and, even if the register is read, only the default value is read (except for port mode registers 1, 2, 4, 12, and 14 (PM1, PM2, PM4, PM12, and PM14), port mode registers 1, 2, 4, 12, and 14 (PM1, PM2, PM4, PM12, and PM14), port mode control registers 1, 4, 12, and 14 (PMC1, PMC4, PMC12, PMC14), and A/D port configuration register (ADPC)).
 - A/D converter mode register 0 (ADM0)
 - A/D converter mode register 1 (ADM1)
 - A/D converter mode register 2 (ADM2)
 - 10-bit A/D conversion result register (ADCR)
 - 8-bit A/D conversion result register (ADCRH)
 - Analog input channel specification register (ADS)
 - Conversion result comparison upper limit setting register (ADUL)
 - Conversion result comparison lower limit setting register (ADLL)
 - A/D test register (ADTES).
 - 2. Be sure to clear bits 1, 3, 4 and 6 to 0.


11.3.2 A/D converter mode register 0 (ADM0)

This register sets the conversion time for analog input to be A/D converted, and starts/stops conversion.

The ADM0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 11-3. Format of A/D Converter Mode Register 0 (ADM0)

ADCS	A/D conversion operation control
0	Stops conversion operation [When read] Conversion stopped/standby status
1	Enables conversion operation [When read] While in the software trigger mode: Conversion operation status While in the hardware trigger wait mode: Stabilization wait status + conversion operation status

ADCE	A/D voltage comparator operation controlNote 2							
0	Stops A/D voltage comparator operation							
1	Enables A/D voltage comparator operation							

Notes 1. For details of the FR2 to FR0, LV1, LV0 bits, and A/D conversion, see Table 11-3 A/D **Conversion Time Selection.**

2. In software trigger mode and hardware trigger no-wait mode, the operation of the A/D voltage comparator is controlled by the ADCS and ADCE bits, and time is required for the conversion value to stabilize after the A/D converter starts operating (1.0 µs). Valid conversion results can therefore be obtained from the first conversion by setting the ADCE bit to 1 and then waiting for the stabilization time (1.0 μ s) to elapse before setting the ADCS bit to 1. If the ADCS bit is set to 1 before the stabilization time (1.0 μ s) elapses, the first conversion data must be ignored.

- Cautions 1. Change the FR2 to FR0, LV1, and LV0 bits while conversion is stopped (ADCS = 0, ADCE = 0).
 - 2. Do not set the ADCS bit to 1 and the ADCE bit to 0 at the same time.
 - 3. Do not change the ADCS and ADCE bits from 0 to 1 at the same time by using an 8-bit manipulation instruction. Be sure to set these bits in the order described in 11.7 A/D Converter Setup Flowchart.
 - 4. Be sure to clear bit 6 to 0.

Table 11-1. Settings of ADCS and ADCE Bits

ADCS	ADCE	A/D Conversion Operation					
0	0	Stop status					
0	1	Conversion standby mode					
1	0	Setting prohibited					
1	1 Conversion mode						

Table 11-2. Setting and Clearing Conditions for ADCS Bit

A/D Conversion	n Mode	Set Conditions	Clear Conditions
Software trigger mode	Sequential conversion mode	When 1 is written to ADCS	When 0 is written to ADCS
	One-shot conversion mode		 When 0 is written to ADCS The bit is automatically cleared to 0 when A/D conversion ends.
Hardware trigger no-wait mode	Sequential conversion mode		When 0 is written to ADCS
	One-shot conversion mode		When 0 is written to ADCS
Hardware trigger wait mode	Sequential conversion mode	When a hardware trigger	When 0 is written to ADCS
	One-shot conversion mode	is input	When 0 is written to ADCS The bit is automatically cleared to 0 when A/D conversion ends.

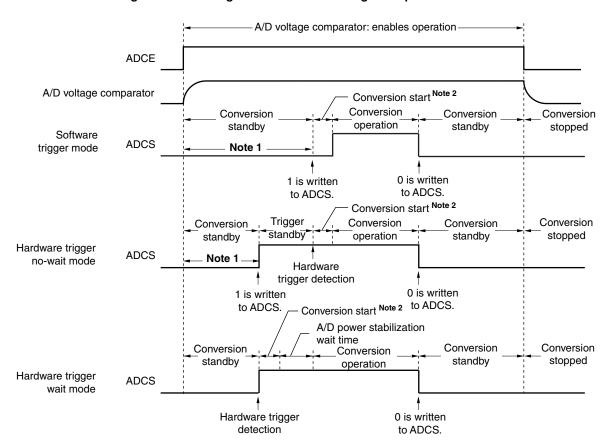


Figure 11-4. Timing Chart When A/D Voltage Comparator Is Used

Notes 1. While in the software trigger mode or hardware trigger no-wait mode, the time from the rising of the ADCE bit to the falling of the ADCS bit must be 1 μ s or longer to stabilize the internal circuit.

2. The following time is the maximum amount of time necessary to start conversion.

	ADM0)	Conversion	Conversion Start Time ((Number of fclk Clocks)		
FR2	FR1	FR0	Clock Software trigger mode/ (fAD) Hardware trigger no wait mode		Hardware trigger wait mode		
0	0	0	fclk/64	63	1		
0	0	1	fclk/32	31			
0	1	0	fclk/16	15			
0	1	1	fclk/8	7			
1	0	0	fcLk/6	5			
1	0	1	fcLk/5	4			
1	1	0	fclk/4	3			
1	1	1	fcLk/2	1			

However, for the second and subsequent conversion in sequential conversion mode, the conversion start time and stabilization wait time for A/D power supply do not occur after a hardware trigger is detected.

Remark fclk: CPU/peripheral hardware clock frequency

(Cautions are listed on the next page.)

- Cautions 1. If using the hardware trigger wait mode, setting the ADCS bit to 1 is prohibited (but the bit is automatically switched to 1 when the hardware trigger signal is detected). However, it is possible to clear the ADCS bit to 0 to specify the A/D conversion standby status.
 - 2. While in the one-shot conversion mode of the hardware trigger no-wait mode, the ADCS flag is not automatically cleared to 0 when A/D conversion ends. Instead, 1 is retained.
 - 3 Only rewrite the value of the ADCE bit when ADCS = 0 (while in the conversion stopped/conversion standby status).
 - 4. To complete A/D conversion, specify at least the following time as the hardware trigger interval:

 Hardware trigger no wait mode: 2 fclk clock + conversion start time + A/D conversion time

 Hardware trigger wait mode: 2 fclk clock + conversion start time + A/D power supply

 stabilization wait time + A/D conversion time

Table 11-3. A/D Conversion Time Selection (1/4)

(1) When there is no stabilization wait time

Normal mode 1, 2 (software trigger mode/hardware trigger no-wait mode)

A/D	Convert	ter Mode	e Regist	ter 0	Mode	Conversion	Number of	Conversion		Conver	sion Time S	election		
		(ADM0)				Clock (fad)	Conversion	Time	$2.7~V \leq V_{DD} \leq 5.5~V$					
FR2	FR1	FR0	LV1	LV0			Clock		fclk=	fclk=	fclk=	fclk=	fclk=	
							Cycles Note 3		1 MHz	4 MHz	8 MHz	16 MHz	24 MHz	
0	0	0	0	0	Normal 1	fclk/64	19 fad	1216/fcLK	Setting	Setting	Setting	76 <i>μ</i> s	50.6667 μs	
							(number		prohibited	prohibited	prohibited			
0	0	1				fclk/32	of	608/f ськ			76 <i>μ</i> s	38 <i>μ</i> s	25.3333 µs	
0	1	0				fclk/16	sampling	304/fськ		76 <i>μ</i> s	38 μs	19 <i>μ</i> s	12.6667 μs	
0	1	1				fclk/8	clock	152/f ськ		38 μs	19 <i>μ</i> s	9.5 <i>μ</i> s	6.3333 μs	
1	0	0				fclk/6	cycles:	114/fclк		28.5 <i>μ</i> s	14.25 <i>μ</i> s	7.125 <i>μ</i> s	4.75 <i>μ</i> s	
1	0	1				fclk/5	7 fad)	95/fcLK	95 <i>μ</i> s	23.75 <i>μ</i> s	11.875 <i>μ</i> s	5.938 <i>μ</i> s	3.9583 μs	
1	1	0				fclk/4		76/fclk	76 <i>μ</i> s	19 <i>μ</i> s	9.5 <i>μ</i> s	4.75 <i>μ</i> s	3.1667 <i>μ</i> s	
													Note 1	
1	1	1				fclk/2		38/fclk	38 <i>μ</i> s	9.5 <i>μ</i> s	4.75 <i>μ</i> s	2.375 <i>μ</i> s	Setting	
												Notes 1, 2	prohibited	
0	0	0	0	1	Normal 2	fclk/64	17 fad	1088/fcLK	Setting	Setting	Setting	68 <i>μ</i> s	45.3333 μs	
							(number		prohibited	prohibited	prohibited			
0	0	1				fclk/32	of	544/f ськ			68 <i>μ</i> s	34 <i>μ</i> s	22.6667 μs	
0	1	0				fclk/16	sampling	272/fськ		68 <i>μ</i> s	34 <i>μ</i> s	17 <i>μ</i> s	11.3333 μs	
0	1	1				fclk/8	clock	136/f ськ		34 <i>μ</i> s	17 <i>μ</i> s	8.5 <i>μ</i> s	5.6667 μs	
1	0	0				fclk/6	cycles:	102/fclк		25.5 <i>μ</i> s	12.75 <i>μ</i> s	6.375 <i>μ</i> s	4.25 <i>μ</i> s	
1	0	1				fclk/5	5 fad)	85/fclk	85 μs	21.25 <i>μ</i> s	10.625 μs	5.3125 μs	3.5417 <i>μ</i> s	
1	1	0				fclk/4		68/fclk	68 μs	17 <i>μ</i> s	8.5 <i>μ</i> s	4.25 <i>μ</i> s	2.8333 <i>μ</i> s	
													Notes 1, 2	
1	1	1				fclk/2		34/fclk	34 μs	8.5 <i>μ</i> s	4.25 <i>μ</i> s	2.125 <i>μ</i> s	Setting	
												Notes 1, 2	prohibited	

Notes 1. Setting prohibited when $V_{DD} < 3.6 \text{ V}$.

- 2. This value is prohibited when using the temperature sensor.
- <R> 3. These are the numbers of clock cycles when conversion is with 10-bit resolution. When eight-bit resolution is selected, the values are shorter by two cycles of the conversion clock (fAD).
- <R> Cautions 1. The A/D conversion time must also be within the relevant range of conversion times (tconv) described in 27.6.1 A/D converter characteristics.
 - 2. When rewriting the FR2 to FR0, LV1, and LV0 bits to other than the same data, make sure that conversion has stopped (ADCS = 0, ADCE = 0).
 - 3. The above conversion time does not include conversion state time. Conversion state time add in the first conversion. Select conversion time, taking clock frequency errors into consideration.

Remark fclk: CPU/peripheral hardware clock frequency

Table 11-3. A/D Conversion Time Selection (2/4)

(2) When there is no stabilization wait time Note 1

Low-voltage mode 1, 2 (software trigger mode/hardware trigger no-wait mode)

A/D	Conver	ter Mod	e Regis	ter 0	Mode	Conversion	Number of	Conversion		Conver	sion Time S	election	
		(ADM0)				Clock (fad)	Conversion	Time	1.6 V ≤ V	$_{\text{DD}} \leq 5.5 \text{ V}$	Note 2	Note 3	Note 4
FR2	FR1	FR0	LV1	LV0			Clock		fclk=	fclk=	fclk=	fclk=	fclk=
							Cycles Note 8		1 MHz	4 MHz	8 MHz	16 MHz	24 MHz
0	0	0	1	0	Low- voltage 1	fclk/64	19 fad (number	1216/fclк	Setting prohibited	Setting prohibited	Setting prohibited	76 <i>μ</i> s	50.6667 μs
0	0	1				fcLk/32	of	608/fclk			76 <i>μ</i> s	38 <i>μ</i> s	25.3333 μs
0	1	0				fclk/16	sampling	304/fськ		76 <i>μ</i> s	38 <i>μ</i> s	19 <i>μ</i> s	12.6667 µs
0	1	1				fclk/8	clock	152/fclк		38 <i>μ</i> s ^{Note 7}	19 <i>μ</i> s	9.5 <i>μ</i> s ^{Note 6}	6.3333 <i>μ</i> s
1	0	0				fclk/6	cycles: 7 fad)	114/fськ		28.5 μs Note 7	14.25 μs Note 6	7.125 μs Note 6	4.75 <i>μ</i> s
1	0	1				fclk/5	- / IAD)	95/fськ	95 <i>μ</i> s	23.75 μs Note 7	11.875 µs	5.938 μs Note 6	3.9587 <i>µ</i> s
1	1	0				fclk/4		76/fськ	76 <i>μ</i> s	19 <i>μ</i> S Note 7	9.5 μs Note 6	4.75 μs Note 6	3.1667 µs
1	1	1				fclk/2		38/fськ	38 μS Note 7	9.5 μs Note 6	4.75 μs Note 6	2.375 µs	Setting prohibited
0	0	0	1	1	Low- voltage 2	fclk/64	17 fab (number	1088/fclк	Setting prohibited	Setting prohibited	Setting prohibited	68 <i>μ</i> s	45.3333 μs
0	0	1				fclk/32	of	544/f clк			68 <i>μ</i> s	34 <i>μ</i> s	22.6667 µs
0	1	0				fcцк/16	sampling	272/fclк		68 <i>μ</i> s	34 <i>μ</i> s	17 <i>μ</i> s	11.3333 <i>μ</i> s
0	1	1				fclk/8	clock	136/fclк		34 <i>μ</i> s ^{Note 7}	17 <i>μ</i> s	8.5 μs Note 6	5.6667 <i>μ</i> s
1	0	0				fcцк/6	cycles: 5 fad)	102/fcLk		25.5 µs	12.75 μS Note 6	6.375 μs Note 6	4.25 μs
1	0	1				fclk/5	J (AD)	85/fськ	85 μs	21.25 μS Note 7	10.625 μs Note 6	5.3125 μs Note 6	3.5417 <i>μ</i> s
1	1	0				fcLk/4		68/fclk	68 μs	17 μS Note 7	8.5 μs Note 6	4.25 µs Note 6	2.8333 µS
1	1	1				fclk/2		34/fськ	34 μS Note 7	8.5 μS Note 6	4.25 µs Note 6	2.125 μs Note 5	Setting prohibited

Notes 1. This mode is prohibited when using the temperature sensors.

- **2.** $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$
- 3. $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$
- **4.** $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}$
- **5.** Setting prohibited when $V_{DD} < 3.6 \text{ V}$.
- **6.** Setting prohibited when $V_{DD} < 2.7 \text{ V}$.
- 7. Setting prohibited when V_{DD}< 1.8 V.
- R> 8. These are the numbers of clock cycles when conversion is with 10-bit resolution. When eight-bit resolution is selected, the values are shorter by two cycles of the conversion clock (fAD).
- <R>> Cautions 1. The A/D conversion time must also be within the relevant range of conversion times (tconv) described in 27.6.1 A/D converter characteristics.
 - 2. When rewriting the FR2 to FR0, LV1, and LV0 bits to other than the same data, make sure that conversion has stopped (ADCS = 0, ADCE = 0).
 - 3. The above conversion time does not include conversion state time. Conversion state time add in the first conversion. Select conversion time, taking clock frequency errors into consideration.

Remark folk: CPU/peripheral hardware clock frequency

Table 11-3. A/D Conversion Time Selection (3/4)

(3) When there is stabilization wait time Normal mode 1, 2 (hardware trigger wait mode Normal mode 1, 2 (hardware trigger wait mode Normal mode Normal

A/D (Convert	er Mode	Regis	ter 0	Mode	Conversion	Number of	Number of	Stabilization		Convers	sion Time S	Selection	
	((ADM0)				Clock (fab)	Stabilization	Conversion	Wait Cock +	$2.7~V \le V_{DD} \le 5.5~V$				
FR2	FR1	FR0	LV1	LV0			Wait Cock	Clock	Conversion	fclk=	fclk=	fclk=	fclk=	fclk=
								Cycles Note 4	Time	1 MHz	4 MHz	8 MHz	16 MHz	24 MHz
0	0	0	0	0	Normal	fcьк/64	8 fad	19 fad	1728/fclk	Setting	Setting	Setting	108 <i>μ</i> s	72 μs
					1			(number		prohibited	prohibited	prohibited		
0	0	1				fclk/32		of	864/fclk			108 <i>μ</i> s	54 <i>μ</i> s	36 <i>μ</i> s
0	1	0				fcцк/16		sampling	432/fclk		108 <i>μ</i> s	54 <i>μ</i> s	27 μs	18 <i>μ</i> s
0	1	1				fclk/8		clock	216/fськ		54 <i>μ</i> s	27 μs	13.5 <i>μ</i> s	9 <i>μ</i> s
1	0	0				fclk/6		cycles:	162/fclk		40.5 <i>μ</i> s	20.25 μs	10.125 μs	6.75 <i>μ</i> s
1	0	1				fclk/5		7 fad)	135/fc∟ĸ	135 <i>μ</i> s	33.75 μs	16.875 μs	8.4375 μs	5.625 <i>μ</i> s
1	1	0				fclk/4			108/fcLK	108 <i>μ</i> s	27 μs	13.5 <i>μ</i> s	6.75 <i>μ</i> s	4.5 μs
1	1	1				fclk/2			54/fclk	54 <i>μ</i> s	13.5 <i>μ</i> s	6.75 <i>μ</i> s	3.375 <i>µ</i> s	Setting
													Notes 3	prohibited
0	0	0	0	1	Normal	fclk/64	8 fad	17 fad	1600/fcLK	Setting	Setting	Setting	100 <i>μ</i> s	66.6667 <i>μ</i> s
					2			(number		prohibited	prohibited	prohibited		
0	0	1				fcLk/32		of	800/fclk			100 <i>μ</i> s	50 <i>μ</i> s	33.3333 <i>μ</i> s
0	1	0				fcцк/16		sampling	400/fclk		100 <i>μ</i> s	50 <i>μ</i> s	25 <i>μ</i> s	16.6667 <i>μ</i> s
0	1	1				fclk/8		clock	200/fclk		50 <i>μ</i> s	25 <i>μ</i> s	12.5 <i>μ</i> s	8.3333 <i>µ</i> s
1	0	0				fclk/6		cycles:	150/fcLK		37.5 <i>μ</i> s	18.75 <i>μ</i> s	9.375 <i>μ</i> s	6.25 <i>μ</i> s
1	0	1				fclk/5		5 fad)	125/fcLK	125 <i>μ</i> s	31.25 µs	15.625 µs	7.8125 µs	5.2083 <i>μ</i> s
1	1	0				fclk/4			100/fcLK	100 <i>μ</i> s	25 <i>μ</i> s	12.5 <i>μ</i> s	6.25 <i>μ</i> s	4.1667 μs Notes 2, 3
1	1	1				fclk/2			50/fclk	50 μs	12.5 <i>μ</i> s	6.25 μs	3.125 μs Notes 2, 3	Setting prohibited

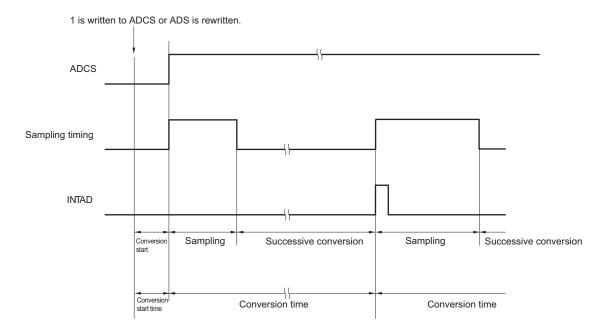
- Notes 1. For the second and subsequent conversion in sequential conversion mode, the conversion start time and stabilization wait time for A/D power supply do not occur after a hardware trigger is detected (see table 12-3 (1/4)).
 - **2.** Setting prohibited when $V_{DD} < 3.6 \text{ V}$.
 - 3. This value is prohibited when using the temperature sensors.
- <R> 4. These are the numbers of clock cycles when conversion is with 10-bit resolution. When eight-bit resolution is selected, the values are shorter by two cycles of the conversion clock (fAD).
- <R> Cautions 1. The A/D conversion time must also be within the relevant range of conversion times (tconv) described in 27.6.1 A/D converter characteristics.
 - 2. When rewriting the FR2 to FR0, LV1, and LV0 bits to other than the same data, make sure that conversion has stopped (ADCS = 0, ADCE = 0).
 - 3. The above conversion time does not include conversion state time. Conversion state time add in the first conversion. Select conversion time, taking clock frequency errors into consideration.
 - 4. When hardware trigger wait mode, specify the conversion time, including the stabilization wait time from the hardware trigger detection.

Remark fclk: CPU/peripheral hardware clock frequency

Table 11-3. A/D Conversion Time Selection (4/4)

(4) When there is no stabilization wait time Low-voltage mode 1, 2 Note 1 (hardware trigger wait mode Note 2)

A/D (Convert	er Mode	e Regis	ter 0	Mode	Conversion	Number of	Number of	Stabilization	Conversion Time Selection		sion Time S	Selection	
	((ADM0)				Clock (fab)	Stabilization	Conversion	Wait Cock +	1.6 V ≤ V	od ≤ 5.5 V	Note 3	Note 4	Note 5
FR2	FR1	FR0	LV1	LV0			Wait Cock	Clock	Conversion	fclk=	fclk=	fclk=	fclk=	fclk=
								Cycles Note 9	Time	1 MHz	4 MHz	8 MHz	16 MHz	24 MHz
0	0	0	0	0	Low	fclk/64	2 fad	19 fad	1344/fclk	Setting	Setting	Setting	84 <i>μ</i> s	56 <i>μ</i> s
					voltage			(number		prohibited	prohibited	prohibited		
0	0	1			1	fcLк/32		of	672/fclk			84 <i>μ</i> s	42 μs	28 <i>μ</i> s
0	1	0				fclk/16		sampling	336/fclk		84 <i>μ</i> s	42 <i>μ</i> s	21 <i>μ</i> s	14 <i>μ</i> s
0	1	1				fclk/8		clock cycles:	168/fclk		42 μS Note 8	21 <i>μ</i> s	10.5 μs ^{Note}	7 <i>μ</i> s
1	0	0				fclk/6		7 fad)	126/fcLK		31.25 µs	15.75 <i>μ</i> s	7.875 <i>μ</i> S Note 7	5.25 <i>μ</i> s
1	0	1				fclk/5			105/fclk	105 <i>μ</i> s	26.25 µS Note 8	13.125 <i>μ</i> s	6.5625 <i>μ</i> S Note 7	4.375 <i>μ</i> s
1	1	0				fclk/4			84/fclk	84 <i>μ</i> s	21 μs Note 8	10.5 μs ^{Note}	5.25 μs ^{Note}	3.5 <i>µ</i> S Note 6
1	1	1				fclk/2			42/fclk	42 μS Note 8	10.5 μs ^{Note}	5.25 <i>μ</i> S Note 7	2.625 μs Note 6	Setting prohibited
0	0	0	0	1	Low	fclk/64	2 fad	17 fad	1216/fclk	Setting	Setting	Setting	76 <i>μ</i> s	50.6667 <i>μ</i> s
					voltage			(number		prohibited	prohibited	prohibited		
0	0	1			2	fclk/32		of	608/fclk			76 <i>μ</i> s	38 <i>μ</i> s	25.3333 <i>μ</i> s
0	1	0				fcьк/16		sampling	304/fclk		76 <i>μ</i> s	38 <i>μ</i> s	19 <i>μ</i> s	12.6667 <i>μ</i> s
0	1	1				fclk/8		clock cycles:	152/fclk		38 <i>µ</i> S Note 8	19 <i>μ</i> s	9.5 <i>μ</i> S Note 7	6.3333 <i>μ</i> s
1	0	0				fclk/6		5 fad)	114/fcLK		28.5 μS Note 8	14.25 <i>μ</i> s	7.125 <i>μ</i> s	4.75 <i>μ</i> s
1	0	1				fclk/5			96/fcLK	96 <i>μ</i> s	23.75 μS Note 8	12 <i>μ</i> S Note 7	5.938 μs	4.0 <i>μ</i> s
1	1	0				fclk/4			76/fcLK	76 <i>μ</i> s	19 μs Note 8	9.5 µs	4.75 μs Note 7	3.1667 µs
1	1	1				fclk/2			38/fclk	38 μs Note 8	9.5 <i>μ</i> S Note 7	4.75 μS Note 7	2.375 μs Note 6	Setting prohibited


Notes 1. This mode is prohibited when using the temperature sensor

- 2. For the second and subsequent conversion in sequential conversion mode, the conversion start time and stabilization wait time for A/D power supply do not occur after a hardware trigger is detected (see table 12-3 (2/4)).
- 3. $1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}$
- **4.** $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$
- **5.** $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$
- **6.** Setting prohibited when $V_{DD} < 3.6 \text{ V}$.
- 7. Setting prohibited when V_{DD}< 2.7 V.
- **8.** Setting prohibited when $V_{DD} < 1.8 \text{ V}$.
- Solution is with 10-bit resolution. When eight-bit resolution is selected, the values are shorter by two cycles of the conversion clock (fAD).
- <R> Cautions 1. The A/D conversion time must also be within the relevant range of conversion times (tconv) described in 27.6.1 A/D converter characteristics.
 - 2. When rewriting the FR2 to FR0, LV1, and LV0 bits to other than the same data, make sure that conversion has stopped (ADCS = 0, ADCE = 0).

- 3. The above conversion time does not include conversion state time. Conversion state time add in the first conversion. Select conversion time, taking clock frequency errors into consideration.
- 4. When hardware trigger wait mode, specify the conversion time, including the stabilization wait time from the hardware trigger detection.

Remark fclk: CPU/peripheral hardware clock frequency

<R> Figure 11-5. A/D Converter Sampling and A/D Conversion Timing (Example for Software Trigger Mode)

11.3.3 A/D converter mode register 1 (ADM1)

This register is used to specify the A/D conversion trigger, conversion mode, and hardware trigger signal.

The ADM1 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 11-6. Format of A/D Converter Mode Register 1 (ADM1)

After reset: 00H Address: FFF32H Symbol 6 5 2 0 3 ADM1 ADTMD0 **ADSCM** 0 ADTRS1 ADTRS0 ADTMD1 0

ADTMD1	ADTMD0	O Selection of the A/D conversion trigger mode				
0	×	Software trigger mode				
1	1 0 Hardware trigger no-wait mode					
1	1	Hardware trigger wait mode				

ADSCM	Specification of the A/D conversion mode						
0	Sequential conversion mode						
1	One-shot conversion mode						

ADTRS1	ADTRS0	Selection of the hardware trigger signal
0	0	End of timer channel 1 count or capture interrupt signal (INTTM01)
0	1	Setting prohibited
1	0	Real-time clock interrupt signal (INTRTC)
1	1	12-bit interval timer interrupt signal (INTIT)

Cautions 1. Rewrite the value of the ADM1 register while conversion is stopped (ADCS = 0, ADCE = 0).

2. To complete A/D conversion, specify at least the following time as the hardware trigger interval:

Hardware trigger no wait mode: 2 fclk clock + conversion start time + A/D

conversion time

Hardware trigger wait mode: 2 fclk clock + conversion start time + A/D power

supply stabilization wait time + A/D conversion time

3. In modes other than SNOOZE mode, input of the next INTRTC or INTIT will not be recognized as a valid hardware trigger for up to four fclk cycles after the first INTRTC or INTIT is input.

Remarks 1. x: don't care

2. fclk: CPU/peripheral hardware clock frequency

<R>

11.3.4 A/D converter mode register 2 (ADM2)

This register is used to select the + side or - side reference voltage of the A/D converter, check the upper limit and lower limit A/D conversion result values, select the resolution, and specify whether to use the SNOOZE mode.

The ADM2 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 11-7. Format of A/D Converter Mode Register 2 (ADM2) (1/2)

After reset: 00H Address: F0010H Symbol 6 5 <3> <2> <0> ADREFP1 ADREFP0 **ADREFM** ADM2 0 **ADRCK** AWC 0 **ADTYP**

ADREFP1	ADREFP0	Selection of the + side reference voltage source of the A/D converter
0	0	Supplied from VDD
0	1	Supplied from P20/AVREFP/ANI0
1	0	Supplied from the internal reference voltage (1.45 V) Note
1	1	Setting prohibited

- When ADREFP1 or ADREFP0 bit is rewritten, this must be configured in accordance with the following procedures.
 - (1) Set ADCE = 0
 - (2) Change the values of ADREFP1 and ADREFP0
 - (3) Stabilization wait time (A)
 - (4) Set ADCE = 1
 - (5) Stabilization wait time (B)

When ADREFP1 and ADREFP0 are set to 1 and 0, the setting is changed to A = 5 μ s, B = 1 μ s.

When ADREFP1 and ADREFP0 are set to 0 and 0 or 0 and 1, A needs no wait and B = 1 μ s.

 When ADREFP1 and ADREFP0 are set to 1 and 0, respectively, A/D conversion cannot be performed on the temperature sensor output voltage and internal reference voltage.

Be sure to perform A/D conversion while ADISS = 0.

ADREFM	Selection of the – side reference voltage source of the A/D converter					
0	Supplied from Vss					
1	Supplied from P21/AVREFM/ANI1					

ADRCK	Checking the upper limit and lower limit conversion result values				
0	The interrupt signal (INTAD) is output when the ADLL register ≤ the ADCR register ≤ the ADUL register (AREA 1).				
1	The interrupt signal (INTAD) is output when the ADCR register < the ADLL register (AREA 2) or the ADUL register < the ADCR register (AREA 3).				
Figure 11-8 sh	Figure 11-8 shows the generation range of the interrupt signal (INTAD) for <area 1=""/> to <area 3=""/> .				

Note This setting can be used only in HS (high-speed main) mode.

Cautions 1. Rewrite the value of the ADM2 register while conversion is stopped (ADCS = 0, ADCE = 0).

- 2. Do not set the ADREFP1 bit to 1 when shifting to STOP mode, or to HALT mode while the CPU is operating on the subsystem clock. Also, if the ADREFP1 bit is set to 1, the temperature sensor operating current (IADREF) indicated in 27.3.2 Supply current characteristics will be added to the current consumption when shifting to HALT mode while the CPU is operating on the main system clock.
- 3. When using AVREFP and AVREFM, specify ANIO and ANI1 as the analog input channels and specify input mode by using the port mode register.

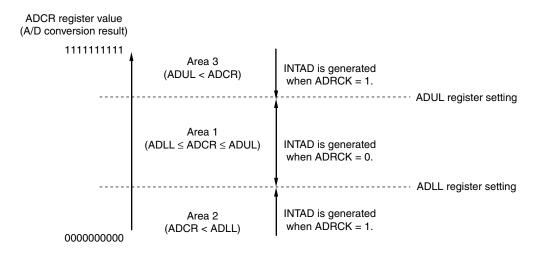
Figure 11-7. Format of A/D Converter Mode Register 2 (ADM2) (2/2)

Address: F0010H		fter reset: 00H	R/W					
Symbol	7	6	5	4	<3>	<2>	1	<0>
ADM2	ADREFP1	ADREFP0	ADREFM	0	ADRCK	AWC	0	ADTYP

AWC Specification of the SNOOZE mode <R> 0 Do not use the SNOOZE mode function. 1 Use the SNOOZE mode function.

> When there is a hardware trigger signal in the STOP mode, the STOP mode is exited, and A/D conversion is performed without operating the CPU (the SNOOZE mode).

- The SNOOZE mode function can only be specified when the high-speed on-chip oscillator clock is selected for the CPU/peripheral hardware clock (fclk). If any other clock is selected, specifying this mode is prohibited.
- Using the SNOOZE mode function in the software trigger mode or hardware trigger no-wait mode is prohibited.
- Using the SNOOZE mode function in the sequential conversion mode is prohibited.
- When using the SNOOZE mode function, specify a hardware trigger interval of at least "shift time to SNOOZE mode Note + conversion start time + A/D power supply stabilization wait time + A/D conversion time +2 fclk clock"
- Even when using SNOOZE mode, be sure to set the AWC bit to 0 in normal operation mode and change it to 1 just before shifting to STOP mode.


Also, be sure to change the AWC bit to 0 after returning from STOP mode to normal operation mode. If the AWC bit is left set to 1, A/D conversion will not start normally in spite of the subsequent SNOOZE or normal operation mode.

ADTYP	Selection of the A/D conversion resolution
0	10-bit resolution
1	8-bit resolution

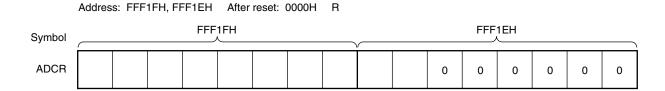
Note Refer to "Transition time from STOP mode to SNOOZE mode" in 16.3.3 SNOOZE mode.

Caution Only rewrite the value of the ADM2 register while conversion operation is stopped (which is indicated by the ADCS bit of A/D converter mode register 0 (ADM0) being 0).

Figure 11-8. ADRCK Bit Interrupt Signal Generation Range

Remark If INTAD does not occur, the A/D conversion result is not stored in the ADCR or ADCRH register.

11.3.5 10-bit A/D conversion result register (ADCR)


This register is a 16-bit register that stores the A/D conversion result. The lower 6 bits are fixed to 0. Each time A/D conversion ends, the conversion result is loaded from the successive approximation register (SAR). The higher 8 bits of the conversion result are stored in FFF1FH and the lower 2 bits are stored in the higher 2 bits of FFF1EH Note.

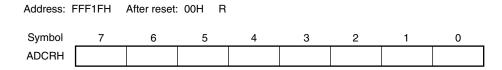
The ADCR register can be read by a 16-bit memory manipulation instruction.

Reset signal generation clears this register to 0000H.

Note If the A/D conversion result is outside the range specified by using the A/D conversion comparison function (the value specified by the ADRCK bit of the ADM2 register and ADUL/ADLL registers; see **Figure 11-8**), the result is not stored.

Figure 11-9. Format of 10-bit A/D Conversion Result Register (ADCR)

- Cautions 1. When writing to the A/D converter mode register 0 (ADM0), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of the ADCR register may become undefined. Read the conversion result following conversion completion before writing to the ADM0, ADS, and ADPC registers. Using timing other than the above may cause an incorrect conversion result to be read.
 - When 8-bit resolution A/D conversion is selected (when the ADTYP bit of A/D converter mode register 2 (ADM2) is 1) and the ADCR register is read, 0 is read from the lower two bits (ADCR1 and ADCR0).
 - 3. When the ADCR register is accessed in 16-bit units, the higher 10 bits of the conversion result are read in order starting at bit 15.


11.3.6 8-bit A/D conversion result register (ADCRH)

This register is an 8-bit register that stores the A/D conversion result. The higher 8 bits of 10-bit resolution are stored Note. The ADCRH register can be read by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Note If the A/D conversion result is outside the range specified by using the A/D conversion comparison function (the value specified by the ADRCK bit of the ADM2 register and ADUL/ADLL registers; see **Figure 11-8**), the result is not stored.

Figure 11-10. Format of 8-bit A/D Conversion Result Register (ADCRH)

Caution When writing to the A/D converter mode register 0 (ADM0), analog input channel specification register (ADS), and A/D port configuration register (ADPC), the contents of the ADCRH register may become undefined. Read the conversion result following conversion completion before writing to the ADM0, ADS, and ADPC registers. Using timing other than the above may cause an incorrect conversion result to be read.

11.3.7 Analog input channel specification register (ADS)

This register specifies the input channel of the analog voltage to be A/D converted.

The ADS register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 11-11. Format of Analog Input Channel Specification Register (ADS)

Address: FFF31H		After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
ADS	ADISS	0	0	ADS4	ADS3	ADS2	ADS1	ADS0

ADISS	ADS4	ADS3	ADS2	ADS1	ADS0	Analog input channel	Input source
0	0	0	0	0	0	ANI0	P20/ANI0/AVREFP pin
0	0	0	0	0	1	ANI1	P21/ANI1/AVREFM pin
0	1	0	0	0	0	ANI16	P41/ANI16 pin
0	1	0	0	0	1	ANI17	P120/ANI17 pin
0	1	0	0	1	0	ANI18	P13/ANI18 pin
0	1	0	0	1	1	ANI19	P14/ANI19 pin
0	1	0	1	0	0	ANI20	P142/ANI20 pin
0	1	0	1	0	1	ANI21	P143/ANI21 pin
0	1	0	1	1	0	ANI22	P144/ANI22 pin
0	1	0	1	1	1	ANI23	P145/ANI23 pin
1	0	0	0	0	0	_	Temperature sensor output voltage Note
1	0	0	0	0	1	-	Internal reference voltage (1.45 V) Note
		Other than	Setting prohib	ited			

Note Can only be used in HS (high-speed main) mode.

Cautions 1. Be sure to clear bits 5 and 6 to 0.

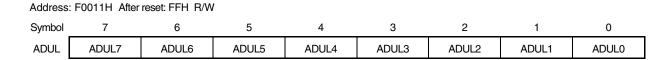
- 2. Set a channel to be set the analog input by ADPC and PMC registers in the input mode by using port mode registers 1, 2, 4, 12, and 14 (PM1, PM2, PM4, PM12, PM14).
- 3. Do not set the pin that is set by the A/D port configuration register (ADPC) as digital I/O by the ADS register.
- 4. Do not set the pin that is set by port mode control register 1, 4, 12, or 14 (PMC1, PMC4, PMC12, PMC14) as digital I/O by the ADS register.
- 5. Rewrite the value of the ADISS bit while conversion is stopped (ADCS = 0, ADCE = 0).
- 6. If using AVREFP as the + side reference voltage source of the A/D converter, do not select ANIO as an A/D conversion channel.
- 7. If using AVREFM as the side reference voltage source of the A/D converter, do not select ANI1 as an A/D conversion channel.
- If ADISS is set to 1, the internal reference voltage (1.45 V) cannot be used for the + side reference voltage source. After the ADISS bit is set to 1, the initial conversion result cannot be used.

For the setting flow, see 11.7.4 Setup when temperature sensor output voltage/internal reference voltage is selected (example for software trigger mode and one-shot conversion mode).

Cautions 9. Do not set the ADISS bit to 1 when shifting to STOP mode, or to HALT mode while the CPU is operating on the subsystem clock. Also, if the ADREFP1 bit is set to 1, the A/D converter reference voltage current (IADREF) indicated in 27.3.2 Supply current characteristics will be added to the current consumption when shifting to HALT mode while the CPU is operating on the main system clock.

11.3.8 Conversion result comparison upper limit setting register (ADUL)

This register is used to specify the setting for checking the upper limit of the A/D conversion results.


The A/D conversion results and ADUL register value are compared, and interrupt signal (INTAD) generation is controlled in the range specified for the ADRCK bit of A/D converter mode register 2 (ADM2) (shown in **Figure 11-8**).

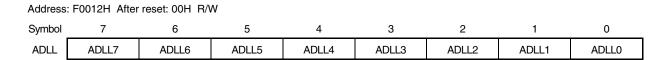
The ADUL register can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets this register to FFH.

Caution When 10-bit resolution A/D conversion is selected, the higher eight bits of the 10-bit A/D conversion result register (ADCR) are compared with the ADUL register.

Figure 11-12. Format of Conversion Result Comparison Upper Limit Setting Register (ADUL)

11.3.9 Conversion result comparison lower limit setting register (ADLL)


This register is used to specify the setting for checking the lower limit of the A/D conversion results.

The A/D conversion results and ADLL register value are compared, and interrupt signal (INTAD) generation is controlled in the range specified for the ADRCK bit of A/D converter mode register 2 (ADM2) (shown in **Figure 11-8**).

The ADLL register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 11-13. Format of Conversion Result Comparison Lower Limit Setting Register (ADLL)

Cautions 1. When 10-bit resolution A/D conversion is selected, the higher eight bits of the 10-bit A/D conversion result register (ADCR) are compared with the ADLL register.

- 2. Only write new values to the ADUL and ADLL registers while conversion is stopped (ADCS = 0, ADCE = 0).
- 3. The setting of the ADUL registers must be greater than that of the ADLL register.

<R> 11.3.10 A/D test register (ADTES)

This register is used to select the + side reference voltage or - side reference voltage for the converter, an analog input channel (ANIxx), the temperature sensor output voltage, or the internal reference voltage (1.45 V) as the target for A/D conversion.

When using this register to test the converter, set as follows.

- For zero-scale measurement, select the side reference voltage as the target for conversion.
- For full-scale measurement, select the + side reference voltage as the target for conversion.

The ADTES register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 11-14. Format of A/D Test Register (ADTES)

Address: F0013H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADTES	0	0	0	0	0	0	ADTES1	ADTES0

<R>

ADTES1	ADTES0	A/D conversion target
0	0	ANIxx/temperature sensor output voltage Note/internal reference voltage (1.45 V)Note (This is specified using the analog input channel specification register (ADS).)
1	0	The - side reference voltage (selected by the ADREFM bit of the ADM2 register)
1	1	The + side reference voltage (selected by the ADREFP1 or ADREFP0 bit of the ADM2 register)
Other than the above		Setting prohibited

Note The temperature sensor output voltage and internal reference voltage (1.45 V) can be selected only in the HS (high-speed main) mode.

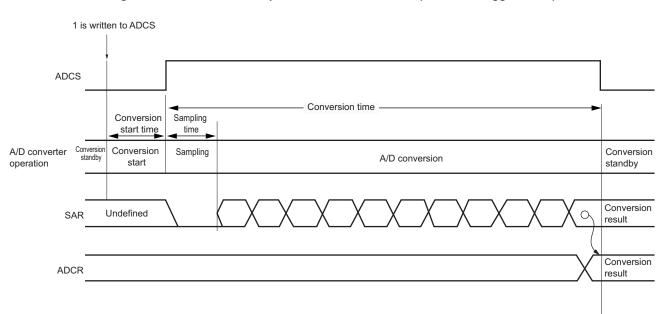
<R> 11.3.11 Registers controlling port function of analog input pins

Set up the registers for controlling the functions of the ports shared with the analog input pins of the A/D converter (port mode registers (PMxx), port mode control registers (PMCxx), and A/D port configuration register (ADPC)). For details, see 4.3.1 Port mode registers (PMxx), 4.3.6 Port mode control registers (PMCxx), and 4.3.7 A/D port configuration register (ADPC).

When using the ANI0 and ANI1 pins for analog input of the A/D converter, set the port mode register (PMxx) bit corresponding to each port to 1 and select analog input through the A/D port configuration register (ADPC).

When using the ANI16 to ANI23 pins for analog input of the A/D converter, set the port mode register (PMxx) bit and port mode control register (PMCxx) bit corresponding to each port to 1.

11.4 A/D Converter Conversion Operations


The A/D converter conversion operations are described below.

- <1> The voltage input to the selected analog input channel is sampled by the sample & hold circuit.
- <2> When sampling has been done for a certain time, the sample & hold circuit is placed in the hold state and the sampled voltage is held until the A/D conversion operation has ended.
- <3> Bit 9 of the successive approximation register (SAR) is set. The series resistor string voltage tap is set to (1/2) AVREF by the tap selector.
- <4> The voltage difference between the series resistor string voltage tap and sampled voltage is compared by the voltage comparator. If the analog input is greater than (1/2) AVREF, the MSB bit of the SAR register remains set to 1. If the analog input is smaller than (1/2) AVREF, the MSB bit is reset to 0.
- <5> Next, bit 8 of the SAR register is automatically set to 1, and the operation proceeds to the next comparison. The series resistor string voltage tap is selected according to the preset value of bit 9, as described below.
 - Bit 9 = 1: (3/4) AVREF
 - Bit 9 = 0: (1/4) AVREF

The voltage tap and sampled voltage are compared and bit 8 of the SAR register is manipulated as follows.

- Sampled voltage ≥ Voltage tap: Bit 8 = 1
- Sampled voltage < Voltage tap: Bit 8 = 0
- <6> Comparison is continued in this way up to bit 0 of the SAR register.
- <7> Upon completion of the comparison of 10 bits, an effective digital result value remains in the SAR register, and the result value is transferred to the A/D conversion result register (ADCR, ADCRH) and then latched Note 1.
 At the same time, the A/D conversion end interrupt request (INTAD) can also be generated Note 1.
- <8> Repeat steps <1> to <7>, until the ADCS bit is cleared to 0 Note 2.
 To stop the A/D converter, clear the ADCS bit to 0.
- **Notes 1.** If the A/D conversion result is outside the A/D conversion result range specified by the ADRCK bit and the ADUL and ADLL registers (see **Figure 11-8**), the A/D conversion result interrupt request signal is not generated and no A/D conversion results are stored in the ADCR and ADCRH registers.
 - 2. While in the sequential conversion mode, the ADCS flag is not automatically cleared to 0. This flag is not automatically cleared to 0 while in the one-shot conversion mode of the hardware trigger no-wait mode, either. Instead, 1 is retained.
- Remarks 1. Two types of the A/D conversion result registers are available.
 - ADCR register (16 bits): Store 10-bit A/D conversion value
 - ADCRH register (8 bits): Store 8-bit A/D conversion value
 - 2. AVREF: The + side reference voltage of the A/D converter. This can be selected from AVREFP, the internal reference voltage (1.45 V), and VDD.

INTAD

<R> Figure 11-15. Conversion Operation of A/D Converter (Software Trigger Mode)

<R> In one-shot conversion mode, the ADCS bit is automatically cleared to 0 after completion of A/D conversion.

In sequential conversion mode, A/D conversion operations proceed continuously until the software clears bit 7 (ADCS) of the A/D converter mode register 0 (ADM0) to 0.

Writing to the analog input channel specification register (ADS) during A/D conversion interrupts the current conversion after which A/D conversion of the analog input specified by the ADS register proceeds. Data from the A/D conversion that was in progress are discarded.

Reset signal generation clears the A/D conversion result register (ADCR, ADCRH) to 0000H or 00H.

11.5 Input Voltage and Conversion Results

The relationship between the analog input voltage input to the analog input pins (ANI0, ANI1, ANI16 to ANI23) and the theoretical A/D conversion result (stored in the 10-bit A/D conversion result register (ADCR)) is shown by the following expression.

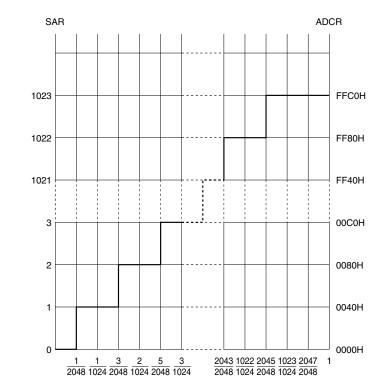
SAR = INT
$$\left(\frac{V_{AIN}}{AV_{REF}} \times 1024 + 0.5\right)$$

ADCR = SAR × 64

or

$$\big(\frac{ADCR}{64} - 0.5\big) \times \frac{AV_{REF}}{1024} \leq V_{AIN} < \big(\frac{ADCR}{64} + 0.5\big) \times \frac{AV_{REF}}{1024}$$

where, INT(): Function which returns integer part of value in parentheses


Vain: Analog input voltage AVREF pin voltage

ADCR: A/D conversion result register (ADCR) value

SAR: Successive approximation register

Figure 11-16 shows the relationship between the analog input voltage and the A/D conversion result.

Figure 11-16. Relationship Between Analog Input Voltage and A/D Conversion Result

A/D conversion result

Input voltage/AVREF

Remark AV_{REF}: The + side reference voltage of the A/D converter. This can be selected from AV_{REFP}, the internal reference voltage (1.45 V), and V_{DD}.

11.6 A/D Converter Operation Modes

The operation of each A/D converter mode is described below. In addition, the procedure for specifying each mode is described in 11.7 A/D Converter Setup Flowchart.

11.6.1 Software trigger mode (sequential conversion mode)

- <1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the A/D conversion standby status.
- <2> After the software counts up to the stabilization wait time (1.0 μ s), the ADCS bit of the ADM0 register is set to 1 to perform the A/D conversion of the analog input specified by the analog input channel specification register (ADS).
- <3> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH), and the A/D conversion end interrupt request signal (INTAD) is generated. After A/D conversion ends, the next A/D conversion immediately starts.
- <4> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <5> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register. The partially converted data is discarded.
- <6> Even if a hardware trigger is input during conversion operation, A/D conversion does not start.
- <7> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, and the system enters the A/D conversion standby status.
- <8> When ADCE is cleared to 0 while in the A/D conversion standby status, the A/D converter enters the stop status.
 When ADCE = 0, specifying 1 for ADCS is ignored and A/D conversion does not start.

<1> ADCE is set to 1. ADCE is cleared to 0. <8> ADCS is cleared to ADCE ADCS is overwritten A hardware trigger <2> ADCS is set to 1 while in the <4> <6> with 1 during A/D is generated 0 during A/D The trigger is not The trigger is not acknowledged conversion standby status. conversion operation (and ignored) conversion operation. ADCS acknowledged ADS is rewritten during <5> A/D conversion operation (from ANI0 to ANI1). Data 0 Data 1 (ANI1) ADS (ANIO) <3>A/D conversion ends and the next Conversion is <3> <3> <3> Conversion i interrupted. interrupted and restarts A/D Conversion Stop Data 0 Data 0 Data 0 Data 0 Data 0 Data 1 (ANI1) Data 1 (ANI1) Data (ANI1 Stop conversion (ANIO) (ANIO) (ANIO) standby status ADCR Data 0 Data 0 Data 0 Data 1 (ANI1) Data 1 (ANI1 INTAD

Figure 11-17. Example of Software Trigger Mode (Sequential Conversion Mode) Operation Timing

11.6.2 Software trigger mode (one-shot conversion mode)

- <1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the A/D conversion standby status.
- <2> After the software counts up to the stabilization wait time (1.0 μ s), the ADCS bit of the ADM0 register is set to 1 to perform the A/D conversion of the analog input specified by the analog input channel specification register (ADS).
- <3> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH), and the A/D conversion end interrupt request signal (INTAD) is generated.
- <4> After A/D conversion ends, the ADCS bit is automatically cleared to 0, and the system enters the A/D conversion standby status.
- <5> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <6> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register. The partially converted data is discarded.
- <7> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, and the system enters the A/D conversion standby status.
- <8> When ADCE is cleared to 0 while in the A/D conversion standby status, the A/D converter enters the stop status. When ADCE = 0, specifying 1 for ADCS is ignored and A/D conversion does not start. In addition, A/D conversion does not start even if a hardware trigger is input while in the A/D conversion standby status.

<1> ADCE is set to 1. ADCE is cleared to 0. <8> ADCS is 4> automatically <2> cleared to 0 after ADCE ADCS is set to 1 while in the <4 ADCS is overwritten ADCS is <2> <2: with 1 during A/D conversion operation The trigger The trigger is not acknowledged conversion standby status. 0 during A/D owledged conversion ADCS <6> ADS is rewritten during operation (from ANI0 to ANI1). Data 0 (ANI0) Data 1 (ANI1) ADS Conversion is interrupted and restarts. A/D conversion Conversion is /interrupted ends A/D Conversior standby Conversion standby Data 0 (ANI0) Data 1 (ANI1) Conversion status ADCR Data 0 Data 0 Data ADCRH INTAD

Figure 11-18. Example of Software Trigger Mode (One-Shot Conversion Mode) Operation Timing

11.6.3 Hardware trigger no-wait mode (sequential conversion mode)

- <1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the A/D conversion standby status.
- <2> After the software counts up to the stabilization wait time (1.0 μ s), the ADCS bit of the ADM0 register is set to 1 to place the system in the hardware trigger standby status (and conversion does not start at this stage). Note that, while in this status, A/D conversion does not start even if ADCS is set to 1.
- <3> If a hardware trigger is input while ADCS = 1, A/D conversion is performed on the analog input specified by the analog input channel specification register (ADS).
- <4> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH), and the A/D conversion end interrupt request signal (INTAD) is generated. After A/D conversion ends, the next A/D conversion immediately starts.
- <5> If a hardware trigger is input during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <6> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register. The partially converted data is discarded.
- <7> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <8> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, and the system enters the A/D conversion standby status. However, the A/D converter does not stop in this status.
- <9> When ADCE is cleared to 0 while in the A/D conversion standby status, the A/D converter enters the stop status.
 When ADCS = 0, inputting a hardware trigger is ignored and A/D conversion does not start.

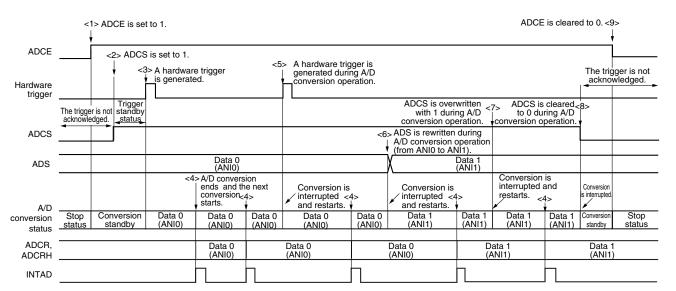
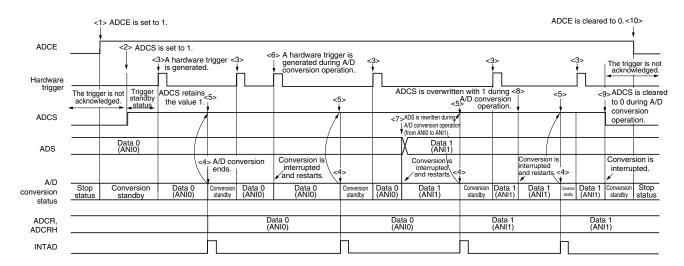



Figure 11-19. Example of Hardware Trigger No-Wait Mode (Sequential Conversion Mode) Operation Timing

11.6.4 Hardware trigger no-wait mode (one-shot conversion mode)

- <1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the A/D conversion standby status.
- <2> After the software counts up to the stabilization wait time (1.0 μ s), the ADCS bit of the ADM0 register is set to 1 to place the system in the hardware trigger standby status (and conversion does not start at this stage). Note that, while in this status, A/D conversion does not start even if ADCS is set to 1.
- <3> If a hardware trigger is input while ADCS = 1, A/D conversion is performed on the analog input specified by the analog input channel specification register (ADS).
- <4> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH), and the A/D conversion end interrupt request signal (INTAD) is generated.
- <5> After A/D conversion ends, the ADCS bit remains set to 1, and the system enters the A/D conversion standby status.
- <6> If a hardware trigger is input during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <7> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register. The partially converted data is discarded.
- <8> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <9> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, and the system enters the A/D conversion standby status. However, the A/D converter does not stop in this status.
- <10> When ADCE is cleared to 0 while in the A/D conversion standby status, the A/D converter enters the stop status. When ADCS = 0, inputting a hardware trigger is ignored and A/D conversion does not start.

<R> Figure 11-20. Example of Hardware Trigger No-Wait Mode (One-Shot Conversion Mode) Operation Timing

11.6.5 Hardware trigger wait mode (sequential conversion mode)

- <1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the hardware trigger standby status.
- <2> If a hardware trigger is input while in the hardware trigger standby status, A/D conversion is performed on the analog input specified by the analog input channel specification register (ADS). The ADCS bit of the ADMO register is automatically set to 1 according to the hardware trigger input.
- <3> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH), and the A/D conversion end interrupt request signal (INTAD) is generated. After A/D conversion ends, the next A/D conversion immediately starts. (At this time, no hardware trigger is necessary.)
- <4> If a hardware trigger is input during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <5> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register. The partially converted data is discarded.
- <6> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <7> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, the system enters the hardware trigger standby status, and the A/D converter enters the stop status. When ADCE = 0, inputting a hardware trigger is ignored and A/D conversion does not start.

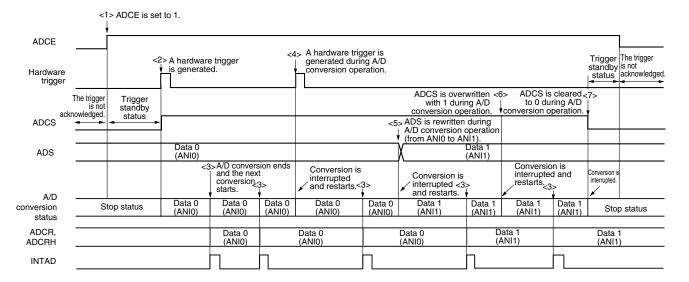
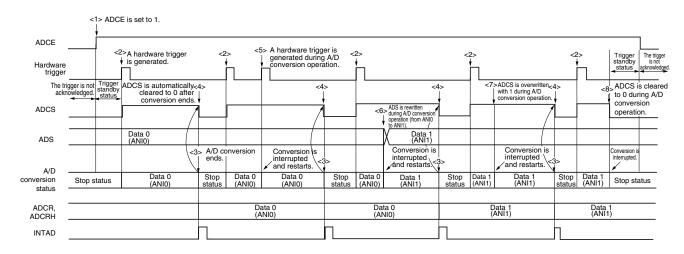
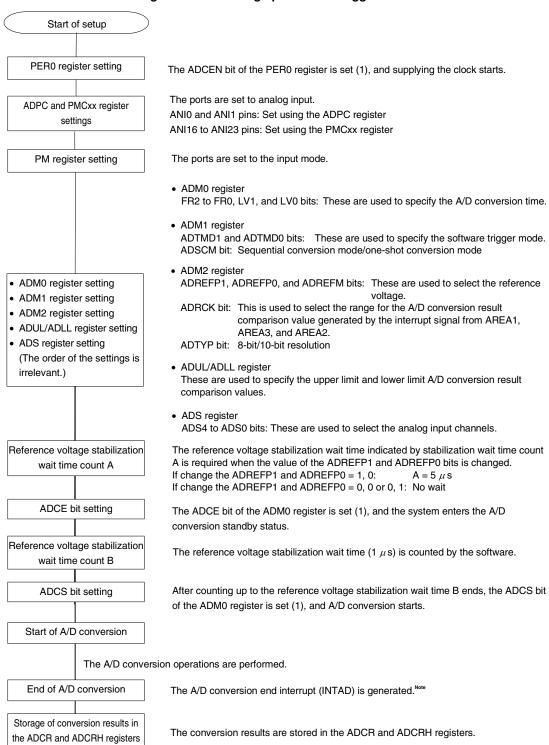



Figure 11-21. Example of Hardware Trigger Wait Mode (Sequential Conversion Mode) Operation Timing

11.6.6 Hardware trigger wait mode (one-shot conversion mode)

- <1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the hardware trigger standby status.
- <2> If a hardware trigger is input while in the hardware trigger standby status, A/D conversion is performed on the analog input specified by the analog input channel specification register (ADS). The ADCS bit of the ADMO register is automatically set to 1 according to the hardware trigger input.
- <3> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH), and the A/D conversion end interrupt request signal (INTAD) is generated.
- <4> After A/D conversion ends, the ADCS bit is automatically cleared to 0, and the A/D converter enters the stop status.
- <5> If a hardware trigger is input during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is discarded.
- <6> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register. The partially converted data is discarded.
- <7> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and conversion restarts. The partially converted data is initialized.
- <8> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, the system enters the hardware trigger standby status, and the A/D converter enters the stop status. When ADCE = 0, inputting a hardware trigger is ignored and A/D conversion does not start.

<R> Figure 11-22. Example of Hardware Trigger Wait Mode (One-Shot Conversion Mode) Operation Timing

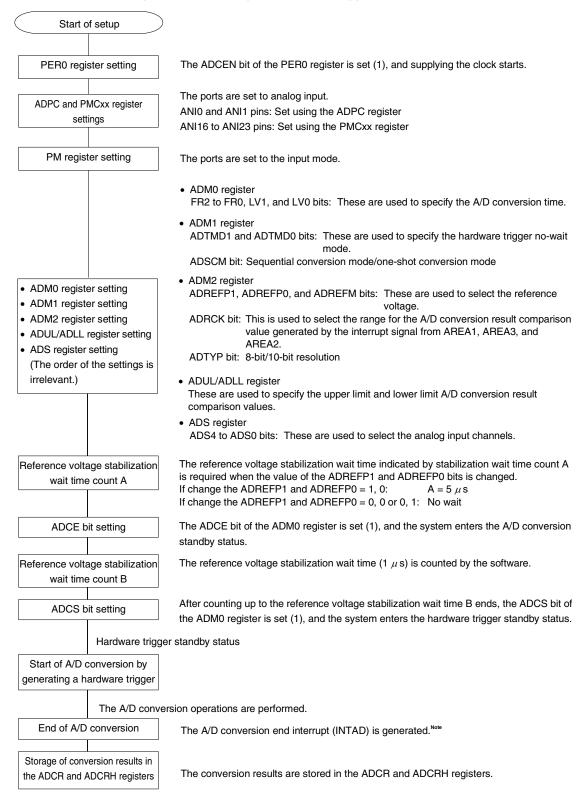

11.7 A/D Converter Setup Flowchart

The A/D converter setup flowchart in each operation mode is described below.

11.7.1 Setting up software trigger mode

<R>

Figure 11-23. Setting up Software Trigger Mode

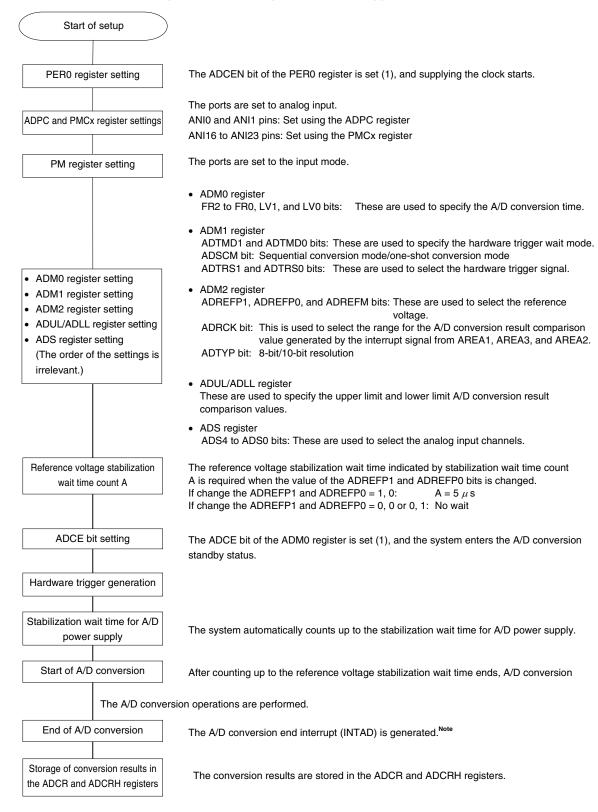


Note Depending on the settings of the ADRCK bit and ADUL/ADLL register, there is a possibility of no interrupt signal being generated. In this case, the results are not stored in the ADCR, ADCRH registers.

11.7.2 Setting up hardware trigger no-wait mode

<R>

Figure 11-24. Setting up Hardware Trigger No-Wait Mode

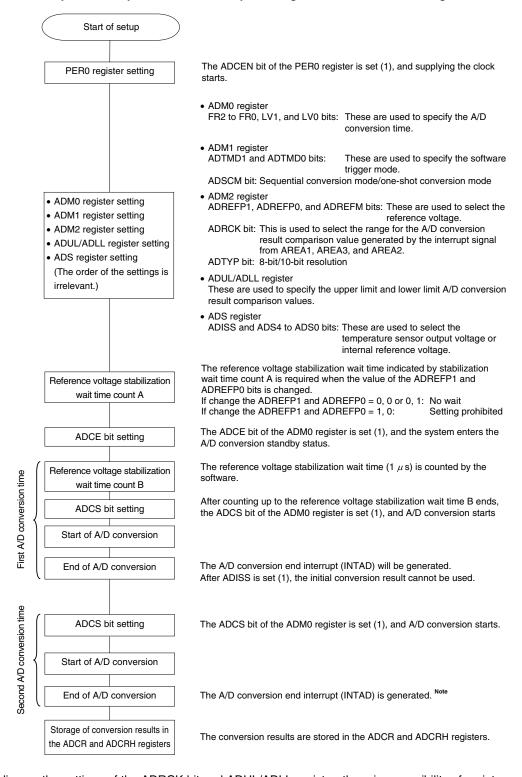


Note Depending on the settings of the ADRCK bit and ADUL/ADLL register, there is a possibility of no interrupt signal being generated. In this case, the results are not stored in the ADCR, ADCRH registers.

11.7.3 Setting up hardware trigger wait mode

<R>

Figure 11-25. Setting up Hardware Trigger Wait Mode

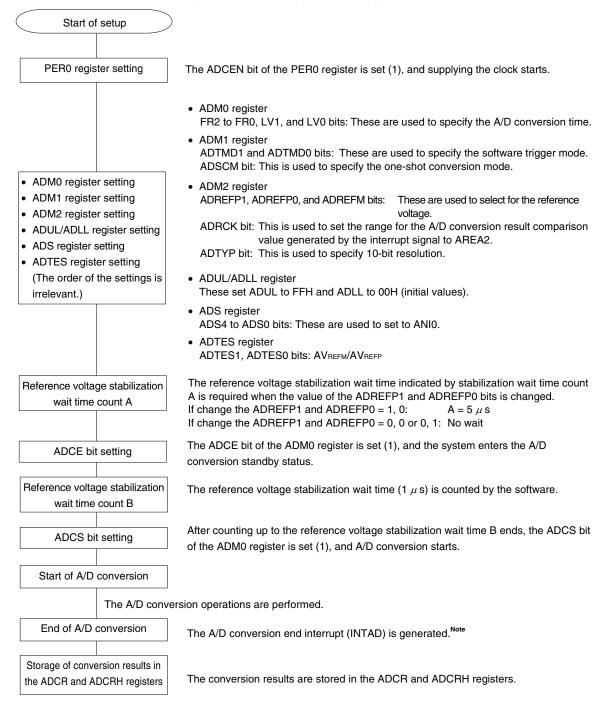


Note Depending on the settings of the ADRCK bit and ADUL/ADLL register, there is a possibility of no interrupt signal being generated. In this case, the results are not stored in the ADCR, ADCRH registers.

<R>

11.7.4 Setup when temperature sensor output/internal reference voltage output is selected (example for software trigger mode and one-shot conversion mode)

Figure 11-26. Setup when temperature sensor output voltage/internal reference voltage is selected


Note Depending on the settings of the ADRCK bit and ADUL/ADLL register, there is a possibility of no interrupt signal being generated. In this case, the results are not stored in the ADCR, ADCRH registers.

Caution This setting can be used only in HS (high-speed main) mode.

11.7.5 Setting up test mode

<R>

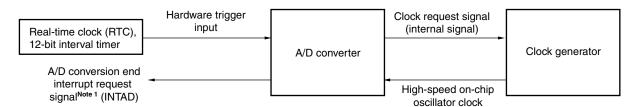
Figure 11-27. Setting up Test Trigger Mode

Note Depending on the settings of the ADRCK bit and ADUL/ADLL register, there is a possibility of no interrupt signal being generated. In this case, the results are not stored in the ADCR, ADCRH registers.

Caution For the procedure for testing the A/D converter, see 20.3.8 A/D test function.

11.8 SNOOZE Mode Function

In the SNOOZE mode, A/D conversion is triggered by inputting a hardware trigger in the STOP mode. Normally, A/D conversion is stopped while in the STOP mode, but, by using the SNOOZE mode, A/D conversion can be performed without operating the CPU by inputting a hardware trigger. This is effective for reducing the operation current.


If the A/D conversion result range is specified using the ADUL and ADLL registers, A/D conversion results can be judged at a certain interval of time in SNOOZE mode. Using this function enables power supply voltage monitoring and input key judgment based on A/D inputs.

In the SNOOZE mode, only the following two conversion modes can be used:

• Hardware trigger wait mode (one-shot conversion mode)

Caution That the SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fclk.

Figure 11-28. Block Diagram When Using SNOOZE Mode Function

When using the SNOOZE mode function, the initial setting of each register is specified before switching to the STOP mode. (For details about these settings, see 11.7.3 Setting up hardware trigger wait mode Note 2.) Just before move to STOP mode, bit 2 (AWC) of A/D converter mode register 2 (ADM2) is set to 1. After the initial settings are specified, bit 0 (ADCE) of A/D converter mode register 0 (ADM0) is set to 1.

If a hardware trigger is input after switching to the STOP mode, the high-speed on-chip oscillator clock is supplied to <R> the A/D converter. After supplying this clock, the system automatically counts up to the A/D power supply stabilization wait time, and then A/D conversion starts.

The SNOOZE mode operation after A/D conversion ends differs depending on whether an interrupt signal is generated^{Note 1}.

- Notes 1. Depending on the setting of the A/D conversion result comparison function (ADRCK bit, ADUL/ADLL register), there is a possibility of no interrupt signal being generated.
 - 2. Be sure to set the ADM1 register to E2H or E3H.

Remark The hardware trigger is INTRTC and INTIT. Specify the hardware trigger by using the A/D Converter Mode Register 1 (ADM1).

(1) If an interrupt is generated after A/D conversion ends

If the A/D conversion result value is inside the range of values specified by the A/D conversion result comparison function (which is set up by using the ADRCK bit and ADUL/ADLL register), the A/D conversion end interrupt request signal (INTAD) is generated.

When A/D conversion ends and an A/D conversion end interrupt request signal (INTAD) is generated, the A/D converter returns to normal operation mode from SNOOZE mode. At this time, be sure to clear bit 2 (AWC = 0: SNOOZE mode release) of the A/D converter mode register 2 (ADM2). If the AWC bit is left set to 1, A/D conversion will not start normally in the subsequent SNOOZE or normal operation mode.

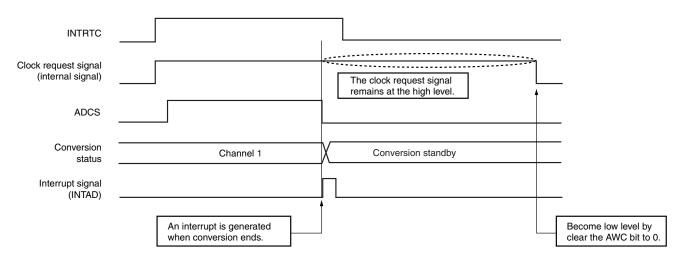


Figure 11-29. Operation Example When Interrupt Is Generated After A/D Conversion Ends

(2) If no interrupt is generated after A/D conversion ends

If the A/D conversion result value is outside the range of values specified by the A/D conversion result comparison function (which is set up by using the ADRCK bit and ADUL/ADLL register), the A/D conversion end interrupt request signal (INTAD) is not generated.

If the A/D conversion end interrupt request signal (INTAD) is not generated after A/D conversion ends, the clock request signal (an internal signal) is automatically set to the low level, and supplying the high-speed on-chip oscillator clock stops. If a hardware trigger is input later, A/D conversion work is again performed in the SNOOZE mode.

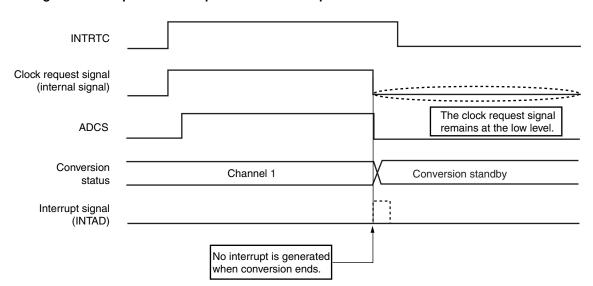


Figure 11-30. Operation Example When No Interrupt Is Generated After A/D Conversion Ends

(3) Operation when A/D conversion is interrupted or resumed

If A/D conversion is interrupted (by clearing bit 7 (ADCS) of A/D converter mode register 0 (ADM0) to 0), the clock request signal (an internal signal) is set to the low level, and supplying the high-speed on-chip oscillator clock stops. When another hardware trigger is input, the clock request signal is set to the high level, supplying the high-speed on-chip oscillator clock resumes, and A/D conversion starts in the SNOOZE mode.

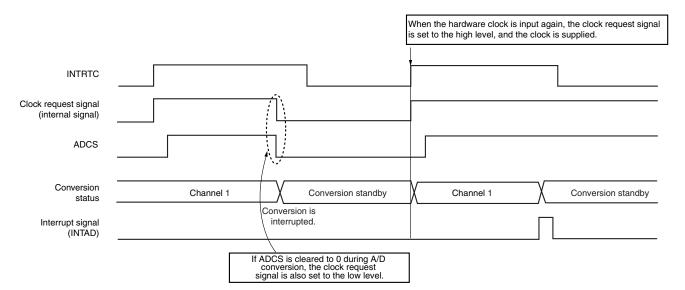


Figure 11-31. Example of Operation When A/D Conversion Is Interrupted or Resumed

11.9 How to Read A/D Converter Characteristics Table

Here, special terms unique to the A/D converter are explained.

(1) Resolution

This is the minimum analog input voltage that can be identified. That is, the percentage of the analog input voltage per bit of digital output is called 1LSB (Least Significant Bit). The percentage of 1LSB with respect to the full scale is expressed by %FSR (Full Scale Range).

1LSB is as follows when the resolution is 10 bits.

$$1LSB = 1/2^{10} = 1/1024$$

= 0.098%FSR

Accuracy has no relation to resolution, but is determined by overall error.

(2) Overall error

This shows the maximum error value between the actual measured value and the theoretical value.

Zero-scale error, full-scale error, integral linearity error, and differential linearity errors that are combinations of these express the overall error.

Note that the quantization error is not included in the overall error in the characteristics table.

(3) Quantization error

When analog values are converted to digital values, a $\pm 1/2$ LSB error naturally occurs. In an A/D converter, an analog input voltage in a range of $\pm 1/2$ LSB is converted to the same digital code, so a quantization error cannot be avoided. Note that the quantization error is not included in the overall error, zero-scale error, full-scale error, integral linearity error, and differential linearity error in the characteristics table.

Figure 11-32. Overall Error

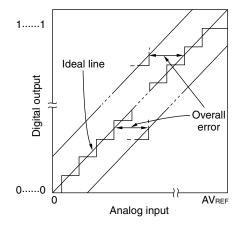
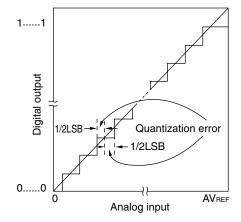



Figure 11-33. Quantization Error

(4) Zero-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (1/2LSB) when the digital output changes from 0......000 to 0......001.

If the actual measurement value is greater than the theoretical value, it shows the difference between the actual measurement value of the analog input voltage and the theoretical value (3/2LSB) when the digital output changes from 0.....01 to 0.....010.

(5) Full-scale error

This shows the difference between the actual measurement value of the analog input voltage and the theoretical value (Full-scale – 3/2LSB) when the digital output changes from 1......110 to 1......111.

(6) Integral linearity error

This shows the degree to which the conversion characteristics deviate from the ideal linear relationship. It expresses the maximum value of the difference between the actual measurement value and the ideal straight line when the zero-scale error and full-scale error are 0.

(7) Differential linearity error

While the ideal width of code output is 1LSB, this indicates the difference between the actual measurement value and the ideal value.

Figure 11-34. Zero-Scale Error

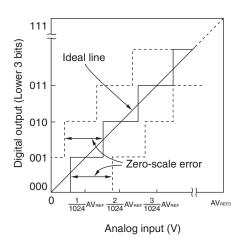


Figure 11-36. Integral Linearity Error

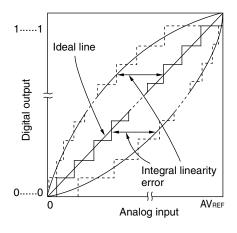


Figure 11-35. Full-Scale Error

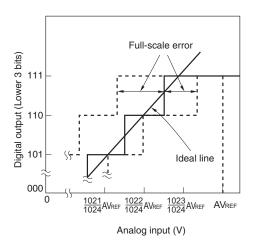
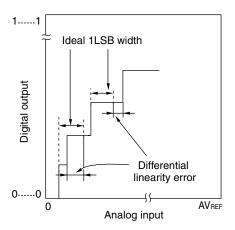
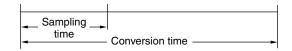



Figure 11-37. Differential Linearity Error


(8) Conversion time

This expresses the time from the start of sampling to when the digital output is obtained.

The sampling time is included in the conversion time in the characteristics table.

(9) Sampling time

This is the time the analog switch is turned on for the analog voltage to be sampled by the sample & hold circuit.

11.10 Cautions for A/D Converter

(1) Operating current in STOP mode

Shift to STOP mode after stopping the A/D converter (by setting bit 7 (ADCS) of A/D converter mode register 0 (ADM0) to 0). The operating current can be reduced by setting bit 0 (ADCE) of the ADM0 register to 0 at the same time.

To restart from the standby status, clear bit 0 (ADIF) of interrupt request flag register 1H (IF1H) to 0 and start operation.

(2) Input range of ANIO, ANI1 and ANI16 to ANI23 pins

Observe the rated range of the ANI0, ANI1 and ANI16 to ANI23 pins input voltage. If a voltage of V_{DD} and AV_{REFP} or higher and V_{SS} and AV_{REFM} or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.

When internal reference voltage (1.45 V) is selected as the reference voltage source for the + side of the A/D converter, do not input a voltage equal to or higher than the internal reference voltage (1.45 V) to a pin selected by the ADS register. However, it is no problem that a voltage equal to or higher than the internal reference voltage (1.45 V) is input to a pin not selected by the ADS register.

Caution Internal reference voltage (1.45 V) can be used only in HS (high-speed main) mode.

(3) Conflicting operations

- <1> Conflict between the A/D conversion result register (ADCR, ADCRH) write and the ADCR or ADCRH register read by instruction upon the end of conversion
 - The ADCR or ADCRH register read has priority. After the read operation, the new conversion result is written to the ADCR or ADCRH registers.
- <2> Conflict between the ADCR or ADCRH register write and the A/D converter mode register 0 (ADM0) write, the analog input channel specification register (ADS), or A/D port configuration register (ADPC) write upon the end of conversion
 - The ADM0, ADS, or ADPC registers write has priority. The ADCR or ADCRH register write is not performed, nor is the conversion end interrupt signal (INTAD) generated.

(4) Noise countermeasures

To maintain the 10-bit resolution, attention must be paid to noise input to the AVREFP, VDD, ANIO, ANI1 and ANI16 to ANI23 pins.

- <1> Connect a capacitor with a low equivalent resistance and a good frequency response to the power supply.
- <2> The higher the output impedance of the analog input source, the greater the influence. To reduce the noise, connecting an external capacitor as shown in Figure 11-38 is recommended.
- <3> Do not switch these pins with other pins during conversion.
- <4> The accuracy is improved if the HALT mode is set immediately after the start of conversion.

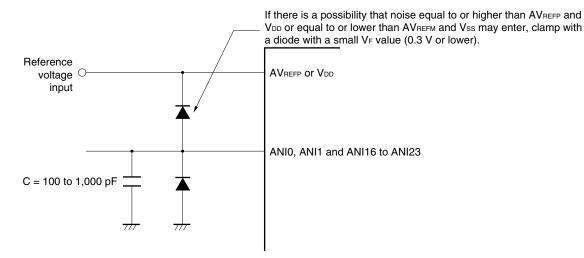


Figure 11-38. Analog Input Pin Connection

(5) Analog input (ANIn) pins

- <1> The analog input pins (ANI0 and ANI1) are also used as input port pins (P20 and P21). When A/D conversion is performed with any of the ANI0 and ANI1 pins selected, do not change to output value P20 and P21 while conversion is in progress; otherwise the conversion resolution may be degraded.
- <R> <2> If a pin adjacent to a pin that is being A/D converted is used as a digital I/O port pin, the A/D conversion result might differ from the expected value due to a coupling noise. Be sure to avoid the input or output of digital signals and signals with similarly sharp transitions during conversion.

(6) Input impedance of analog input (ANIn) pins

This A/D converter charges a sampling capacitor for sampling during sampling time.

Therefore, only a leakage current flows when sampling is not in progress, and a current that charges the capacitor flows during sampling. Consequently, the input impedance fluctuates depending on whether sampling is in progress, and on the other states.

<R> To make sure that sampling is effective, however, we recommend using the converter with analog input sources that have output impedances no greater than 1 kΩ. If a source has a higher output impedance, lengthen the sampling time or connect a larger capacitor (with a value of about 0.1 μ F) to the pin from among ANI0, ANI1, and ANI16 to ANI23 to which the source is connected (see **Figure 11-38**). The sampling capacitor may be being charged while the setting of the ADCS bit is 0 and immediately after sampling is restarted and so is not defined at these times. Accordingly, the state of conversion is undefined after charging starts in the next round of conversion after the value of the ADCS bit has been 1 or when conversion is repeated. Thus, to secure full charging regardless of the size of fluctuations in the analog signal, ensure that the output impedances of the sources of analog inputs are low or secure sufficient time for the completion of conversion.

(7) Interrupt request flag (ADIF)

The interrupt request flag (ADIF) is not cleared even if the analog input channel specification register (ADS) is changed.

Therefore, if an analog input pin is changed during A/D conversion, the A/D conversion result and ADIF flag for the pre-change analog input may be set just before the ADS register rewrite. Caution is therefore required since, at this time, when ADIF flag is read immediately after the ADS register rewrite, ADIF flag is set despite the fact A/D conversion for the post-change analog input has not ended.

When A/D conversion is stopped and then resumed, clear ADIF flag before the A/D conversion operation is resumed.

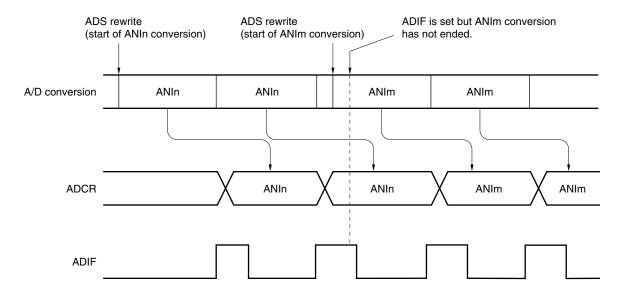


Figure 11-39. Timing of A/D Conversion End Interrupt Request Generation

(8) Conversion results just after A/D conversion start

In software trigger mode and hardware trigger no-wait mode, if the ADCE bit is set to 1 and then the ADCS bit is set to 1 before 1.0 μ s elapses, the A/D conversion value immediately after A/D conversion starts might not satisfy the ratings. In this case, take measures such as polling the A/D conversion end interrupt request signal (INTAD) and discarding the first conversion result.

(9) A/D conversion result register (ADCR, ADCRH) read operation

When a write operation is performed to A/D converter mode register 0 (ADM0), analog input channel specification register (ADS), A/D port configuration register (ADPC), and port mode control register (PMC), the contents of the ADCR and ADCRH registers may become undefined. Read the conversion result following conversion completion before writing to the ADM0, ADS, ADPC, or PMC register. Using a timing other than the above may cause an incorrect conversion result to be read.

(10) Internal equivalent circuit

The equivalent circuit of the analog input block is shown below.

Figure 11-40. Internal Equivalent Circuit of ANIn Pin

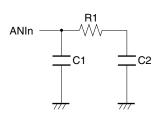


Table 11-6. Resistance and Capacitance Values of Equivalent Circuit (Reference Values)

AVREFP, VDD	ANIn Pins	R1 [kΩ]	C1 [pF]	C2 [pF]
$3.6~V \leq V_{DD} \leq 5.5~V$	ANI0 and ANI1	14	8	2.5
	ANI16 to ANI23	18	8	7.0
$2.7~V \leq V_{DD} \leq 3.6~V$	ANI0 and ANI1	39	8	2.5
	ANI16 to ANI23	53	8	7.0
$1.8~V \leq V_{DD} \leq 2.7~V$	ANI0 and ANI1	231	8	2.5
	ANI16 to ANI23	321	8	7.0
$1.6~V \leq V_{DD} < 2.7~V$	ANI0 and ANI1	632	8	2.5
	ANI16 to ANI23	902	8	7.0

Caution The A/D converter's internal voltage cannot be used in SNOOZE mode.

Remark The resistance and capacitance values shown in Table 11-6 are not guaranteed values.

(11) Starting the A/D converter

Start the A/D converter after the AVREFP and VDD voltages stabilize.

CHAPTER 12 SERIAL ARRAY UNIT

Serial array unit has two serial channels. Each channel can achieve 3-wire serial (CSI), and UART. Function assignment of each channel supported by the R7F0C001G/L, R7F0C002G/L is as shown below.

Channel	Used as CSI	Used as UART
0	CSI00	UART0
1	CSI01	

12.1 Functions of Serial Array Unit

Each serial interface supported by the R7F0C001G/L, R7F0C002G/L has the following features.

12.1.1 3-wire serial I/O (CSI00, CSI01)

Data is transmitted or received in synchronization with the serial clock (SCK) output from the master channel. 3-wire serial communication is clocked communication performed by using three communication lines: one for the serial clock (SCK), one for transmitting serial data (SO), one for receiving serial data (SI).

For details about the settings, see 12.5 Operation of 3-Wire Serial I/O (CSI00, CSI01) Communication.

<R> [Data transmission/reception]

- Data length of 7 or 8 bits
- Phase control of transmit/receive data
- MSB/LSB first selectable

[Clock control]

- · Master/slave selection
- Phase control of I/O clock
- Setting of transfer period by prescaler and internal counter of each channel
- Maximum transfer rate

During master communication (CSI00): Max. fmck/2 $^{\rm Note \, 1, \, 2}$ During master communication (CSI01): Max. fmck/4 $^{\rm Note \, 2}$

During slave communication: Max. fmck/6 Note 2

[Interrupt function]

· Transfer end interrupt/buffer empty interrupt

[Error detection flag]

Overrun error

In addition, CSI00 supports the SNOOZE mode. When \overline{SCK} input is detected while in the STOP mode, the SNOOZE mode makes data reception that does not require the CPU possible.

Notes 1. In master communication (CSI00), maximum transfer rate become fmck/2 when the following conditions.

- $2.7 \text{ V} \leq \text{EV}_{DD} = \text{V}_{DD} \leq 5.5 \text{ V}$
- fмcк ≤ 12 MHz

Other cases, maximum transfer rate become fmck/4.

2. Use the clocks within a range satisfying the \overline{SCK} cycle time (tkcy) characteristics (see **CHAPTER 27 ELECTRICAL SPECIFICATIONS**).

12.1.2 UART (UARTO)

This is a start-stop synchronization function using two lines: serial data transmission (TxD) and serial data reception (RxD) lines. By using these two communication lines, each data frame, which consist of a start bit, data, parity bit, and stop bit, is transferred asynchronously (using the internal baud rate) between the microcontroller and the other communication party. Full-duplex UART communication can be performed by using a channel dedicated to transmission (even-numbered channel) and a channel dedicated to reception (odd-numbered channel).

For details about the settings, see 12.6 Operation of UART (UART0) Communication.

[Data transmission/reception]

- Data length of 7, 8, or 9 bits
- · Select the MSB/LSB first
- · Level setting of transmit/receive data and select of reverse
- · Parity bit appending and parity check functions
- · Stop bit appending

[Interrupt function]

- Transfer end interrupt/buffer empty interrupt
- · Error interrupt in case of framing error, parity error, or overrun error

[Error detection flag]

• Framing error, parity error, or overrun error

In addition, UART0 supports the SNOOZE mode. When RxD input is detected while in the STOP mode, the SNOOZE mode makes data reception that does not require the CPU possible.

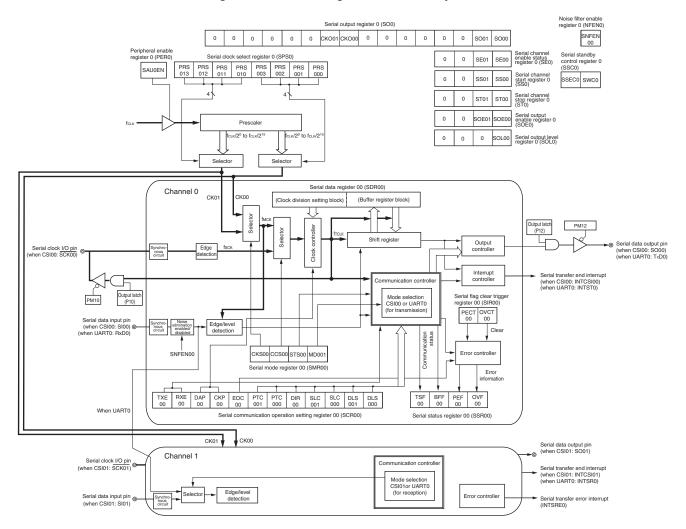
12.2 Configuration of Serial Array Unit

The serial array unit includes the following hardware.

Table 12-1. Configuration of Serial Array Unit

Item	Configuration
Shift register	9 bits
Buffer register	Lower 9 bits of serial data register mn (SDRmn) ^{Note}
Serial clock I/O	SCK00, SCK01 pins (for 3-wire serial I/O)
Serial data input	SI00, SI01 pins (for 3-wire serial I/O), RxD0 pin (for UART)
Serial data output	SO00, SO01 pins (for 3-wire serial I/O), TxD0 pin (for UART), output controller
Control registers	<registers block="" of="" setting="" unit=""> Peripheral enable register 0 (PER0) Serial clock select register m (SPSm) Serial channel enable status register m (SEm) Serial channel start register m (SSm) Serial channel stop register m (STm) Serial output enable register m (SOEm) Serial output register m (SOEm) Serial output level register m (SOLm) Serial standby control register m (SSCm) Noise filter enable register 0 (NFEN0) <registers channel="" each="" of=""> Serial data register mn (SDRmn) Serial rommunication operation setting register mn (SCRmn) Serial status register mn (SSRmn) Serial flag clear trigger register mn (SIRmn) Port input mode register 1 (PIM1) Port output mode register 9, 3 (PFSEG0, PFSEG3) Port mode register 1 (PM1) Port register 1 (PI)</registers></registers>

Note The lower 8 bits of serial data register mn (SDRmn) can be read or written as the following SFR, depending on the communication mode.


- CSIp communication ... SIOp (CSIp data register)
- UARTq reception ... RXDq (UARTq receive data register)
- UARTq transmission ... TXDq (UARTq transmit data register)

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), q: UART number (q = 0)

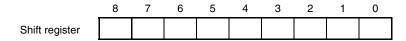
Figure 12-1 shows the block diagram of the serial array unit.

<R>

Figure 12-1. Block Diagram of Serial Array Unit

12.2.1 Shift register

This is a 9-bit register that converts parallel data into serial data or vice versa.


In case of the UART communication of nine bits of data, nine bits (bits 0 to 8) are used.

During reception, it converts data input to the serial pin into parallel data.

When data is transmitted, the value set to this register is output as serial data from the serial output pin.

The shift register cannot be directly manipulated by program.

To read or write the shift register, use the lower 9 bits of serial data register mn (SDRmn).

12.2.2 Lower 9 bits of the serial data register mn (SDRmn)

The SDRmn register is the transmit/receive data register (16 bits) of channel n. Bits 8 to 0 (lower 9 bits) function as a transmit/receive buffer register, and bits 15 to 9 are used as a register that sets the division ratio of the operation clock (fmck).

When data is received, parallel data converted by the shift register is stored in the lower 9 bits. When data is to be transmitted, set transmit to be transferred to the shift register to the lower 9 bits.

The data stored in the lower 9 bits of this register is as follows, depending on the setting of bits 0 and 1 (DLSmn0, DLSmn1) of serial communication operation setting register mn (SCRmn), regardless of the output sequence of the data.

- 7-bit data length (stored in bits 0 to 6 of SDRmn register)
- 8-bit data length (stored in bits 0 to 7 of SDRmn register)
- 9-bit data length (stored in bits 0 to 8 of SDRmn register) (settable in UART0 mode only)

The SDRmn register can be read or written in 16-bit units.

The lower 8 bits of the SDRmn register can be read or written Note as the following SFR, depending on the communication mode.

- CSIp communication ... SIOp (CSIp data register)
- UARTq reception ... RXDq (UARTq receive data register)
- UARTq transmission ... TXDq (UARTq transmit data register)

Reset signal generation clears the SDRmn register to 0000H.

Note Writing in 8-bit units is prohibited when the operation is stopped (SEmn = 0).

Remarks 1. After data is received, "0" is stored in bits 0 to 8 in bit portions that exceed the data length.

2. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01),q: UART number (q = 0)

Address: FFF10H, FFF11H (SDR00), FFF12H, FFF13H (SDR01) After reset: 0000H R/W FFF11H (SDR00) FFF10H (SDR00) 7 15 14 10 9 8 6 3 2 13 12 11 SDRmn Shift register

Figure 12-2. Format of Serial Data Register mn (SDRmn) (mn = 00, 01)

Remark For the function of the higher 7 bits of the SDRmn register, see 12.3 Registers Controlling Serial Array Unit.

12.3 Registers Controlling Serial Array Unit

Serial array unit is controlled by the following registers.

- Peripheral enable register 0 (PER0)
- Serial clock select register m (SPSm)
- Serial mode register mn (SMRmn)
- Serial communication operation setting register mn (SCRmn)
- Serial data register mn (SDRmn)
- Serial flag clear trigger register mn (SIRmn)
- Serial status register mn (SSRmn)
- Serial channel start register m (SSm)
- Serial channel stop register m (STm)
- Serial channel enable status register m (SEm)
- Serial output enable register m (SOEm)
- Serial output level register m (SOLm)
- Serial output register m (SOm)
- Serial standby control register m (SSCm)
- Noise filter enable register 0 (NFEN0)
- Port input mode register 1 (PIM1)
- Port output mode register 1 (POM1)
- LCD port function registers 0, 3 (PFSEG0, PFSEG3)
- Port mode register 1 (PM1)
- Port registers 1 (P1)

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1)

12.3.1 Peripheral enable register 0 (PER0)

PER0 is used to enable or disable supplying the clock to the peripheral hardware. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

When serial array unit is used, be sure to set bit 2 (SAU0EN) of this register to 1.

The PER0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears the PER0 register to 00H.

Figure 12-3. Format of Peripheral Enable Register 0 (PER0)

Address: F00F0H After reset: 00H R/W Symbol <7> <5> 3 <2> <0> 1 PER0 **RTCEN** 0 **ADCEN** 0 0 SAU0EN 0 TAU0EN

SAU0EN	Control of serial array unit input clock supply
0	Stops supply of input clock. SFR used by serial array unit cannot be written. Serial array unit is in the reset status.
1	Enables input clock supply. • SFR used by serial array unit can be read/written.

<R>

- Cautions 1. When setting serial array unit, be sure to first set the following registers with the SAU0EN bit set to 1. If SAU0EN = 0, control registers of serial array unit m become default values and writing to them is ignored (except for the noise filter enable register 0 (NFEN0), port input mode register 1 (PIM1), port output mode register 1 (POM1), LCD port function registers 0, 3 (PFSEG0, PFSEG3), port mode register 1 (PM1), and port register 1 (P1)).
 - Serial clock select register m (SPSm)
 - Serial mode register mn (SMRmn)
 - Serial communication operation setting register mn (SCRmn)
 - Serial data register mn (SDRmn)
 - Serial flag clear trigger register mn (SIRmn)
 - Serial status register mn (SSRmn)
 - Serial channel start register m (SSm)
 - Serial channel stop register m (STm)
 - Serial channel enable status register m (SEm)
 - Serial output enable register m (SOEm)
 - Serial output level register m (SOLm)
 - Serial output register m (SOm)
 - Serial standby control register m (SSCm)
 - 2. Be sure to clear bits 1, 3, 4, 6 to "0".

12.3.2 Serial clock select register m (SPSm)

The SPSm register is a 16-bit register that is used to select two types of operation clocks (CKm0, CKm1) that are commonly supplied to each channel. CKm1 is selected by bits 7 to 4 of the SPSm register, and CKm0 is selected by bits 3 to 0.

Rewriting the SPSm register is prohibited when the register is in operation (when SEmn = 1).

The SPSm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SPSm register can be set with an 8-bit memory manipulation instruction with SPSmL.

Reset signal generation clears the SPSm register to 0000H.

Figure 12-4. Format of Serial Clock Select Register m (SPSm)

Address: F0126H, F0127H After reset: 0000H R/W 7 3 0 Symbol 13 12 9 6 5 4 2 1 15 11 10 8 SPSm **PRS PRS PRS PRS** PRS **PRS PRS PRS** 0 0 0 0 0 0 0 0 m10 m03 m02 m01 m00 m13 m12 m11

PRS	PRS	PRS	PRS	Section of operation clock (CKmk) Note 1								
mk3	mk2	mk1	mk0		fclk = 2 MHz	fclk = 5 MHz	fclk = 10 MHz	fclk = 20 MHz	fclk = 24 MHz			
0	0	0	0	fclk	2 MHz	5 MHz	10 MHz	20 MHz	24 MHz			
0	0	0	1	fclk/2	1 MHz	2.5 MHz	5 MHz	10 MHz	12 MHz			
0	0	1	0	fclk/2 ²	500 kHz	1.25 MHz	2.5 MHz	5 MHz	6 MHz			
0	0	1	1	fclk/2 ³	250 kHz	625 kHz	1.25 MHz	2.5 MHz	3 MHz			
0	1	0	0	fclk/2 ⁴	125 kHz	313 kHz	625 kHz	1.25 MHz	1.5 MHz			
0	1	0	1	fclk/2 ⁵	62.5 kHz	156 kHz 313 kHz (625 kHz	750 kHz			
0	1	1	0	fclk/2 ⁶	31.3 kHz	31.3 kHz 78.1 kHz 156 kHz 313 kHz		313 kHz	375 kHz			
0	1	1	1	fclk/2 ⁷	15.6 kHz	15.6 kHz 39.1 kHz 78.1 kHz 156 kHz		156 kHz	187.5 kHz			
1	0	0	0	fclk/28	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	93.8 kHz			
1	0	0	1	fclk/29	3.91 kHz	9.77 kHz	19.5 kHz	39.1 kHz	46.9 kHz			
1	0	1	0	fclk/2 ¹⁰	1.95 kHz	4.88 kHz	9.77 kHz	19.5 kHz	23.4 kHz			
1	0	1	1	fclk/2 ¹¹	977 Hz	2.44 kHz	4.88 kHz	9.77 kHz	11.7 kHz			
1	1	0	0	fclk/2 ¹²	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	5.86 kHz			
1	1	0	1	fclk/2 ¹³	244 Hz	610 Hz	1.22 kHz	2.44 kHz	2.93 kHz			
1	1	1	0	fclk/2 ¹⁴	122 Hz	305 Hz	610 Hz	1.22 kHz	1.46 kHz			
1	1	1	1	fclk/2 ¹⁵	61 Hz	153 kHz	305 Hz	610 Hz	732 Hz			

Note When changing the clock selected for fcLK (by changing the system clock control register (CKC) value), do so after having stopped (serial channel stop register m (STm) = 000FH) the operation of the serial array unit (SAU).

Caution Be sure to clear bits 15 to 8 to "0".

Remarks 1. fclk: CPU/peripheral hardware clock frequency fsub: Subsystem clock frequency

- 2. m: Unit number (m = 0)
- **3.** k = 0, 1

12.3.3 Serial mode register mn (SMRmn)

The SMRmn register is a register that sets an operation mode of channel n. It is also used to select an operation clock (fmck), specify whether the serial clock (fsck) may be input or not, set a start trigger, an operation mode (CSI, or UART), and an interrupt source. This register is also used to invert the level of the receive data only in the UART mode.

Rewriting the SMRmn register is prohibited when the register is in operation (when SEmn = 1). However, the MDmn0 bit can be rewritten during operation.

The SMRmn register can be set by a 16-bit memory manipulation instruction.

Reset signal generation sets the SMRmn register to 0020H.

Figure 12-5. Format of Serial Mode Register mn (SMRmn) (1/2)

Address: F0110H, F0111H (SMR00), F0112H, F0113H (SMR01) After reset: 0020H R/W 5 0 Symbol 14 13 12 6 3 15 11 10 SMRmn CKS ccs SIS MD MD 0 0 0 0 0 STS 0 1 0 0 0 mn^{Note} mn0 mn1 mn0 mn mn

CKS	Selection of operation clock (fmck) of channel n							
mn								
0	Operation clock CKm0 set by the SPSm register							
1	Operation clock CKm1 set by the SPSm register							
	tion clock (fmck) is used by the edge detector. In addition, depending on the setting of the CCSmn bit and the r 7 bits of the SDRmn register, a transfer clock (ftclk) is generated.							

ccs	Selection of transfer clock (frclk) of channel n								
mn									
0	Divided operation clock fmck specified by the CKSmn bit								
1	Clock input fsck from the SCKp pin (slave transfer in CSI mode)								
error o	fer clock frouk is used for the shift register, communication controller, output controller, interrupt controller, and controller. When CCSmn = 0, the division ratio of operation clock (fmck) is set by the higher 7 bits of the								

STS	Selection of start trigger source					
mn						
0	Only software trigger is valid (selected for CSI and UART transmission).					
1	Valid edge of the RxDq pin (selected for UART reception)					
Transf	Transfer is started when the above source is satisfied after 1 is set to the SSm register.					

Note The SMR01 register only.

Caution Be sure to clear bits 13 to 6, and 4 to 2 for the SMR00 register, or bits 13 to 9, 7, 4 to 2 for the SMR01 register to "0". And be sure to set bit 5 to "1".

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), q: UART number (q = 0)

Figure 12-5. Format of Serial Mode Register mn (SMRmn) (2/2)

Address: F0110H, F0111H (SMR00), F0112H, F0113H (SMR01) After reset: 0020H R/W

Symbol SMRmn

1	5	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CI	KS	ccs	0	0	0	0	0	STS	0	SIS	1	0	0	0	MD	MD
m	nn	mn						mn ^{Note}		mn0					mn1	mn0
										Note						

SIS mn0	Controls inversion of level of receive data of channel n in UART mode
0	Falling edge is detected as the start bit. The input communication data is captured as is.
1	Rising edge is detected as the start bit. The input communication data is inverted and captured.

MD	Setting of operation mode of channel n						
mn1							
0	CSI mode						
1	UART mode						

For successive transmission, the next transmit data is written by setting the MDmn0 bit to 1 when SDRmn data has run out.					
SE					

Note The SMR01 register only.

Caution Be sure to clear bits 13 to 6, and 4 to 2 for the SMR00 register, or bits 13 to 9, 7, 4 to 2 for the SMR01 register to "0". And be sure to set bit 5 to "1".

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), q: UART number (q = 0)

12.3.4 Serial communication operation setting register mn (SCRmn)

The SCRmn register is a communication operation setting register of channel n. It is used to set a data transmission/reception mode, phase of data and clock, whether an error signal is to be masked or not, parity bit, start bit, stop bit, and data length.

Rewriting the SCRmn register is prohibited when the register is in operation (when SEmn = 1).

The SCRmn register can be set by a 16-bit memory manipulation instruction.

Reset signal generation sets the SCRmn register to 0087H.

Figure 12-6. Format of Serial Communication Operation Setting Register mn (SCRmn) (1/2)

Address: F0118H, F0119H (SCR00), F011AH, F011BH (SCR01) After reset: 0087H R/W Symbol 15 14 13 12 11 10 8 6 5 3 1 0 PTC DLS SCRmn TXE RXE DAP CKP EOC PTC DIR 0 SLC SLC 1 DLS mn0 mn1 mn0 mn mn mn mn mn mn1 mn1 mn0 mn

TXE	RXE	Setting of operation mode of channel n
mn	mn	
0	0	Disable communication.
0	1	Reception only
1	0	Transmission only
1	1	Transmission/reception

DAP	CKP	Selection of data and clock phase in CSI mode	Туре
mn	mn		
0	0	SCKp JJJJJJJJJ	1
		SOp <u>D7 D6 D5 D4 D3 D2 D1 D0</u>	
		SIp input timing	
0	1	SCKP	2
		SOp <u>X D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0</u>	
		Slp input timing	
1	0	SCKp JJJJJJJJJ	3
		SOp <u>X D7 X D6 X D5 X D4 X D3 X D2 X D1 X D0</u>	
		SIp input timing	
1	1	SCKp	4
		SOp <u>\</u>	
		SIp input timing	
Be sui	re to set	t DAPmn, CKPmn = 0, 0 in the UART mode.	

EOC	Selection of masking of error interrupt signal (INTSREx (x = 0 to 3))							
mn								
0	Masks error interrupt INTSREx (INTSRx is not masked).							
1	Enables generation of error interrupt INTSREx (INTSRx is masked if an error occurs).							
Set E0	Set EOCmn = 0 in the CSI mode, and during UART transmission Note 2.							

Notes 1. The SCR00 register only.

2. When using CSIp not with EOCmn = 0, error interrupt INTSREn may be generated.

Caution Be sure to clear the following bits to "0".

SCR00: bits 11, 6, 3 SCR01: bits 11, 6, 5, 3 Be sure to set bit 2 to "1".

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01)

Figure 12-6. Format of Serial Communication Operation Setting Register mn (SCRmn) (2/2)

Address: F0118H, F0119H (SCR00), F011AH, F011BH (SCR01) After reset: 0087H R/W

Symbol SCRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TXE	RXE	DAP	CKP	0	EOC	PTC	PTC	DIR	0	SLC	SLC	0	1	DLS	DLS
mn	mn	mn	mn		mn	mn1	mn0	mn		mn1	mn0			mn1	mn0
										Note 1					

PTC	PTC	Setting of parity bit in UART mode							
mn1	mn0	Transmission	Reception						
0	0	Does not output the parity bit.	Receives without parity						
0	1	Outputs 0 parity Note 2.	No parity judgment						
1	0	Outputs even parity.	Judged as even parity.						
1	1	Outputs odd parity. Judges as odd parity.							
Be sui	Be sure to set PTCmn1, PTCmn0 = 0, 0 in the CSI mode.								

DIR	Selection of data transfer sequence in CSI and UART modes								
mn									
0	Inputs/outputs data with MSB first.								
1	Inputs/outputs data with LSB first.								

SLC	SLC	Setting of stop bit in UART mode						
mn1 Note 1	mn0							
0	0	No stop bit						
0	1	Stop bit length = 1 bit						
1	0	Stop bit length = 2 bits (mn = 00, 02, 10, 12 only)						
1	1	Setting prohibited						

When the transfer end interrupt is selected, the interrupt is generated when all stop bits have been completely transferred.

Set 1 bit (SLCmn1, SLCmn0 = 0, 1) during UART reception. Set no stop bit (SLCmn1, SLCmn0 = 0, 0) in the CSI mode.

DLS	DLS	Setting of data length in CSI and UART modes						
mn1	mn0							
0	1	9-bit data length (stored in bits 0 to 8 of the SDRmn register) (settable in UART0 mode only)						
1	0	7-bit data length (stored in bits 0 to 6 of the SDRmn register)						
1	1 8-bit data length (stored in bits 0 to 7 of the SDRmn register)							
Other than above		Setting prohibited						

Notes 1. The SCR00 register only.

2. 0 is always added regardless of the data contents.

Caution Be sure to clear the following bits to "0".

SCR00: bits 11, 6, 3 SCR01: bits 11, 6, 5, 3 Be sure to set bit 2 to "1".

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01)

<R>> 12.3.5 Higher 7 bits of the serial data register mn (SDRmn)

The SDRmn register is the transmit/receive data register (16 bits) of channel n. Bits 8 to 0 (lower 9 bits) function as a transmit/receive buffer register, and bits 15 to 9 (higher 7 bits) are used as a register that sets the division ratio of the operation clock (fmck).

If the CCSmn bit of serial mode register mn (SMRmn) is cleared to 0, the clock set by dividing the operating clock by bits 15 to 9 (higher 7 bits) of the SDRmn register is used as the transfer clock.

The lower 9 bits of the SDRmn register function as a transmit/receive buffer register. During reception, the parallel data converted by the shift register is stored in the lower 9 bits, and during transmission, the data to be transmitted to the shift register is set to the lower 9 bits.

If the CCSmn bit of serial mode register mn (SMRmn) is set to 1, set bits 15 to 9 (higher 7 bits) of SDR00, SDR01, SDR10, and SDR11 to 0000000B. The input clock fsck (slave transfer in CSI mode) from the SCKp pin is used as the transfer clock.

The lower 8/9 bits of the SDRmn register function as a transmit/receive buffer register. During reception, the parallel data converted by the shift register is stored in the lower 8/9 bits, and during transmission, the data to be transmitted to the shift register is set to the lower 8/9 bits.

The SDRmn register can be read or written in 16-bit units.

However, the higher 7 bits can be written or read only when the operation is stopped (SEmn = 0). During operation (SEmn = 1), a value is written only to the lower 9 bits of the SDRmn register. When the SDRmn register is read during operation, 0 is always read.

Reset signal generation clears the SDRmn register to 0000H.

Address: FFF10H, FFF11H (SDR00), FFF12H, FFF13H (SDR01) After reset: 0000H R/W FFF11H (SDR00) FFF10H (SDR00) Symbol 15 14 13 12 11 10 9 8 7 6 3 2 0

Figure 12-7. Format of Serial Data Register mn (SDRmn)

		SD	Rmn[1	5:9]			Transfer clock setting by dividing the operating clock (fмск)
0	0	0	0	0	0	0	fmck/2
0	0	0	0	0	0	1	fmck/4
0	0	0	0	0	1	0	fmck/6
0	0	0	0	0	1	1	fmck/8
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•
1	1	1	1	1	1	0	fmck/254
1	1	1	1	1	1	1	fMCK/256

Cautions 1. Setting SDRmn[15:9] = (0000000B, 0000001B) is prohibited when UART0 is used.

2. Do not write eight bits to the lower eight bits if operation is stopped (SEmn = 0). (If these bits are written to, the higher seven bits are cleared to 0.)

Remarks 1. For the function of the lower 9 bits of the SDRmn register, see 12.2 Configuration of Serial Array Unit.

2. m: Unit number (m = 0), n: Channel number (n = 0, 1)

SDRmn

12.3.6 Serial flag clear trigger register mn (SIRmn)

The SIRmn register is a trigger register that is used to clear each error flag of channel n.

When each bit (FECTmn, PECTmn, OVCTmn) of this register is set to 1, the corresponding bit (FEFmn, PEFmn, OVFmn) of serial status register mn is cleared to 0. Because the SIRmn register is a trigger register, it is cleared immediately when the corresponding bit of the SSRmn register is cleared.

The SIRmn register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SIRmn register can be set with an 8-bit memory manipulation instruction with SIRmnL.

Reset signal generation clears the SIRmn register to 0000H.

Figure 12-8. Format of Serial Flag Clear Trigger Register mn (SIRmn)

Address: F0108H, F0109H (SIR00), F010AH, F010BH (SIR01) After reset: 0000H R/W 0 Symbol 15 13 12 5 3 14 11 PEC OVC SIRmn 0 0 0 0 0 0 0 0 0 0 0 0 **FECT** mn^{Note} Tmn Tmn

FEC Tmn	Clear trigger of framing error of channel n
0	Not cleared
1	Clears the FEFmn bit of the SSRmn register to 0.

PEC	Clear trigger of parity error flag of channel n
Tmn	
0	Not cleared
1	Clears the PEFmn bit of the SSRmn register to 0.

OVC Tmn	Clear trigger of overrun error flag of channel n
0	Not cleared
1	Clears the OVFmn bit of the SSRmn register to 0.

Note The SIR01 register only.

Caution Be sure to clear bits 15 to 3 (or bits 15 to 2 for the SIR00 register) to "0".

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1)

2. When the SIRmn register is read, 0000H is always read.

12.3.7 Serial status register mn (SSRmn)

The SSRmn register is a register that indicates the communication status and error occurrence status of channel n. The errors indicated by this register are a framing error, parity error, and overrun error.

The SSRmn register can be read by a 16-bit memory manipulation instruction.

The lower 8 bits of the SSRmn register can be set with an 8-bit memory manipulation instruction with SSRmnL.

Reset signal generation clears the SSRmn register to 0000H.

Figure 12-9. Format of Serial Status Register mn (SSRmn) (1/2)

Address: F0100H, F0101H (SSR00), F0102H, F0103H (SSR01) After reset: 0000H R 5 Symbol 15 14 13 12 10 6 0 11 3 SSRmn 0 **TSF** BFF **FEF OVF** 0 0 0 0 0 0 mn^{Not} mn mn mn mn

TSF	Communication status indication flag of channel n
mn	
0	Communication is stopped or suspended.
1	Communication is in progress.

<Clear conditions>

- The STmn bit of the STm register is set to 1 (communication is stopped) or the SSmn bit of the SSm register is set to 1 (communication is suspended).
- Communication ends.

<Set condition>

· Communication starts.

BFF	Buffer register status indication flag of channel n							
mn								
0	Valid data is not stored in the SDRmn register.							
1	Valid data is stored in the SDRmn register.							

<Clear conditions>

- Transferring transmit data from the SDRmn register to the shift register ends during transmission.
- Reading receive data from the SDRmn register ends during reception.
- The STmn bit of the STm register is set to 1 (communication is stopped) or the SSmn bit of the SSm register is set to 1 (communication is enabled).

<Set conditions>

- Transmit data is written to the SDRmn register while the TXEmn bit of the SCRmn register is set to 1 (transmission or transmission and reception mode in each communication mode).
- Receive data is stored in the SDRmn register while the RXEmn bit of the SCRmn register is set to 1 (reception or transmission and reception mode in each communication mode).
- A reception error occurs.

Note The SSR01 register only.

Caution If data is written to the SDRmn register when BFFmn = 1, the transmit/receive data stored in the register is discarded and an overrun error (OVEmn = 1) is detected.

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1)

Figure 12-9. Format of Serial Status Register mn (SSRmn) (2/2)

Address: F0100H, F0101H (SSR00), F0102H, F0103H (SSR01) After reset: 0000H

Symbol SSRmn

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	0	TSF	BFF	0	0	FEF	PEF	OVF
									mn	mn			mn ^{Note}	mn	mn

FEF mn ^{Note}	Framing error detection flag of channel n						
0	No error occurs.						
1	An error occurs (during UART reception).						
<clea< td=""><td colspan="7"><clear condition=""></clear></td></clea<>	<clear condition=""></clear>						

• 1 is written to the FECTmn bit of the SIRmn register.

<Set condition>

• A stop bit is not detected when UART reception ends.

PEF	Parity error detection flag of channel n									
mn										
0	No error occurs.									
1	Parity error occurs (during UART reception).									
<clea< td=""><td colspan="9"><clear condition=""></clear></td></clea<>	<clear condition=""></clear>									
• 1	1 is written to the PECTmn bit of the SIRmn register									

1 is written to the PECTmn bit of the SIRmn register.

<Set condition>

• The parity of the transmit data and the parity bit do not match when UART reception ends (parity error).

OVF	Overrun error detection flag of channel n
mn	
0	No error occurs.
1	An error occurs

<Clear condition>

• 1 is written to the OVCTmn bit of the SIRmn register.

<Set condition>

- Even though receive data is stored in the SDRmn register, that data is not read and transmit data or the next receive data is written while the RXEmn bit of the SCRmn register is set to 1 (reception or transmission and reception mode in each communication mode).
- Transmit data is not ready for slave transmission or transmission and reception in CSI mode.

Note The SSR01 register only.

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1)

12.3.8 Serial channel start register m (SSm)

The SSm register is a trigger register that is used to enable starting communication/count by each channel.

When 1 is written a bit of this register (SSmn), the corresponding bit (SEmn) of serial channel enable status register m (SEm) is set to 1 (Operation is enabled). Because the SSmn bit is a trigger bit, it is cleared immediately when SEmn = 1.

The SSm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SSm register can be set with an 1-bit or 8-bit memory manipulation instruction with SSmL. Reset signal generation clears the SSm register to 0000H.

Figure 12-10. Format of Serial Channel Start Register m (SSm)

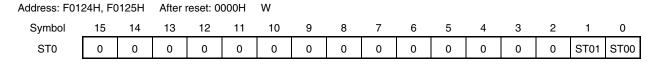
Address: F0122H, F0123H			After i	eset: 00	H000	R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SS0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SS01	SS00

SSmn	Operation start trigger of channel n
0	No trigger operation
1	Sets the SEmn bit to 1 and enters the communication wait status Note.

Note If set the SSmn = 1 to during a communication operation, will wait status to stop the communication. At this time, holding status value of control register and shift register, SCKmn and SOmn pins, and FEFmn, PEFmn, OVFmn flags.

- Cautions 1. Be sure to clear bits 15 to 2 to "0".
 - 2. For the UART reception, set the RXEmn bit of SCRmn register to 1, and then be sure to set SSmn to 1 after 4 or more fmck clocks have elapsed.
- **Remarks 1.** m: Unit number (m = 0), n: Channel number (n = 0, 1)
 - 2. When the SSm register is read, 0000H is always read.

12.3.9 Serial channel stop register m (STm)


The STm register is a trigger register that is used to enable stopping communication/count by each channel.

When 1 is written a bit of this register (STmn), the corresponding bit (SEmn) of serial channel enable status register m (SEm) is cleared to 0 (operation is stopped). Because the STmn bit is a trigger bit, it is cleared immediately when SEmn = 0.

The STm register can set written by a 16-bit memory manipulation instruction.

The lower 8 bits of the STm register can be set with a 1-bit or 8-bit memory manipulation instruction with STmL. Reset signal generation clears the STm register to 0000H.

Figure 12-11. Format of Serial Channel Stop Register m (STm)

STm	Operation stop trigger of channel n
n	
0	No trigger operation
1	Clears the SEmn bit to 0 and stops the communication operation ^{Note} .

Note Holding status value of the control register and shift register, the SCKmn and SOmn pins, and FEFmn, PEFmn, OVFmn flags.

Caution Be sure to clear bits 15 to 2 to "0".

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1)

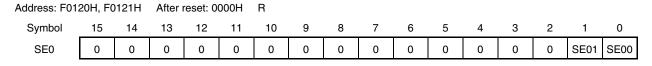
2. When the STm register is read, 0000H is always read.

12.3.10 Serial channel enable status register m (SEm)

The SEm register indicates whether data transmission/reception operation of each channel is enabled or stopped.

When 1 is written a bit of serial channel start register m (SSm), the corresponding bit of this register is set to 1. When 1 is written a bit of serial channel stop register m (STm), the corresponding bit is cleared to 0.

Channel n that is enabled to operate cannot rewrite by software the value of the CKOmn bit (serial clock output of channel n) of serial output register m (SOm) to be described below, and a value reflected by a communication operation is output from the serial clock pin.


Channel n that stops operation can set the value of the CKOmn bit of the SOm register by software and output its value from the serial clock pin. In this way, any waveform, such as that of a start condition/stop condition, can be created by software.

The SEm register can be read by a 16-bit memory manipulation instruction.

The lower 8 bits of the SEm register can be set with a 1-bit or 8-bit memory manipulation instruction with SEmL.

Reset signal generation clears the SEm register to 0000H.

Figure 12-12. Format of Serial Channel Enable Status Register m (SEm)

SEm	Indication of operation enable/stop status of channel n
n	
0	Operation stops
1	Operation is enabled.

12.3.11 Serial output enable register m (SOEm)

The SOEm register is a register that is used to enable or stop output of the serial communication operation of each channel.

Channel n that enables serial output cannot rewrite by software the value of the SOmn bit of serial output register m (SOm) to be described below, and a value reflected by a communication operation is output from the serial data output pin.

For channel n, whose serial output is stopped, the SOmn bit value of the SOm register can be set by software, and that value can be output from the serial data output pin. In this way, any waveform of the start condition and stop condition can be created by software.

The SOEm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SOEm register can be set with a 1-bit or 8-bit memory manipulation instruction with SOEmL. Reset signal generation clears the SOEm register to 0000H.

Figure 12-13. Format of Serial Output Enable Register m (SOEm)

Address: F01	2AH, FO)12BH	After	reset: 0	H0000	R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOE0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SOE 01	SOE 00
															•	• •

SOE	Serial output enable/stop of channel n							
mn								
0	Stops output by serial communication operation.							
1	Enables output by serial communication operation.							

Caution Be sure to clear bits 15 to 2 to "0".

12.3.12 Serial output register m (SOm)

The SOm register is a buffer register for serial output of each channel.

The value of the SOmn bit of this register is output from the serial data output pin of channel n.

The value of the CKOmn bit of this register is output from the serial clock output pin of channel n.

The SOmn bit of this register can be rewritten by software only when serial output is disabled (SOEmn = 0). When serial output is enabled (SOEmn = 1), rewriting by software is ignored, and the value of the register can be changed only by a serial communication operation.

The CKOmn bit of this register can be rewritten by software only when the channel operation is stopped (SEmn = 0). While channel operation is enabled (SEmn = 1), rewriting by software is ignored, and the value of the CKOmn bit can be changed only by a serial communication operation.

To use the pin for serial interface as a port function pin, set the corresponding CKOmn and SOmn bits to "1".

The SOm register can be set by a 16-bit memory manipulation instruction.

Reset signal generation clears the SOm register to 0F0FH.

Figure 12-14. Format of Serial Output Register m (SOm)

Address: F01	28H, F0	129H	After i	eset: 0	303H	R/W										
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO0	0	0	0	0	0	0	CKO 01	CKO 00	0	0	0	0	0	0	SO 01	SO 00

СКО	Serial clock output of channel n
mn	
0	Serial clock output value is "0".
1	Serial clock output value is "1".

SO	Serial data output of channel n
mn	
0	Serial data output value is "0".
1	Serial data output value is "1".

Caution Be sure to clear bits 15 to 10 and 7 to 2 to "0".

12.3.13 Serial output level register m (SOLm)

The SOLm register is a register that is used to set inversion of the data output level of each channel.

This register can be set only in the UART mode. Be sure to set 0 for corresponding bit in the CSI mode.

Inverting channel n by using this register is reflected on pin output only when serial output is enabled (SOEmn = 1). When serial output is disabled (SOEmn = 0), the value of the SOmn bit is output as is.

Rewriting the SOLm register is prohibited when the register is in operation (when SEmn = 1).

The SOLm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SOLm register can be set with an 8-bit memory manipulation instruction with SOLmL.

Reset signal generation clears the SOLm register to 0000H.

Figure 12-15. Format of Serial Output Level Register m (SOLm)

Address: F0134H, F0135H		After reset: 0000H		R/W												
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOL0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SOL
																00
	SOL	Selects inversion of the level of the transmit data of channel n in UART mode														
	mn															
	0	Communication data is output as is.														
	1	Comm	unicatio	on data	is inve	rted and	loutput	_								

Caution Be sure to clear bits 15 to 1 to "0".

Remark m: Unit number (m = 0), n: Channel number (n = 0)

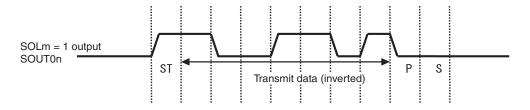

<R> Figure 12-16 shows examples in which the level of transmit data is reversed during UART transmission.

Figure 12-16. Examples of Reverse Transmit Data

(a) Non-reverse Output (SOLmn = 0)

(b) Reverse Output (SOLmn = 1)

12.3.14 Serial standby control register m (SSCm)

The SSCm register is used to control the startup of reception (the SNOOZE mode) while in the STOP mode when receiving CSI00 or UART0 serial data.

The SSCm register can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of the SSCm register can be set with an 8-bit memory manipulation instruction with SSCmL.

Reset signal generation clears the SSCm register to 0000H.

<R> Caution The maximum transfer rate in the SNOOZE mode is as follows.

When using CSI00 : Up to 1 MbpsWhen using UART0 : 4800 bps only

Figure 12-17. Format of Serial Standby Control Register m (SSCm)

Address: F013	38H	After re	set: 000	00H I	R/W											
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSCm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SS	SWC
															ECm	m

SS	Selection of whether to enable or disable the generation of transfer end interrupt										
ECm											
0	Enable the generation of error interrupts (INTSRE0/INTSRE2).										
1	Disable the generation of error interrupts (INTSRE0/INTSRE2).										
	The SSECm bit can be set to 1 or 0 only when both the SWCm and EOCmn bits are set to 1 during UART reception in the SNOOZE mode. In other cases, clear the SSECm bit to 0.										
• Setti	• Setting SSECm, SWCm = 1, 0 is prohibited.										

SWC m	Setting of the SNOOZE mode							
0	Do not use the SNOOZE mode function.							
1	Use the SNOOZE mode function.							

- When there is a hardware trigger signal in the STOP mode, the STOP mode is exited, and A/D conversion is performed without operating the CPU (the SNOOZE mode).
- The SNOOZE mode function can only be specified when the high-speed on-chip oscillator clock is selected for the CPU/peripheral hardware clock (fclk). If any other clock is selected, specifying this mode is prohibited.
- Even when using SNOOZE mode, be sure to set the SWCm bit to 0 in normal operation mode and change it to 1 just before shifting to STOP mode.

Also, be sure to change the SWCm bit to 0 after returning from STOP mode to normal operation mode.

Remark m: Unit number (m = 0)

Figure 12-18. Interrupt in UART Reception Operation in SNOOZE Mode

EOCmn Bit	SSECm Bit	Reception Ended Successfully	Reception Ended in an Error
0	0	INTSRx is generated.	INTSRx is generated.
0	1	INTSRx is generated.	INTSRx is generated.
1	0	INTSRx is generated.	INTSREx is generated.
1	1	INTSRx is generated.	No interrupt is generated.

12.3.15 Noise filter enable register 0 (NFEN0)

Address: F0070H

The NFEN0 register is used to set whether the noise filter can be used for the input signal from the serial data input pin to each channel.

Disable the noise filter of the pin used for CSI communication, by clearing the corresponding bit of this register to 0.

Enable the noise filter of the pin used for UART communication, by setting the corresponding bit of this register to 1.

When the noise filter is enabled, CPU/peripheral hardware clock (fclk) is synchronized with 2-clock match detection. When the noise filter is OFF, only synchronization is performed with the CPU/peripheral hardware clock (fмck).

The NFEN0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

R/W

Reset signal generation clears the NFEN0 register to 00H.

After reset: 00H

Figure 12-19. Format of Noise Filter Enable Register 0 (NFEN0)

Symbol	7	6	5	4	3	2	1	0
NFEN0	0	0	0	0	0	0	0	SNFEN00
	SNFEN00	Use of noise filter of RxD0 pin						
	0	Noise filter OFF						
	1	Noise filter ON						
	Set the SNFEN00 bit to 1 to use the RxD0 pin. Clear the SNFEN00 bit to 0 to use the other than RxD0 pin.							

Caution Be sure to clear bits 7 to 1 to "0".

<R>> 12.3.16 Registers controlling port functions of serial input/output pins

Using the serial array unit requires setting of the registers that control the port functions multiplexed on the target channel (port mode register (PMxx), port register (Pxx), port input mode register (PIMxx), port output mode register (POMxx), port mode control register (PMCxx)).

For details, see 4.3.1 Port mode registers (PMxx), 4.3.2 Port registers (Pxx), 4.3.4 Port input mode register (PIM1), 4.3.5 Port output mode register (POM1), and 4.3.6 Port mode control registers (PMCxx).

Specifically, using a port pin with a multiplexed serial data or serial clock output function (e.g. P12/SO00/TxD0/TOOLTxD/ SEG30) for serial data or serial clock output, requires setting the corresponding bits in the port mode control register (PMCxx) and port mode register (PMxx) to 0, and the corresponding bit in the port register (Pxx) to 1.

When using the port pin in N-ch open-drain output (VDD tolerance/EVDD tolerance) mode, set the corresponding bit in the port output mode register (POMxx) to 1. When connecting an external device operating on a different potential (1.8 V, 2.5 V or 3 V), see 4.4.5 Handling different potential (1.8 V, 2.5 V, 3 V) by using I/O buffers.

Example: When P12/SO00/TxD0/TOOLTxD/SEG30 is to be used for serial data output

Set the PMC12 bit of port mode control register 1 to 0.

Set the PM12 bit of port mode register 1 to 0.

Set the P12 bit of port register 1 to 1.

Specifically, using a port pin with a multiplexed serial data or serial clock input function (e.g. P11/SI00/RxD0/TOOLRxD/SEG29) for serial data or serial clock input, requires setting the corresponding bit in the port mode register (PMxx) to 1, and the corresponding bit in the port mode control register (PMCxx) to 0. In this case, the corresponding bit in the port register (Pxx) can be set to 0 or 1.

When the TTL input buffer is selected, set the corresponding bit in the port input mode register (PIMxx) to 1. When connecting an external device operating on a different potential (1.8 V, 2.5 V or 3 V), see **4.4.5 Handling different potential (1.8 V, 2.5 V, 3 V) by using I/O buffers**.

Example: When P11/SI00/RxD0/TOOLRxD/SEG29 is to be used for serial data input

Set the PMC11 bit of port mode control register 1 to 0.

Set the PM11 bit of port mode register 1 to 1.

Set the P11 bit of port register 1 to 0 or 1.

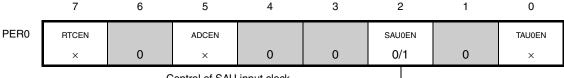
12.4 Operation stop mode

Each serial interface of serial array unit has the operation stop mode.

In this mode, serial communication cannot be executed, thus reducing the power consumption.

In addition, the pin for serial interface can be used as port function pins in this mode.

12.4.1 Stopping the operation by units


The stopping of the operation by units is set by using peripheral enable register 0 (PER0).

The PER0 register is used to enable or disable supplying the clock to the peripheral hardware. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

To stop the operation of serial array unit, set bit 2 (SAU0EN) to 0.

Figure 12-20. Peripheral Enable Register 0 (PER0) Setting When Stopping the Operation by Units

(a) Peripheral enable register 0 (PER0) ... Set only the bit of SAUm to be stopped to 0.

Control of SAU input clock

0: Stops supply of input clock

1: Supplies input clock

Cautions 1. If SAU0EN = 0, writing to a control register of serial array unit m is ignored, and, even if the register is read, only the default value is read

Note that this does not apply to the following registers.

- Noise filter enable register 0 (NFEN0)
- Serial standby control register 0 (SSC0)
- Port input mode register 1 (PIM1)
- Port output mode register 1 (POM1)
- LCD port function registers 0, 3 (PFSEG0, PFSEG3)
- Port mode register 1 (PM1)
- Port register 1 (P1)
- 2. Be sure to clear bits to 6, 4, 3, 1 to "0".

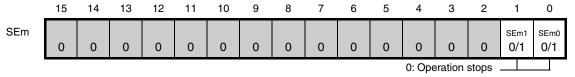
Remark : Setting disabled (set to the initial value)

x: Bits not used with serial array units (depending on the settings of other peripheral functions)

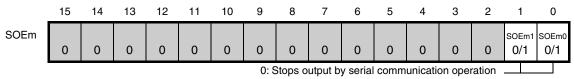
0/1: Set to 0 or 1 depending on the usage of the user

12.4.2 Stopping the operation by channels

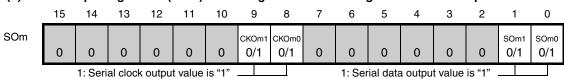
The stopping of the operation by channels is set using each of the following registers.


Figure 12-21. Each Register Setting When Stopping the Operation by Channels

(a) Serial channel stop register m (STm) ... This register is a trigger register that is used to enable stopping communication/count by each channel.


^{*} Because the STmn bit is a trigger bit, it is cleared immediately when SEmn = 0.

(b) Serial Channel Enable Status Register m (SEm) ... This register indicates whether data transmission/reception operation of each channel is enabled or stopped.


^{*} The SEm register is a read-only status register, whose operation is stopped by using the STm register. With a channel whose operation is stopped, the value of the CKOmn bit of the SOm register can be set by software.

(c) Serial output enable register m (SOEm) ... This register is a register that is used to enable or stop output of the serial communication operation of each channel.

^{*} For channel n, whose serial output is stopped, the SOmn bit value of the SOm register can be set by software.

(d) Serial output register m (SOm) ... This register is a buffer register for serial output of each channel.

^{*} When using pins corresponding to each channel as port function pins, set the corresponding CKOmn, SOmn bits to "1".

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1)

2. : Setting disabled (set to the initial value), 0/1: Set to 0 or 1 depending on the usage of the user

12.5 Operation of 3-Wire Serial I/O (CSI00, CSI01) Communication

This is a clocked communication function that uses three lines: serial clock (SCK) and serial data (SI and SO) lines.

- <R> [Data transmission/reception]
 - · Data length of 7 or 8 bits
 - Phase control of transmit/receive data
 - MSB/LSB first selectable

[Clock control]

- Master/slave selection
- · Phase control of I/O clock
- Setting of transfer period by prescaler and internal counter of each channel
- · Maximum transfer rate

During master communication (CSI00): Max. fmck/2 Notes 1, 2 During master communication (CSI01): Max. fmck/4 Note 2 During slave communication: Max. fmck/6 Note 2

[Interrupt function]

• Transfer end interrupt/buffer empty interrupt

[Error detection flag]

Overrun error

In addition, CSI00 supports the SNOOZE mode. When \overline{SCK} input is detected while in the STOP mode, the SNOOZE mode makes data reception that does not require the CPU possible.

Notes 1. In master communication (CSI00), maximum transfer rate become fmck/2 when the following conditions.

- $2.7 \text{ V} \leq \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}$
- fmck ≤ 12 MHz

Other cases, maximum transfer rate become fmck/4.

2. Use the clocks within a range satisfying the \overline{SCK} cycle time (tkcy) characteristics (see **CHAPTER 27 ELECTRICAL SPECIFICATIONS**).

The channels supporting 3-wire serial I/O (CSI00, CSI01) are channels 0 and 1.

Channel	Used as CSI	Used as UART
0	CSI00	UART0 (supporting LIN-bus)
1	CSI01	

3-wire serial I/O (CSI00, CSI01) performs the following seven types of communication operations.

 Master transmission 	(See 12.5.1.)
Master reception	(See 12.5.2.)
Master transmission/reception	(See 12.5.3.)
 Slave transmission 	(See 12.5.4.)
Slave reception	(See 12.5.5 .)
• Slave transmission/reception	(See 12.5.6.)
 SNOOZE mode function 	(See 12.5.7.)

12.5.1 Master transmission

Master transmission is that the R7F0C001G/L, R7F0C002G/L outputs a transfer clock and transmits data to another device.

3-Wire Serial I/O	CSI00	CSI01			
Target channel	Channel 0	Channel 1			
Pins used	SCK00, SO00	SCK01, SO01			
Interrupt	INTCSI00	INTCSI01			
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.				
Error detection flag	None				
Transfer data length 7 or 8 bits					
Transfer rate	ах. fмск/2 [Hz] (CSI00), fмск/4 [Hz] (CSI01)				
	Min. fcLk/ $(2 \times 2^{15} \times 128)$ [Hz] Note fcLk: System clock frequency				
Data phase	Selectable by the DAPmn bit of the SCRmn register DAPmn = 0: Data output starts from the start of the operation of the serial clock. DAPmn = 1: Data output starts half a clock before the start of the serial clock operation.				
Clock phase	Selectable by the CKPmn bit of the SCRmn register CKPmn = 0: Non-reverse (data output at the falling edge and data input at the rising edge of \$\overline{SCK}\$) CKPmn = 1: Reverse (data output at the rising edge and data input at the falling edge of \$\overline{SCK}\$)				
Data direction	MSB or LSB first				

Note Use this operation within a range that satisfies the conditions above and the Peripheral functions characteristics in the electrical specifications (see **CHAPTER 27 ELECTRICAL SPECIFICATIONS**).

(1) Register setting

Figure 12-22. Example of Contents of Registers for Master Transmission of 3-Wire Serial I/O (CSI00, CSI01) (1/2)

(a) Serial mode register mn (SMRmn) 14 13 12 8 7 6 5 3 0 SMRmn 1Dmn(CKSm STSm 0/1 0 0 0 0 0 0 0 0 0 0/1 0 0 0 0 Operation clock (fmck) of channel n Interrupt source of channel n 0: Prescaler output clock CKm0 set by the SPSm register 0: Transfer end interrupt 1: Prescaler output clock CKm1 set by the SPSm register 1: Buffer empty interrupt (b) Serial communication operation setting register mn (SCRmn) 15 13 12 11 10 3 0 **SCRmn** XEmr RXEmr DAPmr CKPmr OCmn PTCmn1 TCmn DIRmn SLCmn1 SLCmn0 DLSmn(DLSmr 0 0/1 0/1 0 0/1 0 0 0 0/1 0 Selection of data transfer sequence Setting of data length 0: Inputs/outputs data with MSB first 0: 7-bit data length Selection of the data and clock 1: Inputs/outputs data with LSB first. 1: 8-bit data length phase (For details about the setting, see 12.3 Registers **Controlling Serial Array Unit.)** (c) Serial data register mn (SDRmn) (lower 8 bits: SIOp) 13 12 10 6 3 11 0 SDRmn Baud rate setting Transmit data (Operation clock (fмск) division setting) 0 (Transmit data setting) SIOp (d) Serial output register m (SOm) ... Sets only the bits of the target channel. 12 10 8 2 0 11 1 SOm CKOm0 CKOm1 SOm1 SOm0 0 0 0 0 0 0 0/1 0/1 0 0 0 0/1 0/1 Communication starts when these bits are 1 if the clock phase is non-reversed (the CKPmn bit of the SCRmn = 0). If the clock phase is reversed (CKPmn = 1), communication starts when these bits are 0. (e) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1. 14 13 12 11 10 9 8 0 SOEm SOEm1 SOEm 0 0 0 0 0 0 0 0 0/1 0/1 (f) Serial channel start register m (SSm) ... Sets only the bits of the target channel to 1. 15 13 12 11 10 9 1 0 SSm SSm1 SSm0 0 0 0 0 0 0/1 0/1 0 0 0 0 0 0 0 0

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

2. : Setting disabled (set to the initial value)

 \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode) 0/1: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 12-23. Initial Setting Procedure for Master Transmission

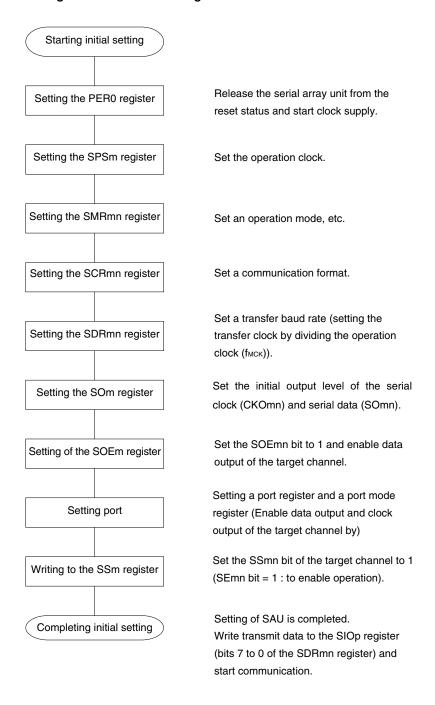
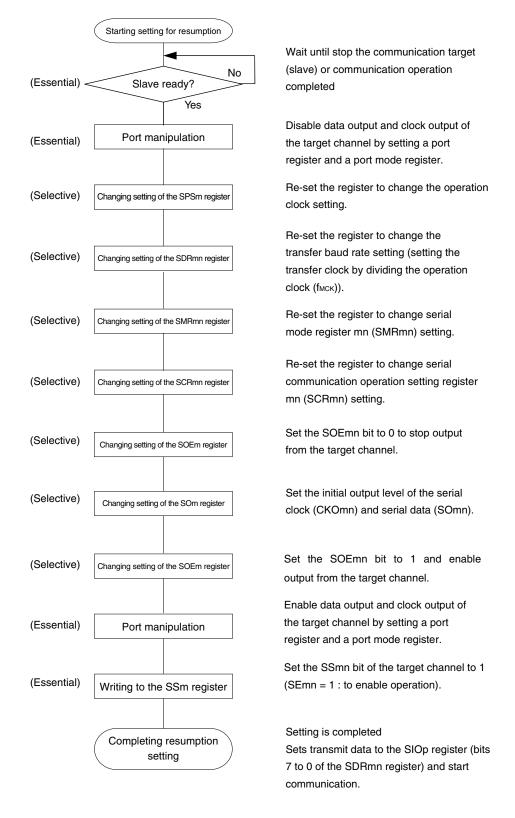


Figure 12-24. Procedure for Stopping Master Transmission

If there is any data being transferred, wait for their completion.

(If there is an urgent must stop, do not wait)

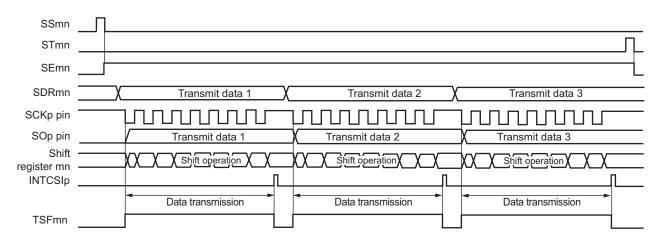
Write 1 to the STmn bit of the target channel. (SEmn = 0 : to operation stop status)


Set the SOEmn bit to 0 and stop the output of the target channel.

The levels of the serial clock (CKOmn) and serial data (SOmn) on the target channel can be changed if necessitated by an emergency.

Reset the serial array unit by stopping the clock supply to it.

The master transmission is stopped. Go to the next processing.


Figure 12-25. Procedure for Resuming Master Transmission

Remark If PER0 is rewritten while stopping the master transmission and the clock supply is stopped, wait until the transmission target (slave) stops or transmission finishes, and then perform initialization instead of restarting the transmission.

(3) Processing flow (in single-transmission mode)

Figure 12-26. Timing Chart of Master Transmission (in Single-Transmission Mode)
(Type 1: DAPmn = 0, CKPmn = 0)

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

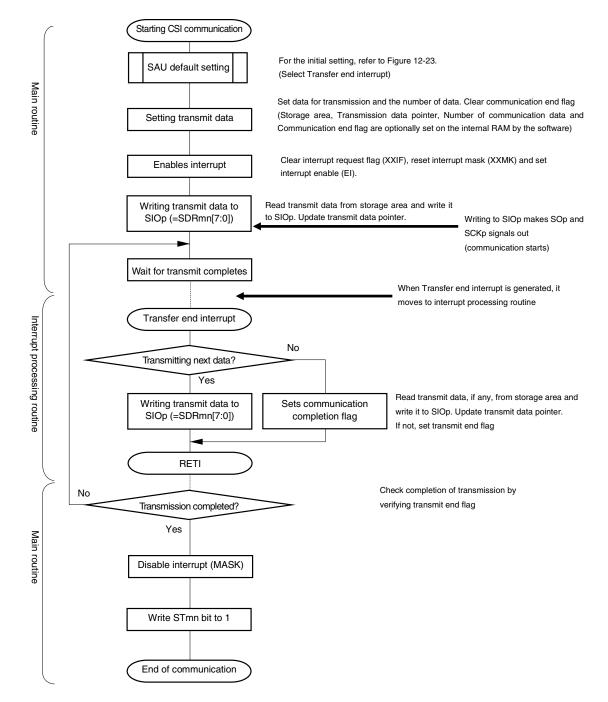
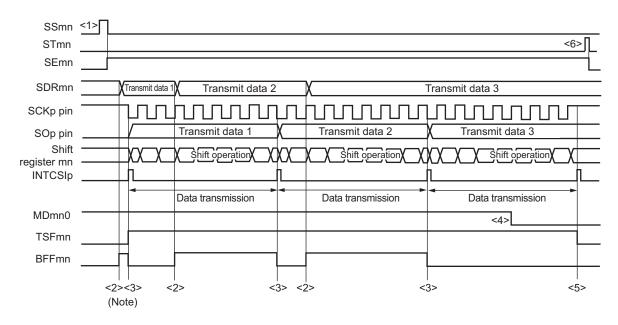



Figure 12-27. Flowchart of Master Transmission (in Single-Transmission Mode)

(4) Processing flow (in continuous transmission mode)

Figure 12-28. Timing Chart of Master Transmission (in Continuous Transmission Mode)
(Type 1: DAPmn = 0, CKPmn = 0)

Note If transmit data is written to the SDRmn register while the BFFmn bit of serial status register mn (SSRmn) is 1 (valid data is stored in serial data register mn (SDRmn)), the transmit data is overwritten.

Caution The MDmn0 bit of serial mode register mn (SMRmn) can be rewritten even during operation.

However, rewrite it before transfer of the last bit is started, so that it will be rewritten before the transfer end interrupt of the last transmit data.

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

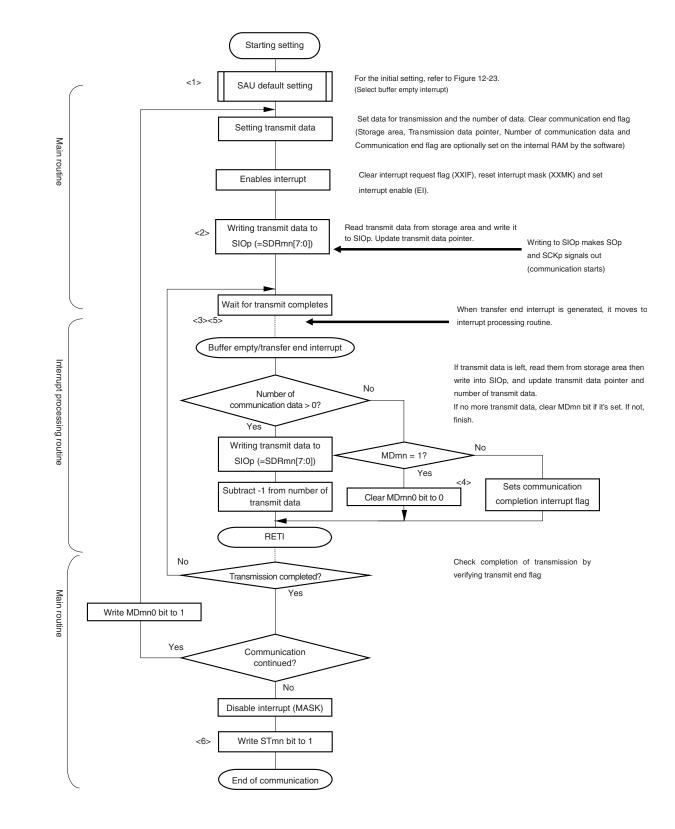
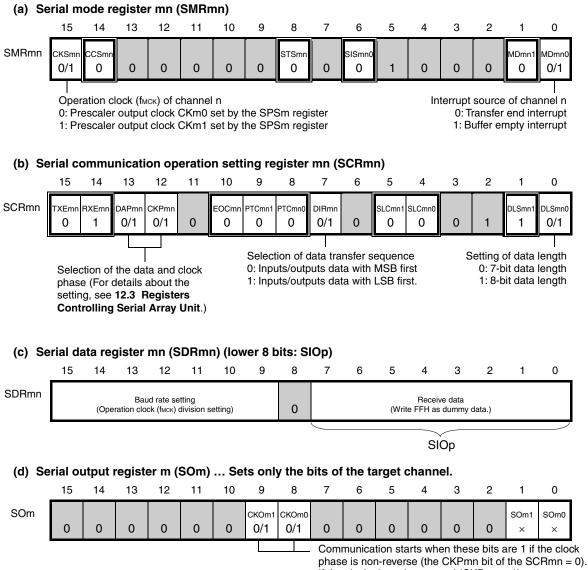


Figure 12-29. Flowchart of Master Transmission (in Continuous Transmission Mode)

Remark <1> to <6> in the figure correspond to <1> to <6> in Figure 12-28 Timing Chart of Master Transmission (in Continuous Transmission Mode).

<R>

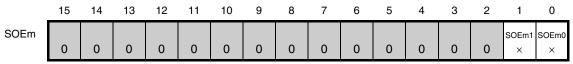
12.5.2 Master reception


Master reception is that the R7F0C001G/L, R7F0C002G/L a transfer clock and receives data from other device.

3-Wire Serial I/O	CSI00	CSI01			
Target channel	Channel 0	Channel 1			
Pins used	SCK00, SI00	SCK01, SI01			
Interrupt	INTCSI00	INTCSI01			
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.				
Error detection flag	Overrun error detection flag (OVFmn) only				
Transfer data length	7 or 8 bits				
Transfer rate	Max. fмcк/2 [Hz] (CSI00), fмcк/4 [Hz] (CSI01) Min. fclk/(2 × 2 ¹⁵ × 128) [Hz] ^{Note} fclk: System clock frequency				
Data phase	Selectable by the DAPmn bit of the SCRmn register DAPmn = 0: Data input starts from the start of the operation of the serial clock. DAPmn = 1: Data input starts half a clock before the start of the serial clock operation.				
Clock phase	Selectable by the CKPmn bit of the SCRmn register CKPmn = 0: Non-reverse CKPmn = 1: Reverse				
Data direction	MSB or LSB first				

Note Use this operation within a range that satisfies the conditions above and the peripheral functions characteristics in the electrical specifications (see **CHAPTER 27 ELECTRICAL SPECIFICATIONS**).

(1) Register setting


Figure 12-30. Example of Contents of Registers for Master Reception of 3-Wire Serial I/O (CSI00, CSI01) (1/2)

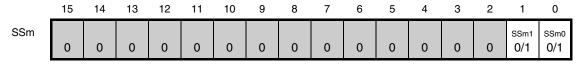

If the clock phase is reversed (CKPmn = 1), communication starts when these bits are 0.

Figure 12-30. Example of Contents of Registers for Master Reception of 3-Wire Serial I/O (CSI00, CSI01) (2/2)

(e) Serial output enable register m (SOEm) ... The register that not used in this mode.

(f) Serial channel start register m (SSm) ... Sets only the bits of the target channel to 1.

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01)

2.

Setting disabled (set to the initial value)

 \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode)

0/1: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 12-31. Initial Setting Procedure for Master Reception

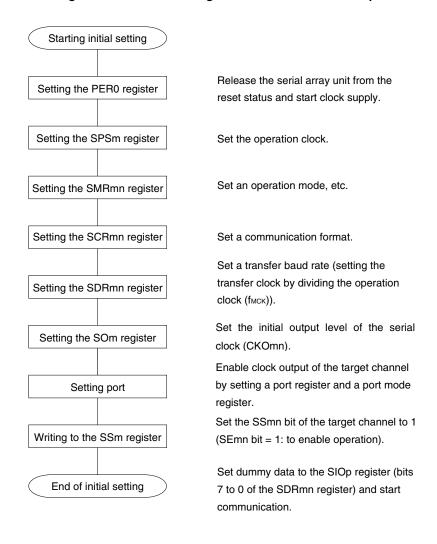
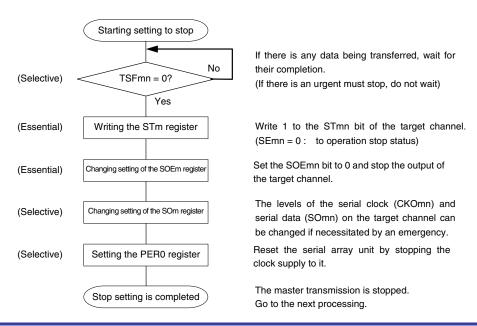
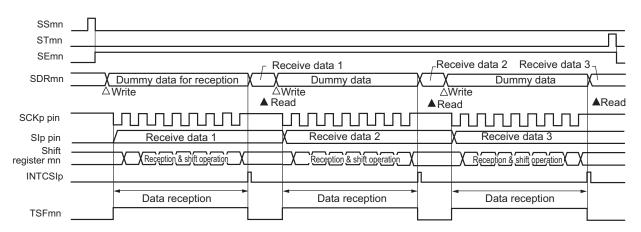



Figure 12-32. Procedure for Stopping Master Reception

<R>

Wait until stop the communication target (slave) or communication operation No Completing slave (Essential) < completed preparations? Yes Disable clock output of the target channel by setting a port register and a Port manipulation (Essential) port mode register. Re-set the register to change the operation (Selective) Changing setting of the SPSm register clock setting. Re-set the register to change the transfer baud rate setting (setting the (Selective) Changing setting of the SDRmn register transfer clock by dividing the operation clock (fmck)). Re-set the register to change serial (Selective) Changing setting of the SMRmn register mode register mn (SMRmn) setting. Re-set the register to change serial Changing setting of the SCRmn register communication operation setting register (Selective) mn (SCRmn) setting. Set the initial output level of the serial Changing setting of the SOm register (Selective) clock (CKOmn). If the OVF flag remain set, clear this Clearing error flag using serial flag clear trigger register mn (Selective) (SIRmn). Enable clock output of the target channel Port manipulation (Essential) by setting a port register and a port mode register. Set the SSmn bit of the target channel to 1 (Essential) Writing to the SSm register (SEmn bit = 1: to enable operation). Setting is completed Completing resumption Sets dummy data to the SIOp register (bits setting 7 to 0 of the SDRmn register) and start communication.


Figure 12-33. Procedure for Resuming Master Reception

Starting setting for resumption

Remark If PER0 is rewritten while stopping the master transmission and the clock supply is stopped, wait until the transmission target (slave) stops or transmission finishes, and then perform initialization instead of restarting the transmission.

(3) Processing flow (in single-reception mode)

Figure 12-34. Timing Chart of Master Reception (in Single-Reception Mode)
(Type 1: DAPmn = 0, CKPmn = 0)

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

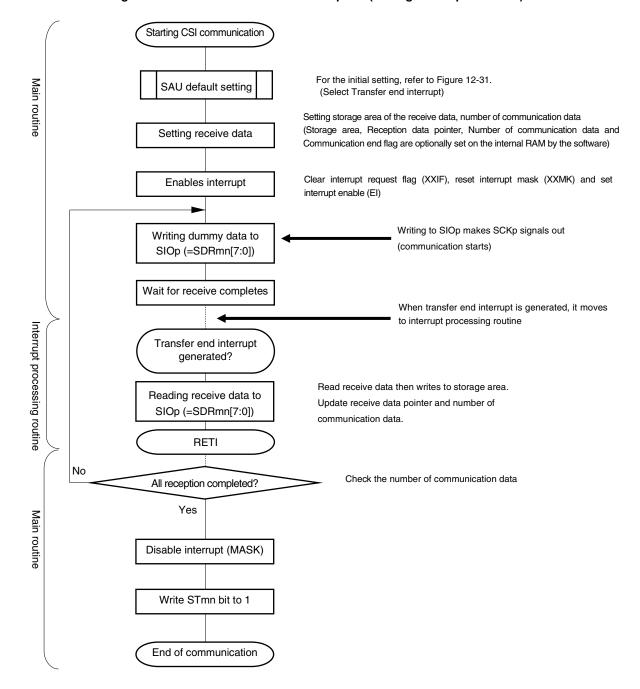
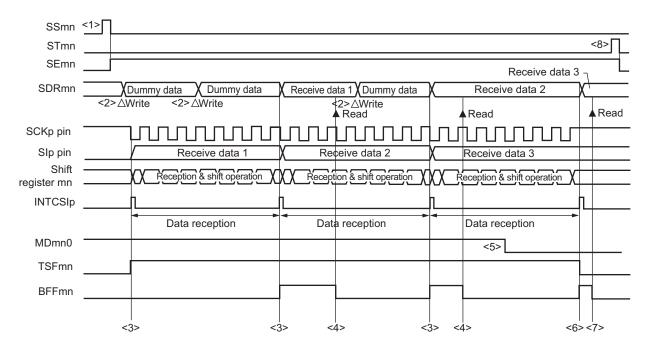



Figure 12-35. Flowchart of Master Reception (in Single-Reception Mode)

(4) Processing flow (in continuous reception mode)

Figure 12-36. Timing Chart of Master Reception (in Continuous Reception Mode) (Type 1: DAPmn = 0, CKPmn = 0)

Caution The MDmn0 bit can be rewritten even during operation.

However, rewrite it before receive of the last bit is started, so that it has been rewritten before the transfer end interrupt of the last receive data.

- Remarks 1. <1> to <8> in the figure correspond to <1> to <8> in Figure 12-37 Flowchart of Master Reception (in Continuous Reception Mode).
 - 2. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

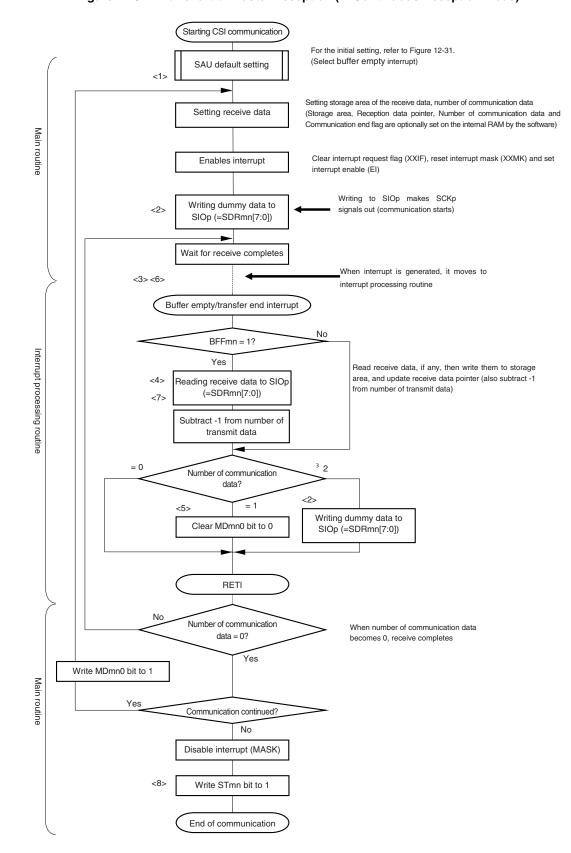
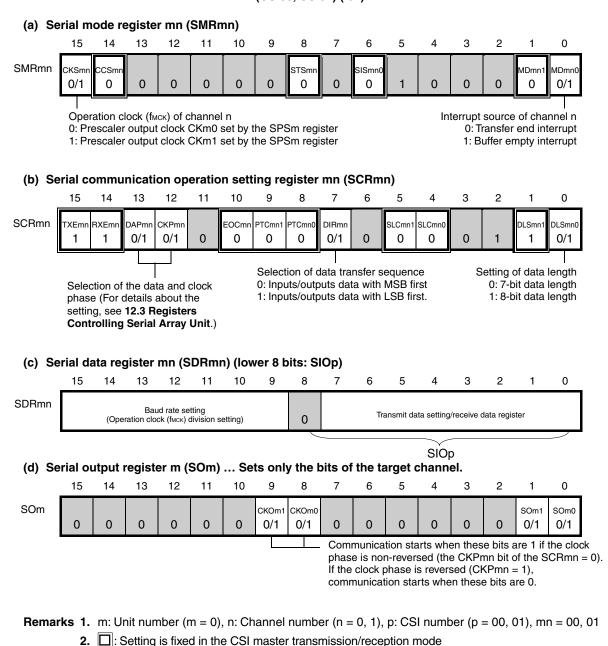


Figure 12-37. Flowchart of Master Reception (in Continuous Reception Mode)

Remark <1> to <8> in the figure correspond to <1> to <8> in Figure 12-36 Timing Chart of Master Reception (in Continuous Reception Mode).

<R>

12.5.3 Master transmission/reception

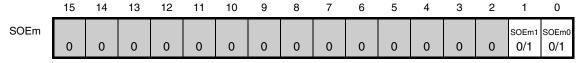

Master transmission/reception is that the R7F0C001G/L, R7F0C002G/L outputs a transfer clock and transmits/receives data to/from other device.

3-Wire Serial I/O	CSI00	CSI01			
Target channel	Channel 0	Channel 1			
Pins used	SCK00, SI00, SO00	SCK01, SI01, SO01			
Interrupt	INTCSI00	INTCSI01			
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.				
Error detection flag	Overrun error detection flag (OVFmn) only				
Transfer data length	7 or 8 bits				
Transfer rate	Max. f _{MCK} /2 [Hz] (CSI00), f _{MCK} /4 [Hz] (CSI01) Min. f _{CLK} /(2 × 2 ¹⁵ × 128) [Hz] ^{Note} f _{CLK} : System clock frequency				
Data phase	Selectable by the DAPmn bit of the SCRmn register DAPmn = 0: Data I/O starts at the start of the operation of the serial clock. DAPmn = 1: Data I/O starts half a clock before the start of the serial clock operation.				
Clock phase	Selectable by the CKPmn bit of the SCRmn register CKPmn = 0: Non-reverse CKPmn = 1: Reverse				
Data direction	rection MSB or LSB first				

Note Use this operation within a range that satisfies the conditions above and the peripheral functions characteristics in the electrical specifications (see **CHAPTER 27 ELECTRICAL SPECIFICATIONS**).

(1) Register setting

Figure 12-38. Example of Contents of Registers for Master Transmission/Reception of 3-Wire Serial I/O (CSI00, CSI01) (1/2)


0/1: Set to 0 or 1 depending on the usage of the user

: Setting disabled (set to the initial value)

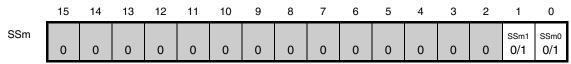
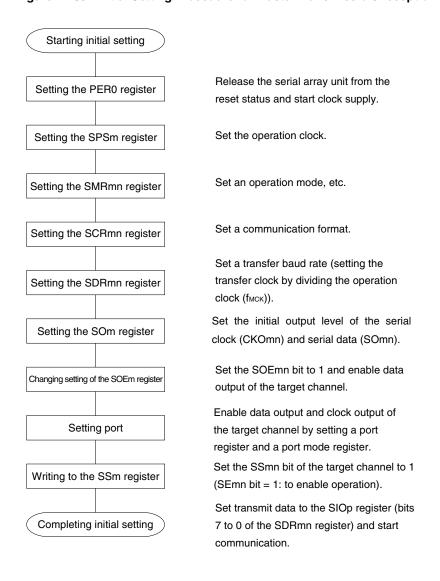

x: Bit that cannot be used in this mode (set to the initial value when not used in any mode)

Figure 12-38. Example of Contents of Registers for Master Transmission/Reception of 3-Wire Serial I/O (CSI00, CSI01) (2/2)

(e) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1.

(f) Serial channel start register m (SSm) ... Sets only the bits of the target channel to 1.

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01


2.
: Setting disabled (set to the initial value)

x: Bit that cannot be used in this mode (set to the initial value when not used in any mode)

0/1: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 12-39. Initial Setting Procedure for Master Transmission/Reception

Starting setting to stop If there is any data being transferred, wait for No their completion. (Selective) TSFmn = 0? (If there is an urgent must stop, do not wait) Yes (Essential) Writing the STm register Write 1 to the STmn bit of the target channel. (SEmn = 0: to operation stop status) Set the SOEmn bit to 0 and stop the output of Changing setting of the SOEm register (Essential) the target channel. The levels of the serial clock (CKOmn) and (Selective) Changing setting of the SOm register serial data (SOmn) on the target channel can be changed if necessitated by an emergency. Reset the serial array unit by stopping the (Selective) Setting the PER0 register clock supply to it. The master transmission is stopped. Stop setting is completed Go to the next processing.

Figure 12-40. Procedure for Stopping Master Transmission/Reception

R01UH0350EJ0200 Rev.2.00 Mar 25, 2014

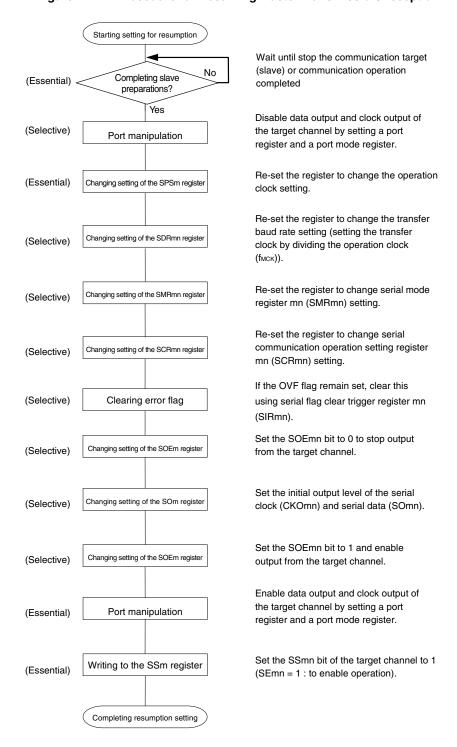
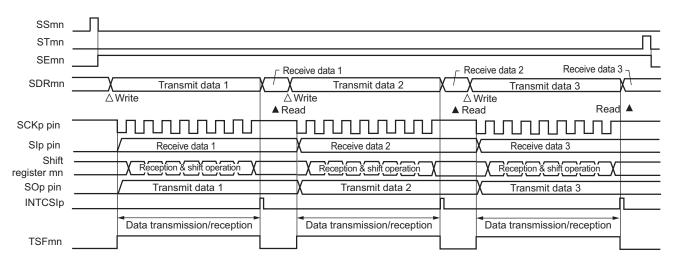



Figure 12-41. Procedure for Resuming Master Transmission/Reception

(3) Processing flow (in single-transmission/reception mode)

Figure 12-42. Timing Chart of Master Transmission/Reception (in Single-Transmission/Reception Mode) (Type 1: DAPmn = 0, CKPmn = 0)

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

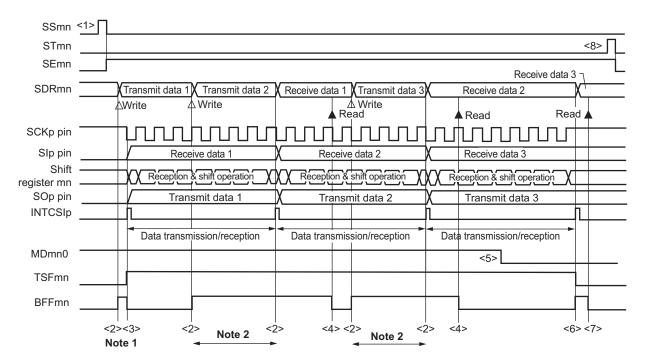

Starting CSI communication For the initial setting, refer to Figure 12-39. SAU default setting (Select transfer end interrupt) Main routine Setting storage data and number of data for transmission/reception data Setting (Storage area, Transmission data pointer, Reception data pointer, Number of transmission/reception data communication data and Communication end flag are optionally set on the internal RAM by the software) Clear interrupt request flag (XXIF), reset interrupt mask (XXMK) and set Enables interrupt interrupt enable (EI) Read transmit data from storage area and write it Writing transmit data to SIOp (=SDRmn[7:0]) to SIOp. Update transmit data pointer. Writing to SIOp makes SOp and SCKp signals out (communication starts) Wait for transmission/reception completes When transfer end interrupt is generated, it moves to interrupt processing routine. Interrupt processing routine Transfer end interrupt Read receive data then writes to storage area, update receive Read receive data to SIOp (=SDRmn[7:0]) RETI No Transmission/reception If there are the next data, it continues completed? Yes Main routine Disable interrupt (MASK) Write STmn bit to 1 End of communication

Figure 12-43. Flowchart of Master Transmission/Reception (in Single-Transmission/Reception Mode)

<R>

(4) Processing flow (in continuous transmission/reception mode)

Figure 12-44. Timing Chart of Master Transmission/Reception (in Continuous Transmission/Reception Mode) (Type 1: DAPmn = 0, CKPmn = 0)

- **Notes 1.** If transmit data is written to the SDRmn register while the BFFmn bit of serial status register mn (SSRmn) is 1 (valid data is stored in serial data register mn (SDRmn)), the transmit data is overwritten.
 - **2.** The transmit data can be read by reading the SDRmn register during this period. At this time, the transfer operation is not affected.
- Caution The MDmn0 bit of serial mode register mn (SMRmn) can be rewritten even during operation.

 However, rewrite it before transfer of the last bit is started, so that it has been rewritten before the transfer end interrupt of the last transmit data.
- Remarks 1. <1> to <8> in the figure correspond to <1> to <8> in Figure 12-45 Flowchart of Master Transmission/Reception (in Continuous Transmission/Reception Mode).
 - 2. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

Starting setting For the initial setting, refer to Figure 12-39. SAU default setting (Select buffer empty interrupt) Main routine Setting storage data and number of data for transmission/reception data Setting (Storage area, Transmission data pointer, Reception data, Number of transmission/reception data communication data and Communication end flag are optionally set on the internal RAM by the software) Enables interrupt Clear interrupt request flag (XXIF), reset interrupt mask (XXMK) and set interrupt enable (EI) Writing dummy data to Read transmit data from storage area and write it to SIOp. Update transmit data pointer. SIOp (=SDRmn[7:0]) Writing to SIOp makes SOp and SCKp signals out (communication starts) Wait for transmission/reception completes When transmission/reception interrupt is generated, it <3> <6> moves to interrupt processing routine Buffer empty/transfer end interrupt Interrupt processing routine No BFFmn = 1? Except for initial interrupt, read data received then write them to storage area, and update receive data pointer Reading reception data to SIOp (=SDRmn[7:0]) Subtract -1 from number of transmit data If transmit data is left (number of communication data is equal or grater than 2), read them from storage area then write into SIOp, and update transmit data pointer Number of If it's waiting for the last data to receive (number of communication data? communication data is equal to 1), change interrupt timing to communication end ³ 2 Writing transmit data to Clear MDmn0 bit to 0 SIOp (=SDRmn[7:0]) RETI Number of communication data = 0? Yes Write MDmn0 bit to 1 Continuing Communication? No Disable interrupt (MASK) <8> Write STmn bit to 1 End of communication

Figure 12-45. Flowchart of Master Transmission/Reception (in Continuous Transmission/Reception Mode)

Remark <1> to <8> in the figure correspond to <1> to <8> in Figure 12-44 Timing Chart of Master Transmission/Reception (in Continuous Transmission/Reception Mode).

<R>

<R>

12.5.4 Slave transmission

Slave transmission is that the R7F0C001G/L, R7F0C002G/L transmits data to another device in the state of a transfer clock being input from another device.

3-Wire Serial I/O	CSI00	CSI01				
Target channel	Channel 0	Channel 1				
Pins used	SCK00, SO00 SCK01, SO01					
Interrupt	INTCSI00 INTCSI01					
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.					
Error detection flag	Overrun error detection flag (OVFmn) only					
Transfer data length	7 or 8 bits					
Transfer rate	Max. f _{MCK} /6 [Hz] ^{Notes 1, 2} .					
Data phase	Selectable by the DAPmn bit of the SCRmn register • DAPmn = 0: Data output starts from the start of the operation of the serial clock. • DAPmn = 1: Data output starts half a clock before the start of the serial clock operation.					
Clock phase	Selectable by the CKPmn bit of the SCRmn register CKPmn = 0: Non-reverse CKPmn = 1: Reverse					
Data direction	MSB or LSB first					

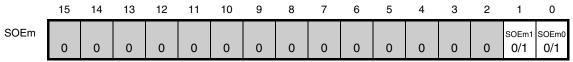
- Notes 1. Because the external serial clock input to the SCK00, and SCK01 pins is sampled internally and used, the fastest transfer rate is fmck/6 [Hz].
 - 2. Use this operation within a range that satisfies the conditions above and the peripheral functions characteristics in the electrical specifications (see CHAPTER 27 ELECTRICAL SPECIFICATIONS).
 - Remarks 1. fmck: Operation clock frequency of target channel

fscк: Serial clock frequency

2. m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01

(1) Register setting

Figure 12-46. Example of Contents of Registers for Slave Transmission of 3-Wire Serial I/O (CSI00, CSI01) (1/2)


(a) Serial mode register mn (SMRmn) 15 14 13 12 8 5 3 0 SMRmn CKSm CCSn STSm SISmr /IDmr MDmn 0/1 0 0 0 0 0 0 0 0 0 0 0 0 0/1 1 Operation clock (fmck) of channel n Interrupt source of channel n 0: Prescaler output clock CKm0 set by the SPSm register 0: Transfer end interrupt 1: Prescaler output clock CKm1 set by the SPSm register 1: Buffer empty interrupt (b) Serial communication operation setting register mn (SCRmn) 10 5 3 0 **SCRmn** RXEmr DAPmn CKPmi EOCmn PTCmn1 PTCmn0 DIRmn SLCmn1 SLCmn0 DLSmn(0 0/1 0/1 0 0 0/1 0 0/1 Selection of data transfer sequence Setting of data length 0: 7-bit data length 0: Inputs/outputs data with MSB first Selection of the data and clock 1: 8-bit data length 1: Inputs/outputs data with LSB first. phase (For details about the setting, see 12.3 Registers Controlling Serial Array Unit.) (c) Serial data register mn (SDRmn) (lower 8 bits: SIOp) 15 14 9 8 6 5 0 **SDRmn** 0000000 Transmit data setting Baud rate setting 0 SIOp (d) Serial output register m (SOm) ... Sets only the bits of the target channel. 15 14 13 12 10 8 6 5 3 2 0 SOm CKOm1 CKOm0 SOm1 SOm0 0 0 0 0 0 0 0 0 0 0 0 0 0/1 0/1

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

2. : Setting is fixed in the CSI slave transmission mode, : Setting disabled (set to the initial value) ×: Bit that cannot be used in this mode (set to the initial value when not used in any mode) 0/1: Set to 0 or 1 depending on the usage of the user

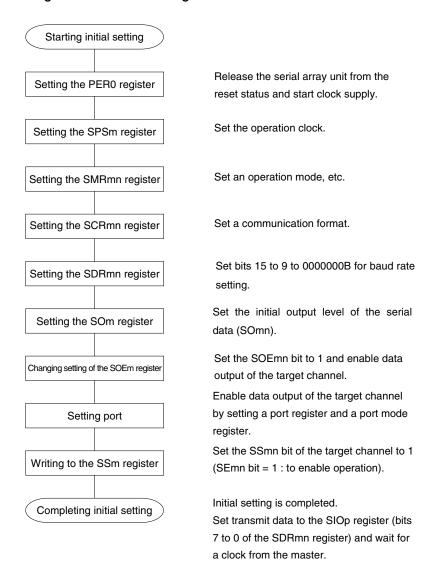
Figure 12-46. Example of Contents of Registers for Slave Transmission of 3-Wire Serial I/O (CSI00, CSI01) (2/2)

(e) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1.

(f) Serial channel start register m (SSm) ... Sets only the bits of the target channel to 1.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	SSm1 0/1	SSm0 0/1

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01


2. : Setting disabled (set to the initial value)

x: Bit that cannot be used in this mode (set to the initial value when not used in any mode)

0/1: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 12-47. Initial Setting Procedure for Slave Transmission

(Selective)

TSFmn = 0?

Yes

(Essential)

Writing the STm register

(Essential)

Changing setting of the SOEm register

(Selective)

Changing setting of the SOm register

(Selective)

Setting the PER0 register

Stop setting is completed

Figure 12-48. Procedure for Stopping Slave Transmission

If there is any data being transferred, wait for their completion.

(If there is an urgent must stop, do not wait)

Write 1 to the STmn bit of the target channel. (SEmn = 0 : to operation stop status)

Set the SOEmn bit to 0 and stop the output of the target channel.

The levels of the serial clock (CKOmn) and serial data (SOmn) on the target channel can be changed if necessitated by an emergency.

To use the STOP mode, reset the serial array unit by stopping the clock supply to it.

The master transmission is stopped. Go to the next processing.

<R>

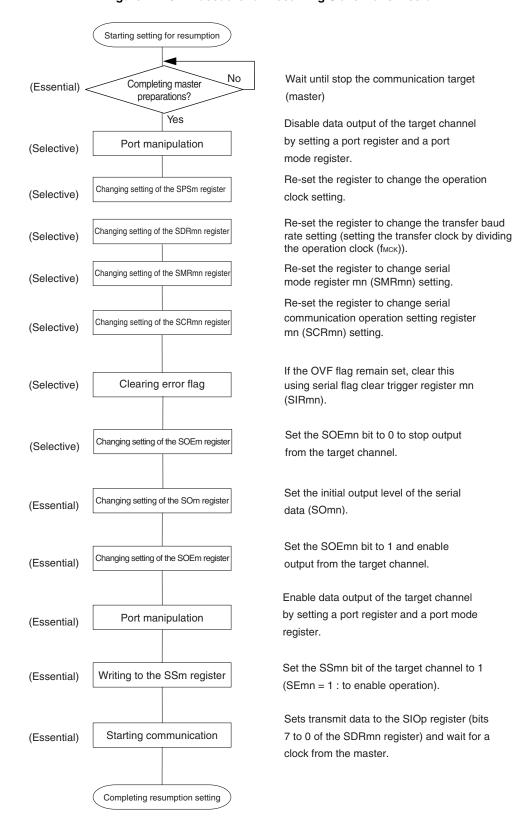
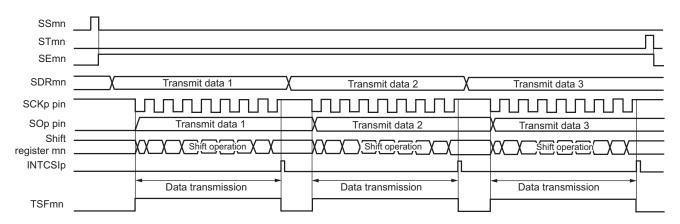



Figure 12-49. Procedure for Resuming Slave Transmission

Remark If PER0 is rewritten while stopping the master transmission and the clock supply is stopped, wait until the transmission target (master) stops or transmission finishes, and then perform initialization instead of restarting the transmission.

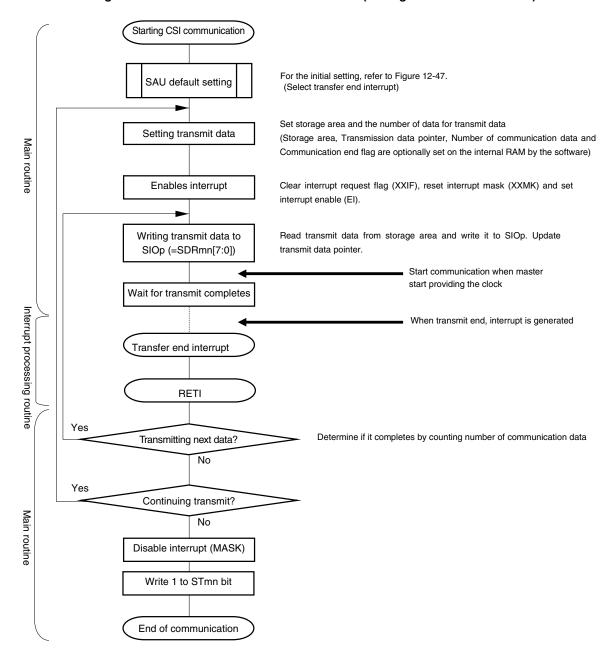
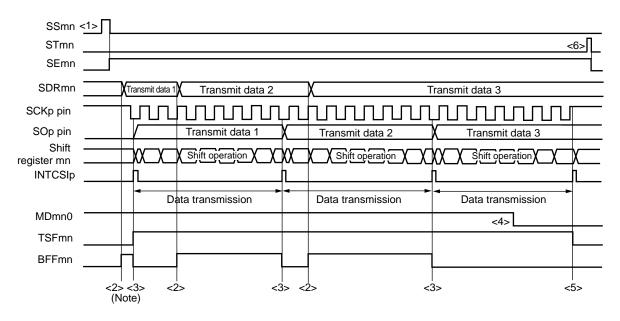

(3) Processing flow (in single-transmission mode)

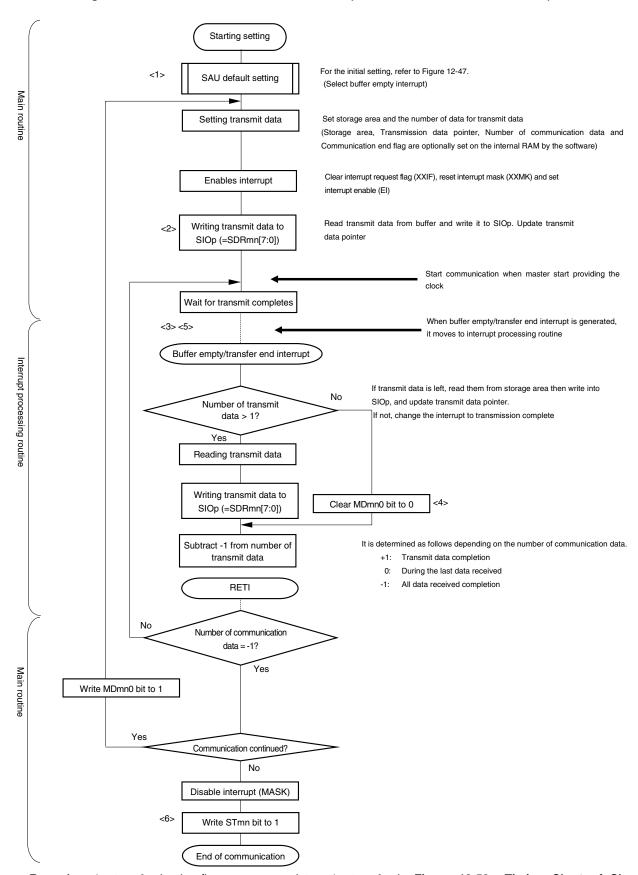
Figure 12-50. Timing Chart of Slave Transmission (in Single-Transmission Mode)
(Type 1: DAPmn = 0, CKPmn = 0)


Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

<R> Figure 12-51. Flowchart of Slave Transmission (in Single-Transmission Mode)

(4) Processing flow (in continuous transmission mode)

Figure 12-52. Timing Chart of Slave Transmission (in Continuous Transmission Mode)
(Type 1: DAPmn = 0, CKPmn = 0)



Note If transmit data is written to the SDRmn register while the BFFmn bit of serial status register mn (SSRmn) is 1 (valid data is stored in serial data register mn (SDRmn)), the transmit data is overwritten.

Caution The MDmn0 bit of serial mode register mn (SMRmn) can be rewritten even during operation. However, rewrite it before transfer of the last bit is started.

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

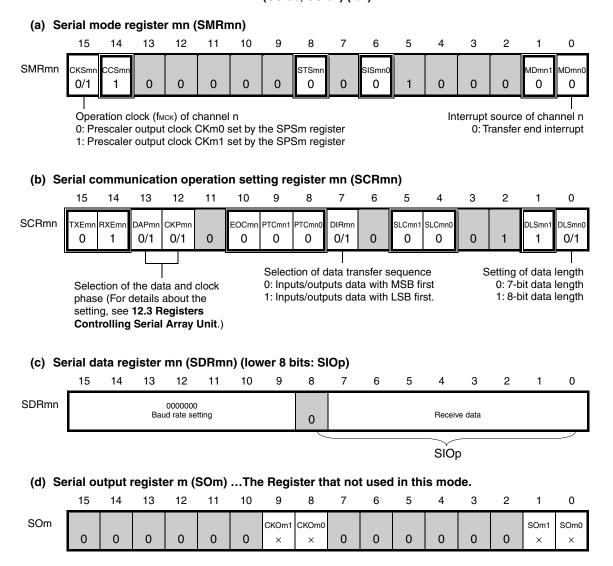
<R> Figure 12-53. Flowchart of Slave Transmission (in Continuous Transmission Mode)

Remark <1> to <6> in the figure correspond to <1> to <6> in Figure 12-52 Timing Chart of Slave Transmission (in Continuous Transmission Mode).

12.5.5 Slave reception

Slave reception is that the R7F0C001G/L, R7F0C002G/L receives data from another device in the state of a transfer clock being input from another device.

3-Wire Serial I/O	CSI00	CSI01				
Target channel	Channel 0	Channel 1				
Pins used	SCK00, SI00 SCK01, SI01					
Interrupt	INTCSI00 INTCSI01					
	Transfer end interrupt only (Setting the buffer empty interrupt is prohibited.)					
Error detection flag	Overrun error detection flag (OVFmn) only					
Transfer data length	7 or 8 bits					
Transfer rate	Max. f _{MCK} /6 [Hz] ^{Notes 1, 2}					
Data phase	Selectable by the DAPmn bit of the SCRmn register • DAPmn = 0: Data input starts from the start of the operation of the serial clock. • DAPmn = 1: Data input starts half a clock before the start of the serial clock operation.					
Clock phase	Selectable by the CKPmn bit of the SCRmn register CKPmn = 0: Non-reverse CKPmn = 1: Reverse					
Data direction	MSB or LSB first					

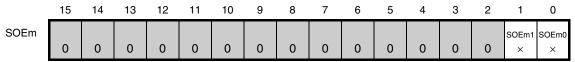

- Notes 1. Because the external serial clock input to the SCK00, and SCK01 pins is sampled internally and used, the fastest transfer rate is fmck/6 [Hz].
 - 2. Use this operation within a range that satisfies the conditions above and the peripheral functions characteristics in the electrical specifications (see CHAPTER 27 ELECTRICAL SPECIFICATIONS).
 - Remarks 1. fmck: Operation clock frequency of target channel

fsck: Serial clock frequency

2. m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01

(1) Register setting

Figure 12-54. Example of Contents of Registers for Slave Reception of 3-Wire Serial I/O (CSI00, CSI01) (1/2)



Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

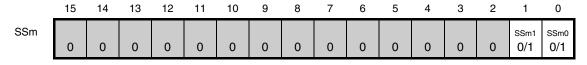

2. : Setting is fixed in the CSI slave transmission mode, : Setting disabled (set to the initial value) ×: Bit that cannot be used in this mode (set to the initial value when not used in any mode) 0/1: Set to 0 or 1 depending on the usage of the user

Figure 12-54. Example of Contents of Registers for Slave Reception of 3-Wire Serial I/O (CSI00, CSI01) (2/2)

(e) Serial output enable register m (SOEm) ... The Register that not used in this mode.

(f) Serial channel start register m (SSm) ... Sets only the bits of the target channel to 1.

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

2.

Setting disabled (set to the initial value)

 \times : Bit that cannot be used in this mode (set to the initial value when not used in any mode)

0/1: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 12-55. Initial Setting Procedure for Slave Reception

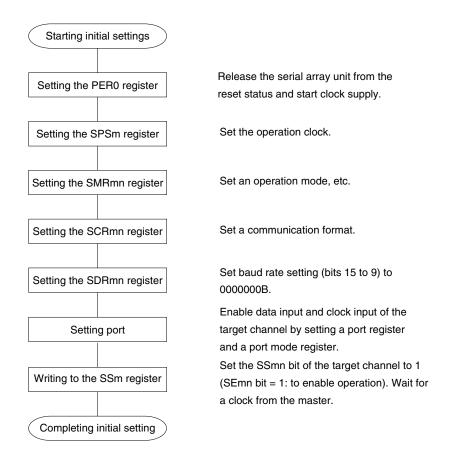
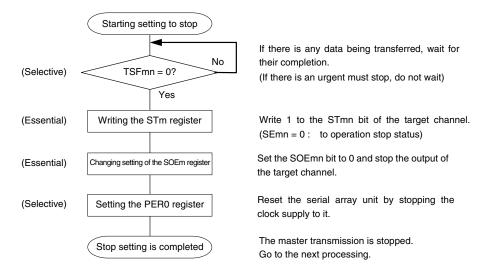



Figure 12-56. Procedure for Stopping Slave Reception

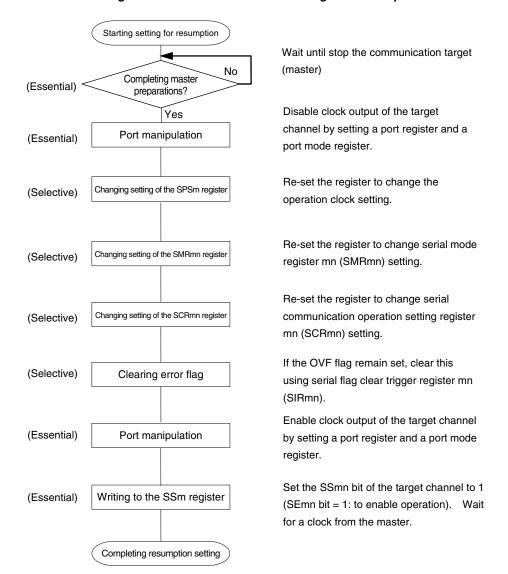
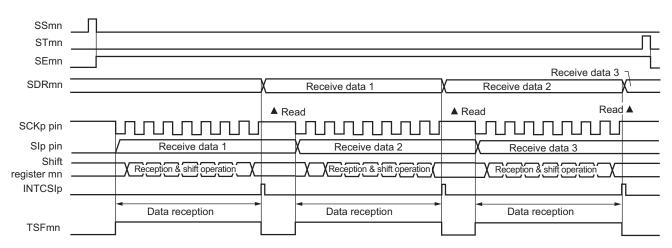



Figure 12-57. Procedure for Resuming Slave Reception

Remark If PER0 is rewritten while stopping the master transmission and the clock supply is stopped, wait until the transmission target (master) stops or transmission finishes, and then perform initialization instead of restarting the transmission.

(3) Processing flow (in single-reception mode)

Figure 12-58. Timing Chart of Slave Reception (in Single-Reception Mode)
(Type 1: DAPmn = 0, CKPmn = 0)

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

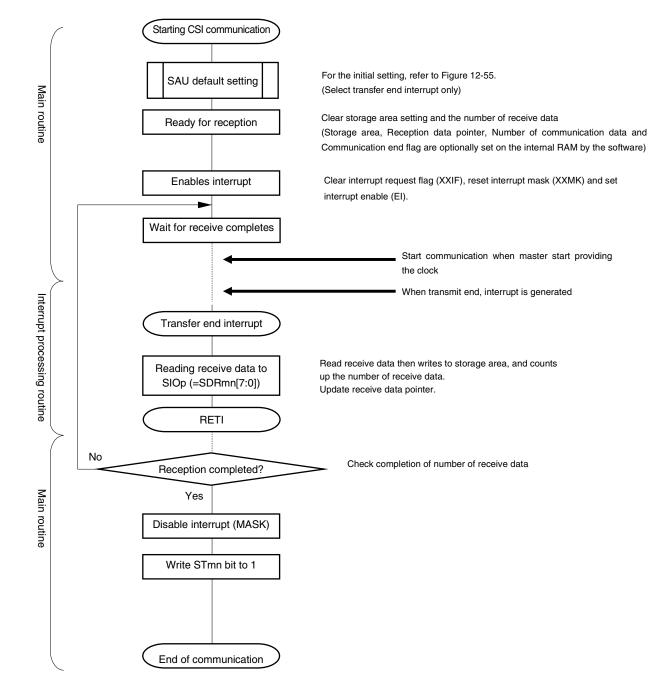


Figure 12-59. Flowchart of Slave Reception (in Single-Reception Mode)

<R>

12.5.6 Slave transmission/reception

Slave transmission/reception is that the R7F0C001G/L, R7F0C002G/L transmits/receives data to/from another device in the state of a transfer clock being input from another device.

3-Wire Serial I/O	CSI00	CSI01				
Target channel	Channel 0	Channel 1				
Pins used	SCK00, SI00, SO00	SCK01, SI01, SO01				
Interrupt	INTCSI00	INTCSI01				
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.					
Error detection flag	Overrun error detection flag (OVFmn) only					
Transfer data length	7 or 8 bits					
Transfer rate	Max. fmck/6 [Hz] ^{Notes 1, 2} .					
Data phase	Selectable by the DAPmn bit of the SCRmn register DAPmn = 0: Data I/O starts from the start of the operation of the serial clock. DAPmn = 1: Data I/O starts half a clock before the start of the serial clock operation.					
Clock phase	Selectable by the CKPmn bit of the SCRmn register CKPmn = 0: Non-reversed CKPmn = 1: Reverse					
Data direction	MSB or LSB first					

- Notes 1. Because the external serial clock input to the SCK00, and SCK01 pins is sampled internally and used, the fastest transfer rate is fmck/6 [Hz].
 - 2. Use this operation within a range that satisfies the conditions above and the peripheral functions characteristics in the electrical specifications (see CHAPTER 27 ELECTRICAL SPECIFICATIONS).
 - Remarks 1. fmck: Operation clock frequency of target channel

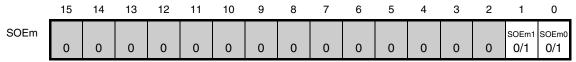
fsck: Serial clock frequency

2. m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01

(1) Register setting

Figure 12-60. Example of Contents of Registers for Slave Transmission/Reception of 3-Wire Serial I/O (CSI00, CSI01) (1/2)

(a) Serial mode register mn (SMRmn) 15 13 12 11 10 5 3 2 **SMRmn** CKSmr STSmr SISmn CCSm /IDmn /IDmn(0/1 0 0 0 0 0 0 0 0 0 0 0 0/1 Operation clock (fmck) of channel n Interrupt source of channel n 0: Prescaler output clock CKm0 set by the SPSm register 0: Transfer end interrupt 1: Prescaler output clock CKm1 set by the SPSm register 1: Buffer empty interrupt (b) Serial communication operation setting register mn (SCRmn) 6 15 13 12 11 10 9 8 5 3 2 1 0 **SCRmn** RXFmr DAPmr CKPm DIRmn ΓXFmr -OCmn PTCmn1 PTCmn0 SI Cmn1 SI Cmn0 Ol Smr DI Smn(1 1 0/1 0/1 0 0 0 0 0/1 0 0 0 0 1 0/1 Selection of data transfer sequence Setting of data length 0: Inputs/outputs data with MSB first 0: 7-bit data length Selection of the data and clock 1: Inputs/outputs data with LSB first. 1: 8-bit data length phase (For details about the setting, see 12.3 Registers **Controlling Serial Array Unit.)** (c) Serial data register mn (SDRmn) (lower 8 bits: SIOp) 5 6 3 0 **SDRmn** 0000000 Baud rate setting Transmit data setting/receive data register 0 SIOp (d) Serial output register m (SOm) ... Sets only the bits of the target channel. 15 13 12 10 8 2 1 0 SOm CKOm1 CKOm0 SOm1 SOm0 0 0 0 0 0 0 0 0 0/1 0/1


Caution Be sure to set transmit data to the SIOp register before the clock from the master is started.

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

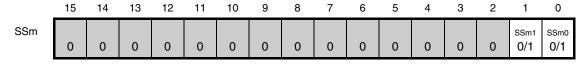
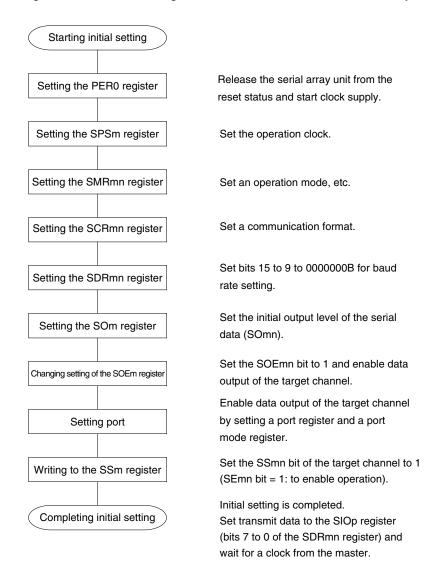

- 2. \square : Setting is fixed in the CSI slave transmission/reception mode,
 - : Setting disabled (set to the initial value)
 - x: Bit that cannot be used in this mode (set to the initial value when not used in any mode)
 - 0/1: Set to 0 or 1 depending on the usage of the user

Figure 12-60. Example of Contents of Registers for Slave Transmission/Reception of 3-Wire Serial I/O (CSI00, CSI01) (2/2)

(e) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1.

(f) Serial channel start register m (SSm) ... Sets only the bits of the target channel to 1.

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01


2.
Setting disabled (set to the initial value)

x: Bit that cannot be used in this mode (set to the initial value when not used in any mode)

0/1: Set to 0 or 1 depending on the usage of the user

(2) Operation procedure

Figure 12-61. Initial Setting Procedure for Slave Transmission/Reception

Caution Be sure to set transmit data to the SIOp register before the clock from the master is started.

Starting setting to stop

(Selective)

TSFmn = 0?

(If the Selective)

(Essential)

Writing the STm register

(Selective)

Changing setting of the SOEm register

the Selective)

Changing setting of the SOm register

Selective)

Setting the PER0 register

Stop setting is completed

Tile Stop setting is completed

Figure 12-62. Procedure for Stopping Slave Transmission/Reception

If there is any data being transferred, wait for their completion.

(If there is an urgent must stop, do not wait)

Write 1 to the STmn bit of the target channel. (SEmn = 0 : to operation stop status)

Set the SOEmn bit to 0 and stop the output of the target channel.

The levels of the serial clock (CKOmn) and serial data (SOmn) on the target channel can be changed if necessitated by an emergency.

Reset the serial array unit by stopping the clock supply to it.

The master transmission is stopped. Go to the next processing.

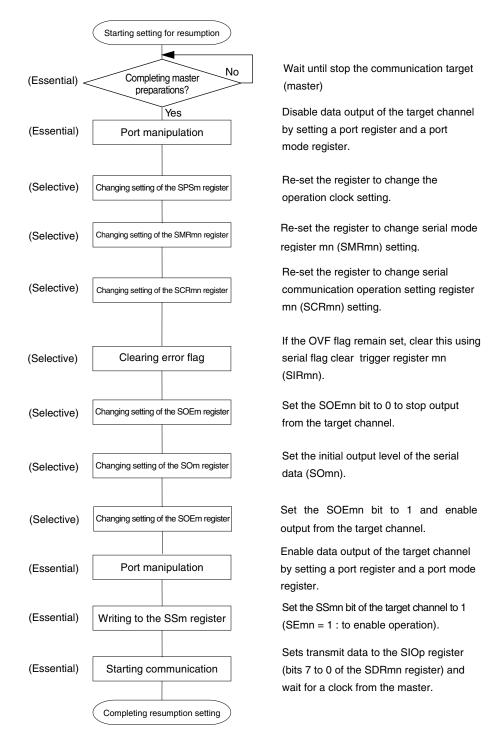
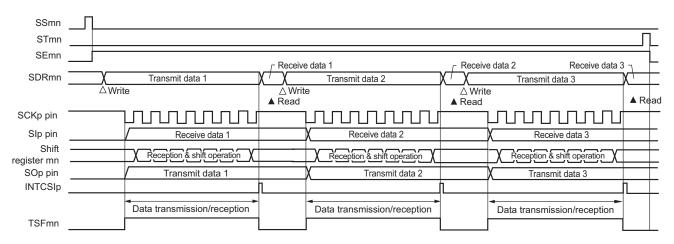


Figure 12-63. Procedure for Resuming Slave Transmission/Reception


Cautions 1. Be sure to set transmit data to the SIOp register before the clock from the master is started.

2. If PER0 is rewritten while stopping the master transmission and the clock supply is stopped, wait until the transmission target (master) stops or transmission finishes, and then perform initialization instead of restarting the transmission.

<R>

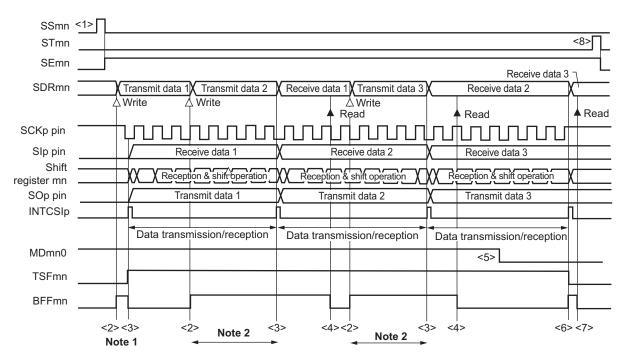
(3) Processing flow (in single-transmission/reception mode)

Figure 12-64. Timing Chart of Slave Transmission/Reception (in Single-Transmission/Reception Mode)
(Type 1: DAPmn = 0, CKPmn = 0)

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

Starting CSI communication For the initial setting, refer to Figure 12-61 SAU default setting (Select Transfer end interrupt) Setting storage area and number of data for transmission/reception data Setting (Storage area, Transmission/reception data pointer, Number of communication data transmission/reception data and Communication end flag are optionally set on the internal RAM by the software) Main routine Clear interrupt request flag (XXIF), reset interrupt mask (XXMK) and set Enables interrupt interrupt enable (EI). Read transmit data from storage area and write it to SIOp. Writing transmit data to Update transmit data pointer. SIOp (=SDRmn[7:0]) Start communication when master start providing the clock Wait for transmission/reception completes When transfer end interrupt is generated, it moves to interrupt processing routine Interrupt processing routine Transfer end interrupt Reading receive data to Read receive data and write it to storage area. Update SIOp (=SDRmn[7:0]) receive data pointer. RETI Transmission/reception completed? Yes Update the number of communication data and confirm Yes if next transmission/reception data is available Transmission/reception next data? Disable interrupt (MASK) Main routine Write STmn bit to 1 End of communication

Figure 12-65. Flowchart of Slave Transmission/Reception (in Single-Transmission/Reception Mode)


Caution Be sure to set transmit data to the SIOp register before the clock from the master is started.

<R>

(4) Processing flow (in continuous transmission/reception mode)

Figure 12-66. Timing Chart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode)

(Type 1: DAPmn = 0, CKPmn = 0)

- **Notes 1.** If transmit data is written to the SDRmn register while the BFFmn bit of serial status register mn (SSRmn) is 1 (valid data is stored in serial data register mn (SDRmn)), the transmit data is overwritten.
 - **2.** The transmit data can be read by reading the SDRmn register during this period. At this time, the transfer operation is not affected.
- Caution The MDmn0 bit of serial mode register mn (SMRmn) can be rewritten even during operation.

 However, rewrite it before transfer of the last bit is started, so that it has been rewritten before the transfer end interrupt of the last transmit data.
- Remarks 1. <1> to <8> in the figure correspond to <1> to <8> in Figure 12-67 Flowchart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode).
 - 2. m: Unit number (m = 0), n: Channel number (n = 0, 1), p: CSI number (p = 00, 01), mn = 00, 01

<R>

Figure 12-67. Flowchart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode)

Caution Be sure to set transmit data to the SIOp register before the clock from the master is started.

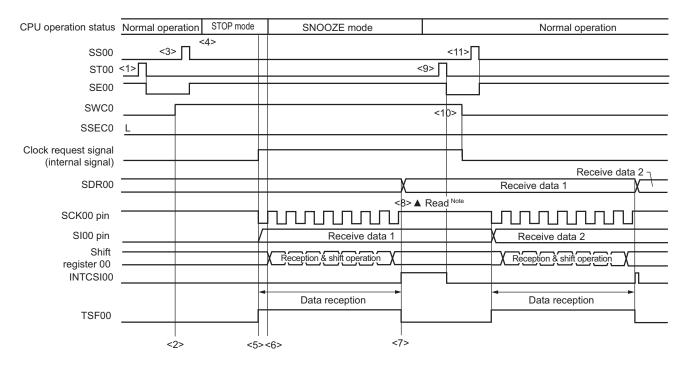
Remark <1> to <8> in the figure correspond to <1> to <8> in Figure 12-66 Timing Chart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode).

<R> 12.5.7 SNOOZE mode function

SNOOZE mode makes CSI operate reception by SCKp pin input detection while the STOP mode. Normally CSI stops communication in the STOP mode. But, using the SNOOZE mode makes reception CSI operate unless the CPU operation by detecting SCKp pin input.

Only CSI00 can be set to the SNOOZE mode.

When using the CSI in SNOOZE mode, make the following setting before switching to the STOP mode (see Figure 12-69 Flowchart of SNOOZE Mode Operation (once startup) and Figure 12-71 Flowchart of SNOOZE Mode Operation (continuous startup)).


• When using the SNOOZE mode function, set the SWCm bit of serial standby control register m (SSCm) to 1 just before switching to the STOP mode. After the initial setting has been completed, set the SSm0 bit of serial channel start register m (SSm) to 1.

After a transition to the STOP mode, the CSI starts reception operations upon detection of an edge of the SCKp pin.

- Cautions 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fclk.
 - 2. The maximum transfer rate when using CSIp in the SNOOZE mode is 1 Mbps.

(1) SNOOZE mode operation (once startup)

Figure 12-68. Timing Chart of SNOOZE Mode Operation (once startup) (Type 1: DAPmn = 0, CKPmn = 0)

Note Only read received data while SWCm = 1 and before the next edge of the SCKp pin input is detected.

- Cautions 1. Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm0 bit to 1 (clear the SEm0 bit, and stop the operation).

 And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE mode release).
 - 2. When SWCm = 1, the BFFm0 and OVFm0 flags will not change.

Remarks 1. <1> to <11> in the figure correspond to <1> to <11> in Figure 12-69 Flowchart of SNOOZE Mode Operation (once startup).

2. m = 0; p = 00

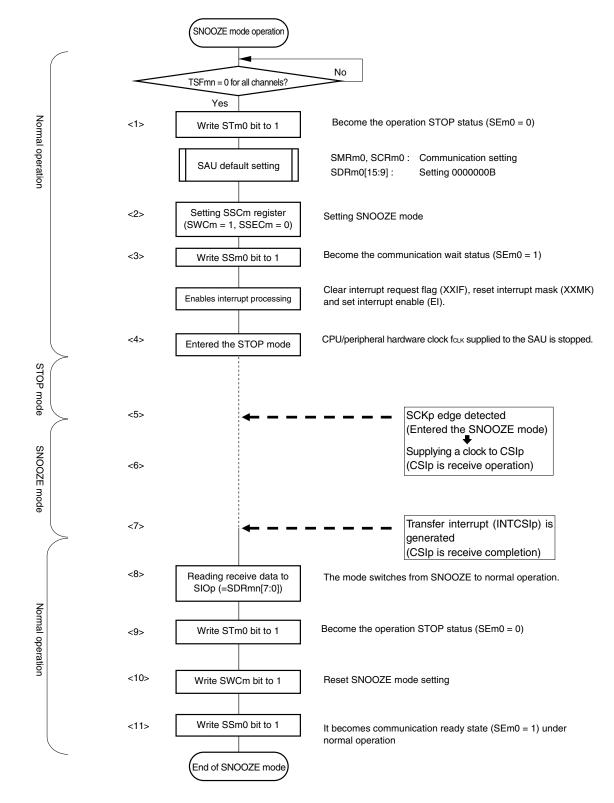


Figure 12-69. Flowchart of SNOOZE Mode Operation (once startup)

Remarks 1. <1> to <11> in the figure correspond to <1> to <11> in Figure 12-68 Timing Chart of SNOOZE Mode Operation (once startup).

2. m = 0; p = 00

(2) SNOOZE mode operation (continuous startup)

Figure 12-70. Timing Chart of SNOOZE Mode Operation (continuous startup) (Type 1: DAPmn = 0, CKPmn = 0)

Note Only read received data while SWCm = 1 and before the next edge of the SCKp pin input is detected.

- Cautions 1. Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm0 bit to 1 (clear the SEm0 bit, and stop the operation).

 And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE release).
 - 2. When SWCm = 1, the BFFm0 and OVFm0 flags will not change.

Remarks 1. <1> to <10> in the figure correspond to <1> to <10> in Figure 12-71 Flowchart of SNOOZE Mode Operation (continuous startup).

2. m = 0; p = 00

447

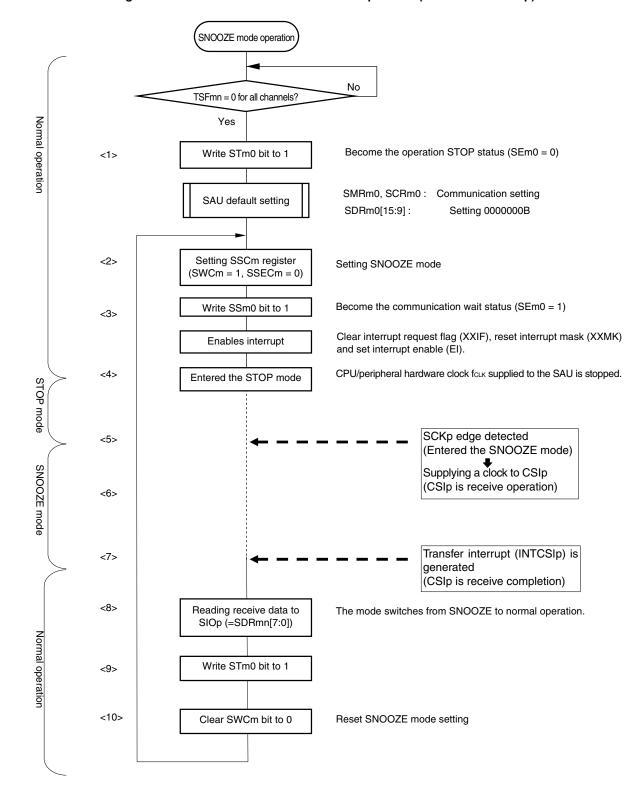


Figure 12-71. Flowchart of SNOOZE Mode Operation (continuous startup)

Remarks 1. <1> to <10> in the figure correspond to <1> to <10> in Figure 12-70 Timing Chart of SNOOZE Mode Operation (continuous startup).

2. m = 0; p = 00

12.5.8 Calculating transfer clock frequency

The transfer clock frequency for 3-wire serial I/O (CSI00, CSI01) communication can be calculated by the following expressions.

(1) Master

(Transfer clock frequency) = {Operation clock (fмcκ) frequency of target channel} ÷ (SDRmn[15:9] + 1) ÷ 2 [Hz]

(2) Slave

 $(Transfer clock frequency) = \{Frequency of serial clock (SCK) supplied by master\}^{Note}$ [Hz]

Note The permissible maximum transfer clock frequency is fmck/6.

Remark The value of SDRmn[15:9] is the value of bits 15 to 9 of serial data register mn (SDRmn) (0000000B to 11111111B) and therefore is 0 to 127.

The operation clock (fmck) is determined by serial clock select register m (SPSm) and bit 15 (CKSmn) of serial mode register mn (SMRmn).

Table 12-2. Selection of Operation Clock For 3-Wire Serial I/O

SMRmn Register			5	SPSm F	Registe	r	Operatio	n Clock (fMCK) Note		
CKSmn	PRS m13	PRS m12	PRS m11	PRS m10	PRS m03	PRS m02	PRS m01	PRS m00		fclk = 24 MHz
0	Χ	Х	Χ	Χ	0	0	0	0	fclk	24 MHz
	Х	Х	Х	Х	0	0	0	1	fclk/2	12 MHz
	Χ	Х	Χ	Χ	0	0	1	0	fclk/2 ²	6 MHz
	Х	Х	Х	Х	0	0	1	1	fclk/2 ³	3 MHz
	Х	Х	Χ	Χ	0	1	0	0	fclκ/2⁴	1.5 MHz
	Х	Х	Х	Х	0	1	0	1	fclk/2 ⁵	750 kHz
	Х	Х	Χ	Χ	0	1	1	0	fclk/2 ⁶	375 kHz
	Х	Х	Х	Х	0	1	1	1	fclk/2 ⁷	187.5 kHz
	Х	Х	Х	Х	1	0	0	0	fclk/2 ⁸	93.8 kHz
	Х	Х	Х	Х	1	0	0	1	fclk/29	46.9 kHz
	Х	Х	Х	Х	1	0	1	0	fclk/2 ¹⁰	23.4 kHz
	Х	Х	Х	Х	1	0	1	1	fclk/2 ¹¹	11.7 kHz
	Х	Х	Х	Х	1	1	0	0	fclk/2 ¹²	5.86 kHz
	Х	Х	Χ	Χ	1	1	0	1	fclk/2 ¹³	2.93 kHz
	Х	Х	Χ	Χ	1	1	1	0	fclk/2 ¹⁴	1.46 kHz
	Х	Х	Χ	Χ	1	1	1	1	fclk/2 ¹⁵	732 Hz
1	0	0	0	0	Х	Х	Х	Х	fclk	24 MHz
	0	0	0	1	Х	Χ	Χ	Х	fclk/2	12 MHz
	0	0	1	0	Х	Χ	Χ	Х	fclk/2 ²	6 MHz
	0	0	1	1	Х	Х	Χ	Χ	fclk/2 ³	3 MHz
	0	1	0	0	Х	Χ	Χ	Х	fclk/2 ⁴	1.5 MHz
	0	1	0	1	Х	Х	Χ	Х	fclk/2 ⁵	750 kHz
	0	1	1	0	Χ	Χ	Χ	Х	fclk/2 ⁶	375 kHz
	0	1	1	1	Χ	Χ	Χ	Х	fclk/2 ⁷	187.5 kHz
	1	0	0	0	Χ	Х	Χ	Х	fclk/2 ⁸	93.8 kHz
	1	0	0	1	Х	Х	Χ	Х	fclk/29	46.9 kHz
	1	0	1	0	Х	Х	Х	Х	fclk/2 ¹⁰	23.4 kHz
	1	0	1	1	Х	Х	Х	Х	fclk/2 ¹¹	11.7 kHz
	1	1	0	0	Х	Х	Χ	Χ	fclк/2 ¹²	5.86 kHz
	1	1	0	1	Х	Х	Х	Х	fclk/2 ¹³	2.93 kHz
	1	1	1	0	Х	Х	Х	Х	fclk/2 ¹⁴	1.46 kHz
	1	1	1	1	Х	Х	Х	Х	fclk/2 ¹⁵	732 Hz
	Other than above								Setting prohibited	

Note When changing the clock selected for fclk (by changing the system clock control register (CKC) value), do so after having stopped (serial channel stop register m (STm) = 000FH) the operation of the serial array unit (SAU).

Remarks 1. X: Don't care

2. m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01

12.5.9 Procedure for processing errors that occurred during 3-wire serial I/O (CSI00, CSI01) communication

The procedure for processing errors that occurred during 3-wire serial I/O (CSI00, CSI01) communication is described in Figure 12-72.

Figure 12-72. Processing Procedure in Case of Overrun Error

Software Manipulation	Hardware Status	Remark			
Reads serial data register mn (SDRmn).—I	The BFFmn bit of the SSRmn register is set to 0 and channel n is enabled to receive data.	This is to prevent an overrun error if the next reception is completed during error processing.			
Reads serial status register mn (SSRmn).		Error type is identified and the read value is used to clear error flag.			
Writes 1 to serial flag clear trigger register mn (SIRmn).	Error flag is cleared.	Error can be cleared only during reading, by writing the value read from the SSRmn register to the SIRmn register without modification.			

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01

12.6 Operation of UART (UART0) Communication

This is a start-stop synchronization function using two lines: serial data transmission (TxD) and serial data reception (RxD) lines. By using these two communication lines, each data frame, which consist of a start bit, data, parity bit, and stop bit, is transferred asynchronously (using the internal baud rate) between the microcontroller and the other communication party. Full-duplex UART communication can be performed by using a channel dedicated to transmission (even-numbered channel) and a channel dedicated to reception (odd-numbered channel). The LIN-bus can be implemented by using timer array unit with an external interrupt (INTP0).

[Data transmission/reception]

- Data length of 7, 8, or 9 bits
- · Select the MSB/LSB first
- Level setting of transmit/receive data (selecting whether to reverse the level)
- · Parity bit appending and parity check functions
- Stop bit appending, stop bit check function

[Interrupt function]

- · Transfer end interrupt/buffer empty interrupt
- Error interrupt in case of framing error, parity error, or overrun error

[Error detection flag]

• Framing error, parity error, or overrun error

In addition, UART0 reception supports the SNOOZE mode. When RxD0 pin input is detected while in the STOP mode, the SNOOZE mode makes data reception that does not require the CPU possible.

UART0 uses channels 0 and 1.

Channel	Used as CSI	Used as UART		
0	CSI00	UART0		
1	CSI01			

Caution When using serial array unit as UARTs, the channels of both the transmitting side (even-number channel) and the receiving side (odd-number channel) can be used only as UARTs.

UART performs the following two types of communication operations.

UART transmission (See 12.6.1.)UART reception (See 12.6.2.)

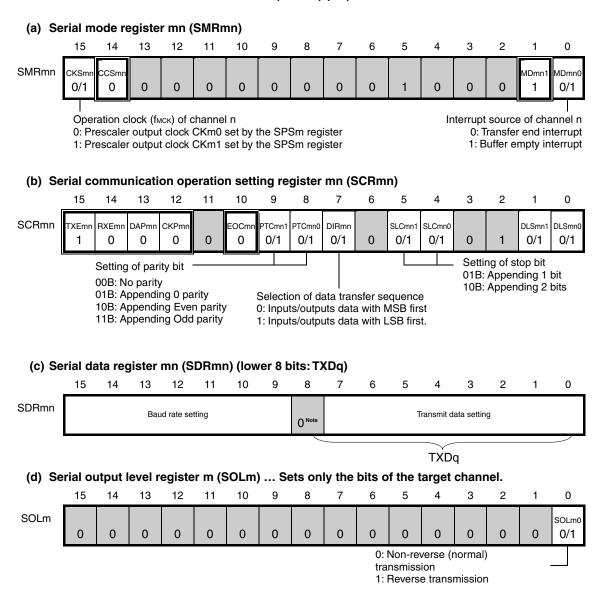
12.6.1 UART transmission

UART transmission is an operation to transmit data from the R7F0C001G/L, R7F0C002G/L to another device asynchronously (start-stop synchronization).

Of two channels used for UART, the even channel is used for UART transmission.

UART	UART0						
Target channel	Channel 0						
Pins used	TxD0						
Interrupt	INTST0						
	Transfer end interrupt (in single-transfer mode) or buffer empty interrupt (in continuous transfer mode) can be selected.						
Error detection flag	None						
Transfer data length	7, 8, or 9 bits						
Transfer rate	Max. fmck/6 [bps] (SDRmn [15:9] = 2 or more), Min. fcLk/($2 \times 2^{15} \times 128$) [bps] Note						
Data phase	Non-reverse output (default: high level) Reverse output (default: low level)						
Parity bit	The following selectable No parity bit Appending 0 parity Appending even parity Appending odd parity						
Stop bit	The following selectable • Appending 1 bit • Appending 2 bits						
Data direction	MSB or LSB first						

Note Use this operation within a range that satisfies the conditions above and the peripheral functions characteristics in the electrical specifications (see **CHAPTER 27 ELECTRICAL SPECIFICATIONS**).

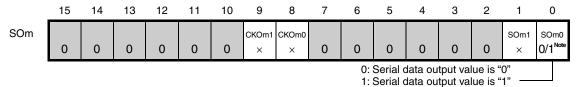

Remarks 1. fmck: Operation clock frequency of target channel

fclk: System clock frequency

2. m: Unit number (m = 0), n: Channel number (n = 0), mn = 00

(1) Register setting

Figure 12-73. Example of Contents of Registers for UART Transmission of UART (UART0) (1/2)



Note When UART0 performs 9-bit communication (by setting the DLS001 and DLS000 bits of the SCR00 register to 1), bits 0 to 8 of the SDR00 register are used as the transmission data specification area.

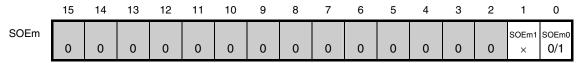
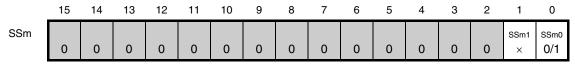

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0), q: UART number (q = 0), mn = 00
2. □: Setting is fixed in the UART transmission mode, □: Setting disabled (set to the initial value)
x: Bit that cannot be used in this mode (set to the initial value when not used in any mode)
0/1: Set to 0 or 1 depending on the usage of the user

Figure 12-73. Example of Contents of Registers for UART Transmission of UART (UART0) (2/2)


(e) Serial output register m (SOm) ... Sets only the bits of the target channel.

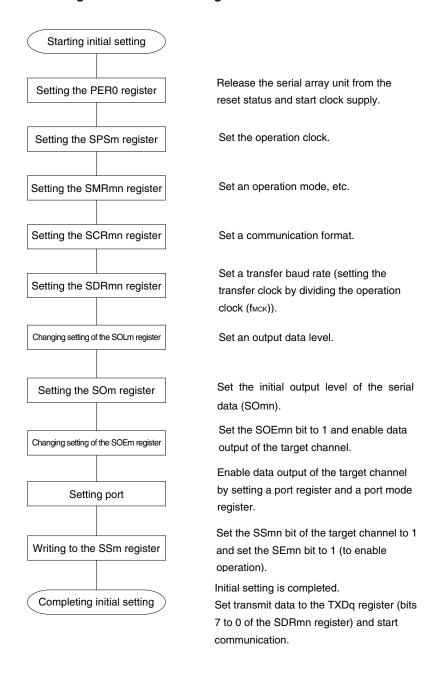
(f) Serial output enable register m (SOEm) ... Sets only the bits of the target channel to 1.

(g) Serial channel start register m (SSm) \dots Sets only the bits of the target channel to 1.

Note Before transmission is started, be sure to set to 1 when the SOLm0 bit of the target channel is set to 0, and set to 0 when the SOLm0 bit of the target channel is set to 1. The value varies depending on the communication data during communication operation.

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 0), mn = 00

2.


Setting disabled (set to the initial value)

x: Bit that cannot be used in this mode (set to the initial value when not used in any mode)

0/1: Set to 0 or 1 depending on the usage of the user

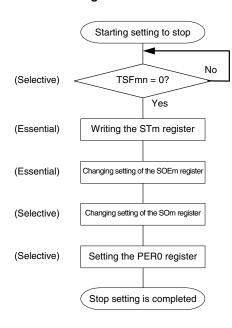

(2) Operation procedure

Figure 12-74. Initial Setting Procedure for UART Transmission

<R>

Figure 12-75 Procedure for Stopping UART Transmission

If there is any data being transferred, wait for their completion.

(If there is an urgent must stop, do not wait)

Write 1 to the STmn bit of the target channel. (SEmn = 0 : to operation stop status)

Set the SOEmn bit to 0 and stop the output of the target channel.

The levels of the serial clock (CKOmn) and serial data (SOmn) on the target channel can be changed if necessitated by an emergency.

Reset the serial array unit by stopping the clock supply to it.

The master transmission is stopped. Go to the next processing.

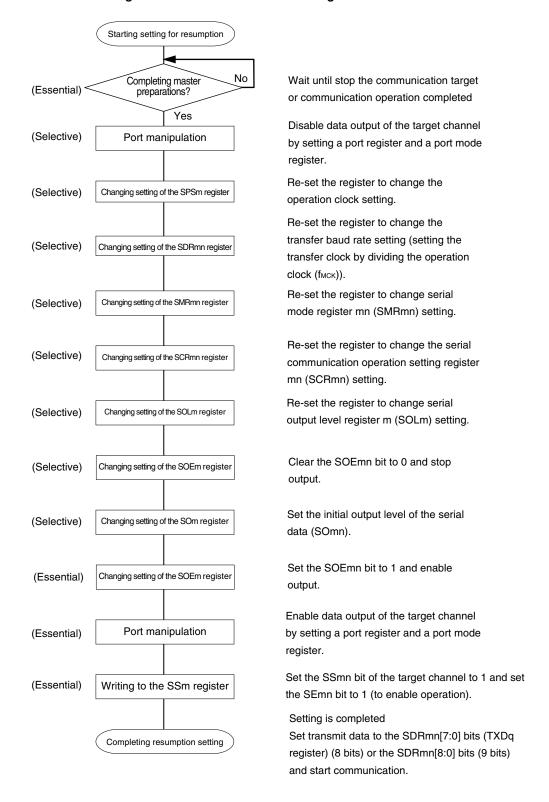
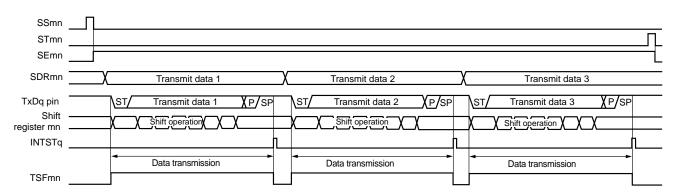



Figure 12-76. Procedure for Resuming UART Transmission

Remark If PER0 is rewritten while stopping the master transmission and the clock supply is stopped, wait until the transmission target stops or transmission finishes, and then perform initialization instead of restarting the transmission.

(3) Processing flow (in single-transmission mode)

Figure 12-77. Timing Chart of UART Transmission (in Single-Transmission Mode)

Remark m: Unit number (m = 0), n: Channel number (n = 0), q: UART number (q = 0) mn = 00

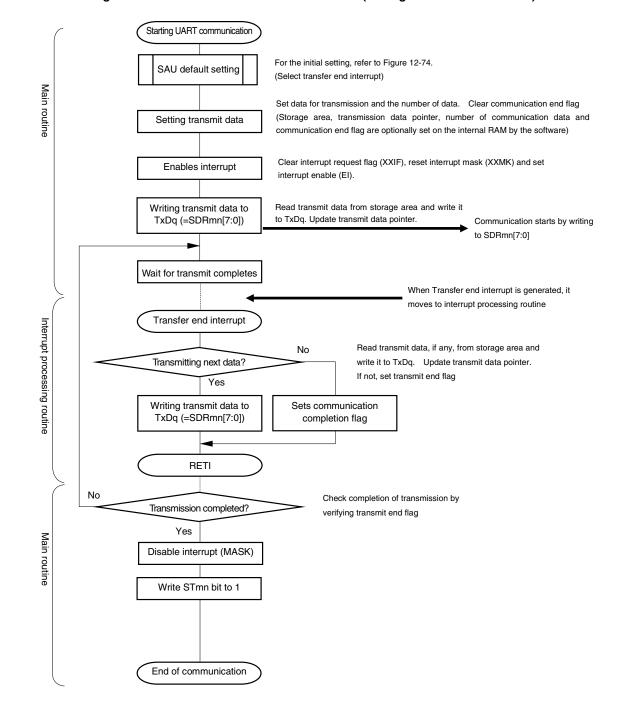
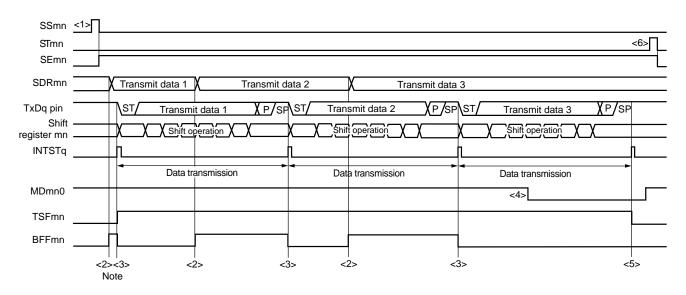
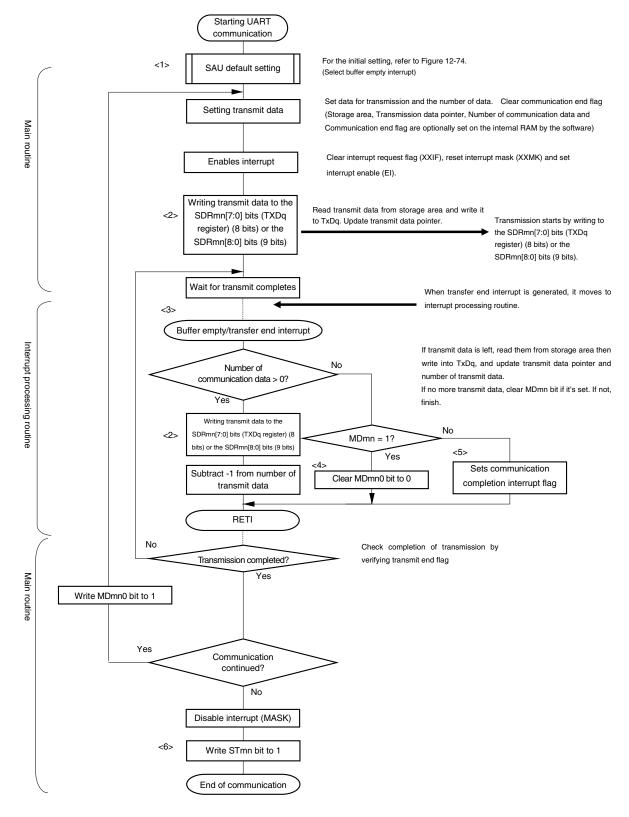



Figure 12-78. Flowchart of UART Transmission (in Single-Transmission Mode)

<R>

(4) Processing flow (in continuous transmission mode)

Figure 12-79. Timing Chart of UART Transmission (in Continuous Transmission Mode)


Note If transmit data is written to the SDRmn register while the BFFmn bit of serial status register mn (SSRmn) is 1 (valid data is stored in serial data register mn (SDRmn)), the transmit data is overwritten.

Caution The MDmn0 bit of serial mode register mn (SSRmn) can be rewritten even during operation.

However, rewrite it before transfer of the last bit is started, so that it will be rewritten before the transfer end interrupt of the last transmit data.

Remark m: Unit number (m = 0), n: Channel number (n = 0), q: UART number (q = 0) mn = 00

<R> Figure 12-80. Flowchart of UART Transmission (in Continuous Transmission Mode)

Remark <1> to <6> in the figure correspond to <1> to <6> in Figure 12-79 Timing Chart of UART Transmission (in Continuous Transmission Mode).

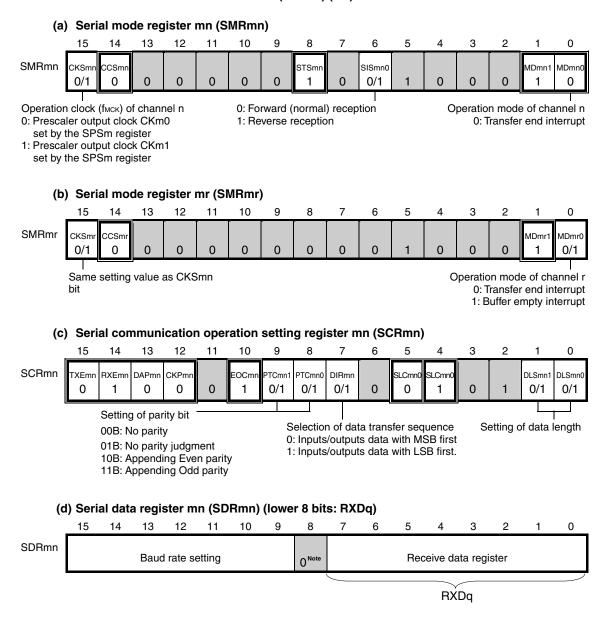
12.6.2 UART reception

UART reception is an operation wherein the R7F0C001G/L, R7F0C002G/L asynchronously receives data from another device (start-stop synchronization).

For UART reception, the odd-number channel of the two channels used for UART is used. The SMR register of both the odd- and even-numbered channels must be set.

UART	UART0					
Target channel	Channel 1					
Pins used	RxD0					
Interrupt	INTSR0					
	Transfer end interrupt only (Setting the buffer empty interrupt is prohibited.)					
Error interrupt	INTSRE0					
Error detection flag	Framing error detection flag (FEFmn) Parity error detection flag (PEFmn) Overrun error detection flag (OVFmn)					
Transfer data length	7, 8 or 9 bits					
Transfer rate	Max. fmck/6 [bps] (SDRmn [15:9] = 2 or more), Min. fcLk/(2 \times 2 ¹⁵ \times 128) [bps] Note					
Data phase	Non-reverse output (default: high level) Reverse output (default: low level)					
Parity bit	The following selectable No parity bit (no parity check) No parity judgment (0 parity) Appending even parity Appending odd parity					
Stop bit	1 bit check					
Data direction	MSB or LSB first					

Note Use this operation within a range that satisfies the conditions above and the peripheral functions characteristics in the electrical specifications (see **CHAPTER 27 ELECTRICAL SPECIFICATIONS**).

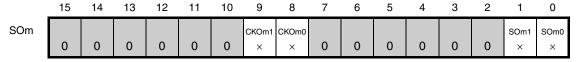

Remarks 1. fmck: Operation clock frequency of target channel

fclk: System clock frequency

2. m: Unit number (m = 0), n: Channel number (n = 1), mn = 01

(1) Register setting

Figure 12-81. Example of Contents of Registers for UART Reception of UART (UART0) (1/2)


Note When UART performs 9-bit communication, bits 0 to 8 of the SDRm1 register are used as the transmission data specification area.

Caution For the UART reception, be sure to set the SMRmr register of channel r to UART transmission mode that is to be paired with channel n.

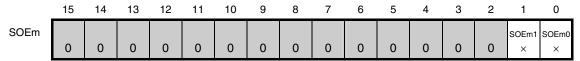
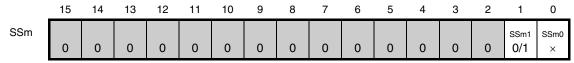

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 1), mn = 01
r: Channel number (r = n − 1), q: UART number (q = 0)
2. ☐: Setting is fixed in the UART reception mode, ☐: Setting disabled (set to the initial value)
×: Bit that cannot be used in this mode (set to the initial value when not used in any mode)
0/1: Set to 0 or 1 depending on the usage of the user

Figure 12-81. Example of Contents of Registers for UART Reception of UART (UART0) (2/2)


(e) Serial output register m (SOm) ... The register that not used in this mode.

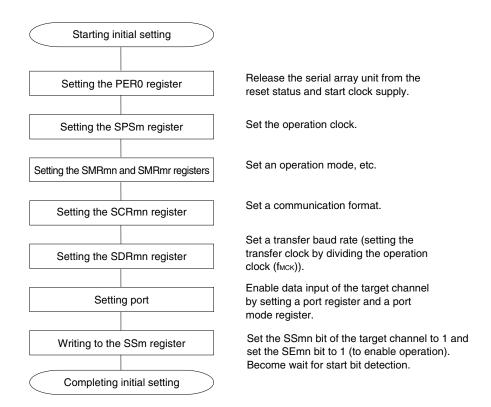
(f) Serial output enable register m (SOEm) ... The register that not used in this mode.

(g) Serial channel start register m (SSm) ... Sets only the bits of the target channel is 1.

Caution For the UART reception, be sure to set the SMRmr register of channel r to UART Transmission mode that is to be paired with channel n.

Remarks 1. m: Unit number (m = 0), n: Channel number (n = 1), mn = 01

r: Channel number (r = n - 1), q: UART number (q = 0)


2. : Setting is fixed in the UART reception mode, : Setting disabled (set to the initial value)

x: Bit that cannot be used in this mode (set to the initial value when not used in any mode)

0/1: Set to 0 or 1 depending on the usage of the user

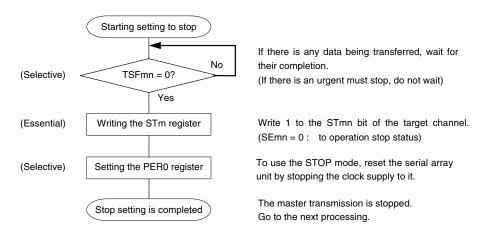

(2) Operation procedure

Figure 12-82. Initial Setting Procedure for UART Reception

Caution Set the RXEmn bit of SCRmn register to 1, and then be sure to set SSmn to 1 after 4 or more fclk clocks have elapsed.

Figure 12-83. Procedure for Stopping UART Reception

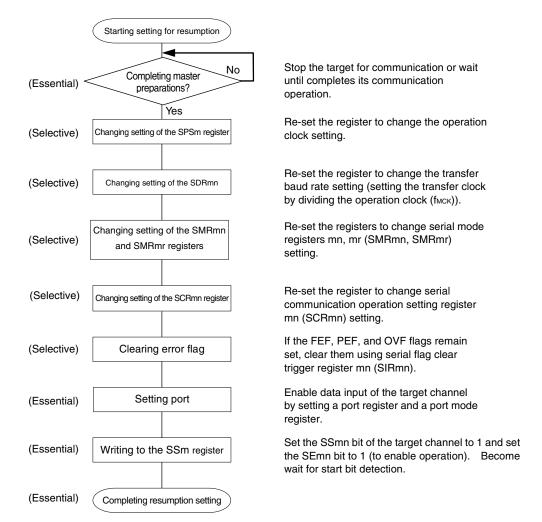
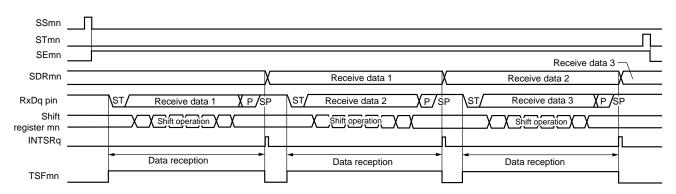


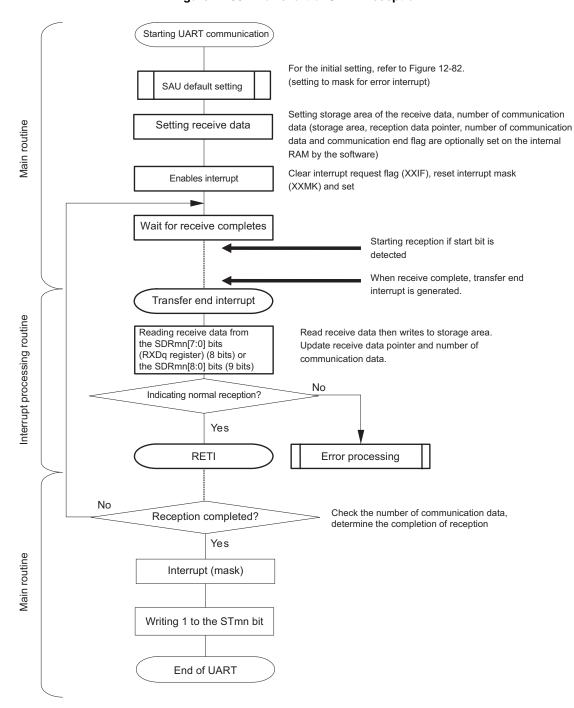
Figure 12-84. Procedure for Resuming UART Reception


Caution After is set RXEmn bit to 1 of SCRmn register, set the SSmn = 1 from an interval of at least four clocks of fmck.

Remark If PER0 is rewritten while stopping the master transmission and the clock supply is stopped, wait until the transmission target stops or transmission finishes, and then perform initialization instead of restarting the transmission.

Mar 25, 2014

(3) Processing flow


Figure 12-85. Timing Chart of UART Reception

Remark m: Unit number (m = 0), n: Channel number (n = 1), mn = 01 r: Channel number (r = n - 1), q: UART number (q = 0)

<R>

Figure 12-86. Flowchart of UART Reception

<R> 12.6.3 SNOOZE mode function

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation upon detection of the RxDq pin input.

Only UART0 can be set to the SNOOZE mode.

When using UARTq in the SNOOZE mode, make the following settings before entering the STOP mode. (See Figure 12-89 Flowchart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0) and Figure 12-91 Flowchart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1).)

- In the SNOOZE mode, the baud rate setting for UART reception needs to be changed to a value different from that in normal operation. Set the SPSm register and bits 15 to 9 of the SDRmn register with reference to Table 12-3.
- Set the EOCmn and SSECmn bits. This is for enabling or stopping generation of an error interrupt (INTSRE0) when a communication error occurs.
- When using the SNOOZE mode function, set the SWCm bit of serial standby control register m (SSCm) to 1 just before switching to the STOP mode. After the initial setting has completed, set the SSm1 bit of serial channel start register m (SSm) to 1.

Upon detecting the edge of RxDq (start bit input) after a transition was made to the STOP mode, UART reception is started.

- Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fill) is selected for fclk.
 - 2. The transfer rate in the SNOOZE mode is only 4800 bps.
 - 3. When SWCm = 1, UARTq can be used only when the reception operation is started in the STOP mode. When used simultaneously with another SNOOZE mode function or interrupt, if the reception operation is started in a state other than the STOP mode, such as those given below, data may not be received correctly and a framing error or parity error may be generated.
 - When after the SWCm bit has been set to 1, the reception operation is started before the STOP mode is entered
 - . When the reception operation is started while another function is in the SNOOZE mode
 - When after returning from the STOP mode to normal operation due to an interrupt or other cause, the reception operation is started before the SWCm bit is returned to 0
 - 4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.

<R>

Table 12-3. Baud Rate Setting for UART Reception in SNOOZE Mode

High-speed On-chip	Baud Rate for UART Reception in SNOOZE Mode										
Oscillator (fін)	Baud Rate of 4800 bps										
	Operation Clock (fмск)	SDRmn[15:9]	Maximum Permissible Value	Minimum Permissible Value							
32 MHz \pm 1.0% Note	fc∟k/2⁵	105	2.27%	-1.53%							
$24~\text{MHz} \pm 1.0\%^{\text{ Note}}$	fc∟k/2⁵	79	1.60%	-2.18%							
$16~\text{MHz} \pm 1.0\%^{\text{ Note}}$	fc∟κ/2⁴	105	2.27%	-1.53%							
12 MHz \pm 1.0% Note	fc∟κ/2⁴	79	1.60%	-2.19%							
$8~\text{MHz} \pm 1.0\%^{\text{ Note}}$	fclk/2³	105	2.27%	-1.53%							
$6~\text{MHz} \pm 1.0\%^{\text{ Note}}$	fclk/2³	79	1.60%	-2.19%							
$4~\text{MHz} \pm 1.0\%^{\text{ Note}}$	fclk/2²	105	2.27%	-1.53%							
3 MHz \pm 1.0% Note	fclk/2²	79	1.60%	-2.19%							
$2~\text{MHz} \pm 1.0\%^{\text{ Note}}$	fcLK/2	105	2.27%	-1.54%							
1 MHz \pm 1.0% Note	fclк	105	2.27%	-1.57%							

Note When the accuracy of the clock frequency of the high-speed on-chip oscillator is $\pm 1.5\%$ or $\pm 2.0\%$, the permissible range becomes smaller as shown below.

- In the case of f_{IH} ± 1.5%, perform (Maximum permissible value − 0.5%) and (Minimum permissible value + 0.5%) to the values in the above table.
- In the case of $f_{\text{IH}} \pm 2.0\%$, perform (Maximum permissible value 1.0%) and (Minimum permissible value + 1.0%) to the values in the above table.

Remark The maximum permissible value and minimum permissible value are permissible values for the baud rate in UART reception. The baud rate on the transmitting side should be set to fall inside this range.

<R> (1) SNOOZE mode operation (EOCm1 = 0, SSECm = 0/1)

Because of the setting of EOCm1 = 0, even though a communication error occurs, an error interrupt (INTSREq) is not generated, regardless of the setting of the SSECm bit. A transfer end interrupt (INTSRq) will be generated.

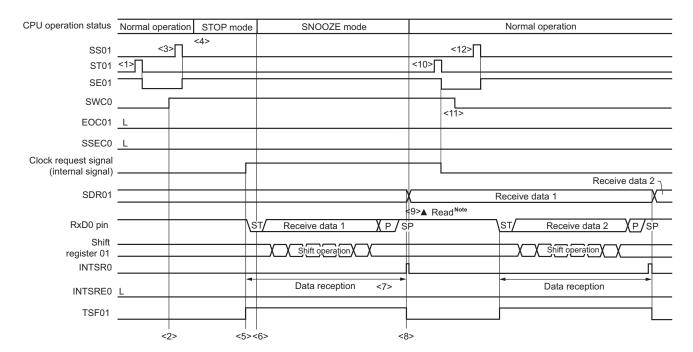


Figure 12-87. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)

Note Read the received data when SWCm = 1.

Caution Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm1 bit to 1 (clear the SEm1 bit and stop the operation).

After the receive operation completes, also clear the SWCm bit to 0 (SNOOZE mode release).

Remarks 1. <1> to <12> in the figure correspond to <1> to <12> in Figure 12-89 Flowchart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0).

2. m = 0; q = 0

<R> (2) SNOOZE mode operation (EOCm1 = 1, SSECm = 0: Error interrupt (INTSREq) generation is enabled)

Because EOCm1 = 1 and SSECm = 0, an error interrupt (INTSREq) is generated when a communication error occurs.

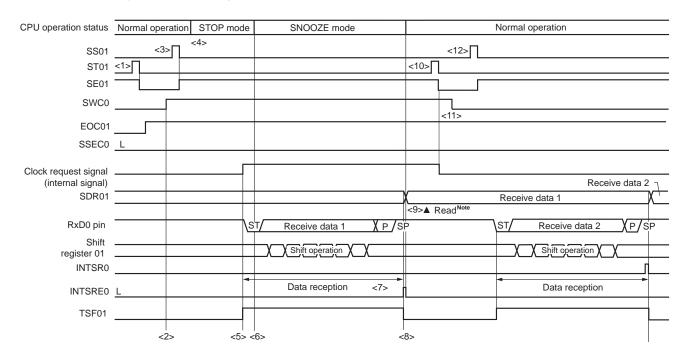
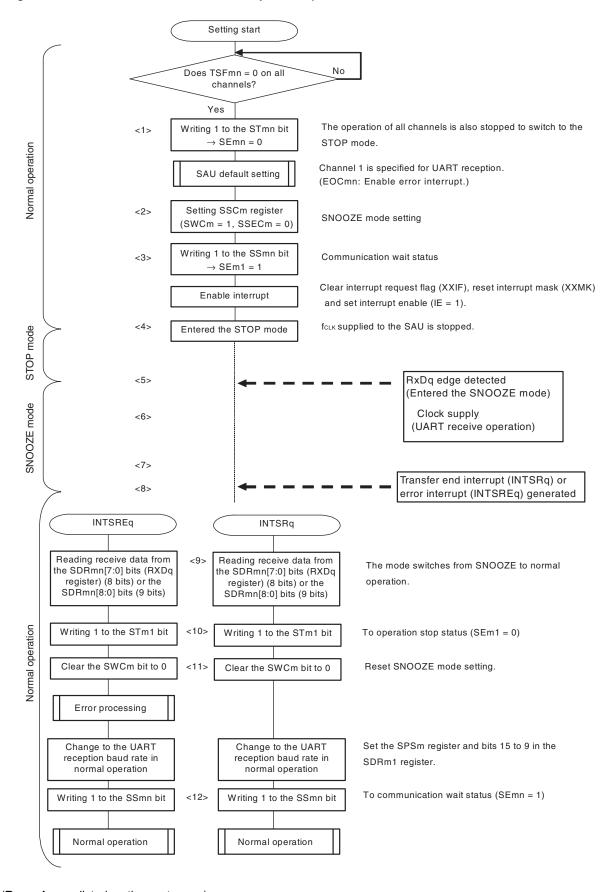


Figure 12-88. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)

Note Read the received data when SWCm = 1.

Caution Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm1 bit to 1 (clear the SEm1 bit and stop the operation).


After the receive operation completes, also clear the SWCm bit to 0 (SNOOZE mode release).

Remarks 1. <1> to <12> in the figure correspond to <1> to <12> in Figure 12-89 Flowchart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0).

2. m = 0; q = 0

<R>

Figure 12-89. Flowchart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0)

(Remarks are listed on the next page.)

- Remarks 1. <1> to <12> in the figure correspond to <1> to <12> in Figure 12-87 Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1) and Figure 12-88 Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0).
 - **2.** m = 0; q = 0

<R> (3) SNOOZE mode operation (EOCm1 = 1, SSECm = 1: Error interrupt (INTSREq) generation is stopped)

Because EOCm1 = 1 and SSECm = 1, an error interrupt (INTSREq) is not generated when a communication error occurs.

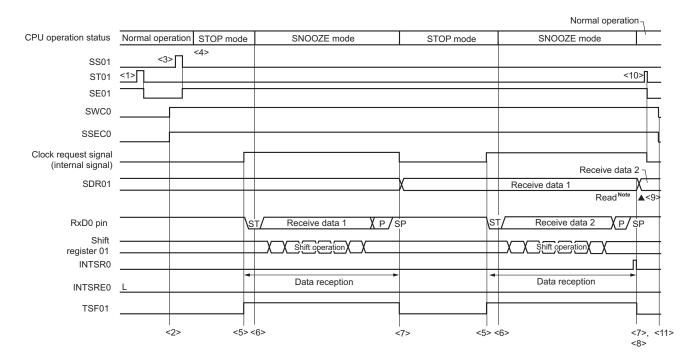
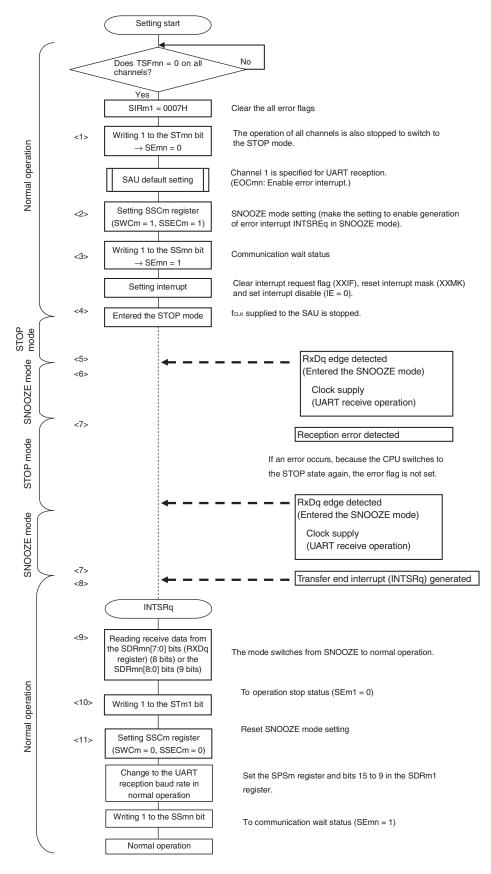



Figure 12-90 Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

Note Read the received data when SWCm = 1.

- Cautions 1. Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm1 bit to 1 (clear the SEm1 bit and stop the operation).
 - After the receive operation completes, also clear the SWCm bit to 0 (SNOOZE mode release).
 - 2. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFm1, FEFm1, or OVFm1 flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFm1, FEFm1, or OVFm1 flag before setting the SWCm bit to 1 and read the value in SDRm1[7:0] (RxDq register) (8 bits) or SDRm1[8:0] (9 bits).
- Remarks 1. <1> to <11> in the figure correspond to <1> to <11> in Figure 12-91 Flowchart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1).
 - **2.** m = 0; q = 0

<R> Figure 12-91. Flowchart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

(Caution and Remarks are listed on the next page.)

- Caution If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFm1, FEFm1, or OVFm1 flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFm1, FEFm1, or OVFm1 flag before setting the SWCm bit to 1 and read the value in SDRm1[7:0] (RxDq register) (8 bits) or SDRm1[8:0] (9 bits).
- Remarks 1. <1> to <11> in the figure correspond to <1> to <11> in Figure 12-90 Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1).
 - **2.** m = 0; q = 0

12.6.4 Calculating baud rate

(1) Baud rate calculation expression

The baud rate for UART (UART0) communication can be calculated by the following expressions.

(Baud rate) = {Operation clock (fmck) frequency of target channel} ÷ (SDRmn[15:9] + 1) ÷ 2 [bps]

Caution Setting serial data register mn (SDRmn) SDRmn[15:9] = (0000000B, 0000001B) is prohibited.

- Remarks 1. When UART is used, the value of SDRmn[15:9] is the value of bits 15 to 9 of the SDRmn register (0000010B to 1111111B) and therefore is 2 to 127.
 - 2. m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01

The operation clock (fMcK) is determined by serial clock select register m (SPSm) and bit 15 (CKSmn) of serial mode register mn (SMRmn).

Table 12-4. Selection of Operation Clock For UART

SMRmn Register			5	SPSm F	Registe	r		Operation (Clock (fMCK) Note	
CKSmn	PRS m13	PRS m12	PRS m11	PRS m10	PRS m03	PRS m02	PRS m01	PRS m00		fclk = 24 MHz
0	Х	Х	Х	Х	0	0	0	0	fclk	24 MHz
	Х	Х	Х	Х	0	0	0	1	fclk/2	12 MHz
	Х	Х	Х	Х	0	0	1	0	fclk/2 ²	6 MHz
	Х	Х	Х	Х	0	0	1	1	fclk/2 ³	3 MHz
	Х	Х	Х	Х	0	1	0	0	fclk/2 ⁴	1.5 MHz
	Х	Х	Х	Х	0	1	0	1	fclk/2⁵	750 kHz
	Х	Х	Х	Х	0	1	1	0	fclk/2 ⁶	375 kHz
	Х	Х	Х	Х	0	1	1	1	fclk/2 ⁷	187.5 kHz
	Х	Х	Х	Х	1	0	0	0	fclk/2 ⁸	93.8 kHz
	Х	Х	Х	Х	1	0	0	1	fclk/29	46.9 kHz
	Х	Х	Х	Х	1	0	1	0	fclk/2 ¹⁰	23.4 kHz
	Х	Х	Х	Х	1	0	1	1	fclk/2 ¹¹	11.7 kHz
	Х	Х	Х	Х	1	1	0	0	fclk/2 ¹²	5.86 kHz
	Х	Х	Х	Х	1	1	0	1	fclk/2 ¹³	2.93 kHz
	Х	Х	Х	Х	1	1	1	0	fclk/2 ¹⁴	1.46 kHz
	Х	Х	Х	Х	1	1	1	1	fclk/2 ¹⁵	732 Hz
1	0	0	0	0	Χ	Х	Х	Х	fclk	24 MHz
	0	0	0	1	Х	Х	Х	Х	fclk/2	12 MHz
	0	0	1	0	Х	Х	Х	Х	fclk/2 ²	6 MHz
	0	0	1	1	Χ	Х	Х	Х	fclk/2 ³	3 MHz
	0	1	0	0	Х	Х	Х	Х	fclk/2 ⁴	1.5 MHz
	0	1	0	1	Х	Х	Х	Х	fclk/2 ⁵	750 kHz
	0	1	1	0	Х	Х	Х	Х	fclk/2 ⁶	375 kHz
	0	1	1	1	Х	Х	Х	Х	fclk/2 ⁷	187.5 kHz
	1	0	0	0	Х	Х	Х	Х	fclk/2 ⁸	93.8 kHz
	1	0	0	1	Х	Х	Х	Х	fclk/2 ⁹	46.9 kHz
	1	0	1	0	Х	Х	Х	Х	fclk/2 ¹⁰	23.4 kHz
	1	0	1	1	Х	Х	Х	Х	fclk/2 ¹¹	11.7 kHz
	1	1	0	0	Х	Х	Х	Х	fclk/2 ¹²	5.86 kHz
	1	1	0	1	Х	Х	Х	Х	fclk/2 ¹³	2.93 kHz
	1	1	1	0	Х	Х	Х	Х	fclk/2 ¹⁴	1.46 kHz
	1	1	1	1	Х	Х	Х	Х	fclk/2 ¹⁵	732 Hz
		(Other tl	nan abo	ove				Setting prohibited	

Note When changing the clock selected for fclk (by changing the system clock control register (CKC) value), do so after having stopped (serial channel stop register m (STm) = 000FH) the operation of the serial array unit (SAU).

Remarks 1. X: Don't care

2. m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01

(2) Baud rate error during transmission

The baud rate error of UART (UART0) communication during transmission can be calculated by the following expression. Make sure that the baud rate at the transmission side is within the permissible baud rate range at the reception side.

(Baud rate error) = (Calculated baud rate value) \div (Target baud rate) \times 100 – 100 [%]

Here is an example of setting a UART baud rate at fclk = 24 MHz.

UART Baud Rate		fo	ськ = 24 MHz			
(Target Baud Rate)	Operation Clock (fмск)	SDRmn[15:9]	Calculated Baud Rate	Error from Target Baud Rate		
300 bps	fclk/29	77	300.48 bps	+0.16 %		
600 bps	fclk/2 ⁸	77	600.96 bps	+0.16 %		
1200 bps	fclk/2 ⁷	77	1201.92 bps	+0.16 %		
2400 bps	fclk/2 ⁶	77	2403.85 bps	+0.16 %		
4800 bps	fclk/2⁵	77	4807.69 bps	+0.16 %		
9600 bps	fclk/2 ⁴	77	9615.38 bps	+0.16 %		
19200 bps	fclk/2³	77	19230.8 bps	+0.16 %		
31250 bps	fclk/2³	47	31250.0 bps	±0.0 %		
38400 bps	fclk/2 ²	77	38461.5 bps	+0.16 %		
76800 bps	fclk/2	77	76923.1 bps	+0.16 %		
153600 bps	fclk	77	153846 bps	+0.16 %		
312500 bps	fclк	37	315789 bps	±1.05 %		

Remark m: Unit number (m = 0), n: Channel number (n = 0), mn = 00

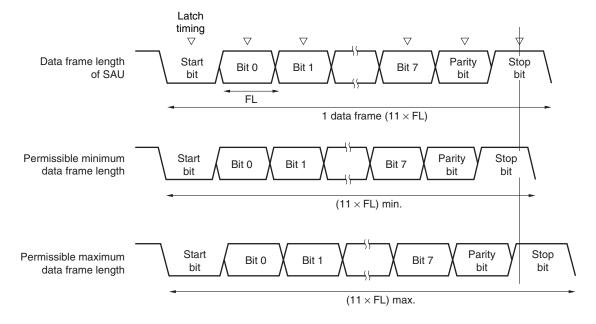
(3) Permissible baud rate range for reception

The permissible baud rate range for reception during UART (UART0) communication can be calculated by the following expression. Make sure that the baud rate at the transmission side is within the permissible baud rate range at the reception side.

$$(\text{Maximum receivable baud rate}) = \frac{2 \times k \times N \text{fr}}{2 \times k \times N \text{fr} - k + 2} \times \text{Brate}$$

$$(\text{Minimum receivable baud rate}) = \frac{2 \times k \times (N \text{fr} - 1)}{2 \times k \times N \text{fr} - k - 2} \times \text{Brate}$$

Brate: Calculated baud rate value at the reception side (See 12.6.4 (1) Baud rate calculation expression.)


k: SDRmn[15:9] + 1

Nfr: 1 data frame length [bits]

= (Start bit) + (Data length) + (Parity bit) + (Stop bit)

Remark m: Unit number (m = 0), n: Channel number (n = 1), mn = 01

Figure 12-92. Permissible Baud Rate Range for Reception (1 Data Frame Length = 11 Bits)

As shown in Figure 12-92, the timing of latching receive data is determined by the division ratio set by bits 15 to 9 of serial data register mn (SDRmn) after the start bit is detected. If the last data (stop bit) is received before this latch timing, the data can be correctly received.

12.6.5 Procedure for processing errors that occurred during UART (UART0) communication

The procedure for processing errors that occurred during UART (UART0) communication is described in Figures 12-93 and 12-94.

Figure 12-93. Processing Procedure in Case of Parity Error or Overrun Error

Software Manipulation	Hardware Status	Remark
Reads serial data register mn (SDRmn).	The BFFmn bit of the SSRmn register is set to 0 and channel n is enabled to receive data.	This is to prevent an overrun error if the next reception is completed during error processing.
Reads serial status register mn (SSRmn).		Error type is identified and the read value is used to clear error flag.
Writes 1 to serial flag clear trigger register mn (SIRmn).	Error flag is cleared.	Error can be cleared only during reading, by writing the value read from the SSRmn register to the SIRmn register without modification.

Figure 12-94. Processing Procedure in Case of Framing Error

Software Manipulation	Hardware Status	Remark
Reads serial data register mn (SDRmn).	The BFFmn bit of the SSRmn register is set to 0 and channel n is enabled to receive data.	This is to prevent an overrun error if the next reception is completed during error processing.
Reads serial status register mn (SSRmn).		Error type is identified and the read value is used to clear error flag.
Writes serial flag clear trigger register mn-	► Error flag is cleared.	Error can be cleared only during reading, by writing the value read from the SSRmn register to the SIRmn register without modification.
Sets the STmn bit of serial channel stop- register m (STm) to 1.	The SEmn bit of serial channel enable status register m (SEm) is set to 0 and channel n stops operating.	
Synchronization with other party of communication		Synchronization with the other party of communication is re-established and communication is resumed because it is considered that a framing error has occurred because the start bit has been shifted.
Sets the SSmn bit of serial channel start register m (SSm) to 1.	The SEmn bit of serial channel enable status register m (SEm) is set to 1 and channel n is enabled to operate.	

Remark m: Unit number (m = 0), n: Channel number (n = 0, 1), mn = 00, 01

<R>

CHAPTER 13 LCD CONTROLLER/DRIVER

The number of LCD display function pins of the R7F0C001G/L, R7F0C002G/L differs depending on the product. The following table shows the number of pins of each product.

Table 13-1. Number of LCD Display Function Pins of Each Product

	Part No.						R7	7F0C0	01G/L,	R7F0	C0020	G/L					
Item			48 pins								64 pins						
Number of LCD ou	utput pins	Segment signal outputs: 26 (22) ^{Note} Common signal outputs: 8							Segment signal outputs: 39 (35) ^{Note} Common signal outputs: 8								
Correspondence between	x I/O port	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
multiplexed segment signal output pin	P1x	SEG 6	SEG 5	SEG 4	SEG 32	SEG 31	SEG 30	SEG 29	SEG 28	SEG 6	SEG 5	SEG 4	SEG 32	SEG 31	SEG 30	SEG 29	SEG 28
functions and I/O port pin	P3x	_	_	_	Î	1	SEG 17	SEG 18	SEG 19	_	1	_	_	_	SEG 17	SEG 18	SEG 19
functions	P4x	_	-	_	ĺ	ĺ	Ī	SEG 24	-	-	Ī	-	-	SEG 22	SEG 23	SEG 24	-
	P5x	_	_	_	-	-	-	-	SEG 7	_	-	_	SEG 11	SEG 10	SEG 9	SEG 8	SEG 7
	P6x	=	=	=	ı	П	-	SEG 20	SEG 21	-	-	-	=	-	-	SEG 20	SEG 21
	P7x	=	=	=	ı	П	-	=	SEG 16	-	-	-	SEG 12	SEG 13	SEG 14	SEG 15	SEG 16
	P12x	_	_	_	-	-	Ī	-	SEG 25	-	Ī	_	_	_	-	_	SEG 25
	P14x	_	_	_	SEG 35	SEG 34	SEG 33	SEG 26	SEG 27	SEG 38	SEG 37	SEG 36	SEG 35	SEG 34	SEG 33	SEG 26	SEG 27
Correspondence between multiplexed COM signal output pin functions and I/O port pin functions		_										-	_				
Correspondence between multiplexed COM signal output pin functions and other LCD					SE	:G0							SE	:G0			
					SE	:G1							SE	:G1			
display pin function					SE	:G2							SE	:G2			
					SE	:G3							SE	:G3			

Note () indicates the number of signal output pins when 8 com is used.

13.1 Functions of LCD Controller/Driver

The functions of the LCD controller/driver in the R7F0C001G/L, R7F0C002G/L microcontrollers are as follows.

- (1) Waveform A or B selectable
- (2) The LCD driver voltage generator can switch internal voltage boosting method, capacitor split method, and external resistance division method.
- (3) Automatic output of segment and common signals based on automatic display data register read
- (4) The reference voltage to be generated when operating the voltage boost circuit can be selected from 16 steps (contrast adjustment).
- (5) The LCD can be made to blink Note

Note Selecting f_{IL} as the LCD source clock (f_{LCD}) is prohibited.

Table 13-2 lists the maximum number of pixels that can be displayed in each display mode.

Table 13-2. Maximum Number of Pixels

(a) 48-pin products

Drive Waveform for LCD Driver	LCD Driver Voltage Generator	Bias Mode	Number of Time Slices	Maximum Number of Pixels		
Waveform A	External resistance	=	Static	26 (26 segment signals, 1 common signal)		
	division	1/2	2	52 (26 segment signals, 2 common signals)		
			3	78 (26 segment signals, 3 common signals)		
		1/3	3			
			4	104 (26 segment signals, 4 common signals)		
		1/4	8	176 (22 segment signals, 8 common signals)		
	Internal voltage	1/3	3	78 (26 segment signals, 3 common signals)		
	boosting		4	104 (26 segment signals, 4 common signals)		
		1/4	8	176 (22 segment signals, 8 common signals)		
	Capacitor split	1/3	3	78 (26 segment signals, 3 common signals)		
			4	104 (26 segment signals, 4 common signals)		
Waveform B	External resistance	1/3	4			
	division, internal voltage boosting	1/4	8	176 (22 segment signals, 8 common signals)		
	Capacitor split	1/3	4	104 (26 segment signals, 4 common signals)		

(b) 64-pin products

Drive Waveform for LCD Driver	LCD Driver Voltage Generator	Bias Mode	Number of Time Slices	Maximum Number of Pixels
Waveform A	External resistance division	-	Static	39 (39 segment signals, 1 common signal)
		1/2	2	78 (39 segment signals, 2 common signals)
			3	117 (39 segment signals, 3 common signals)
		1/3	3	
			4	156 (39 segment signals, 4 common signals)
		1/4	8	280 (35 segment signals, 8 common signals)
	Internal voltage boosting	1/3	3	117 (39 segment signals, 3 common signals)
			4	156 (39 segment signals, 4 common signals)
		1/4	8	280 (35 segment signals, 8 common signals)
	Capacitor split	1/3	3	117 (39 segment signals, 3 common signals)
			4	156 (39 segment signals, 4 common signals)
Waveform B	External resistance division, internal voltage boosting	1/3	4	
		1/4	8	280 (35 segment signals, 8 common signals)
	Capacitor split	1/3	4	156 (39 segment signals, 4 common signals)

13.2 Configuration of LCD Controller/Driver

The LCD controller/driver consists of the following hardware.

Table 13-3. Configuration of LCD Controller/Driver

Item	Configuration
Control registers	Peripheral enable register 0 (PER0)
	LCD mode register 0 (LCDM0)
	LCD mode register 1 (LCDM1)
	Subsystem clock supply mode control register (OSMC)
	LCD clock control register 0 (LCDC0)
	LCD boost level control register (VLCD)
	LCD input switch control register (ISCLCD)
	LCD port function registers 0 to 4 (PFSEG0 to PFSEG4)
	Port mode registers 1, 3 to 7, 12, 14 (PM1, PM3 to PM7, PM12, PM14)

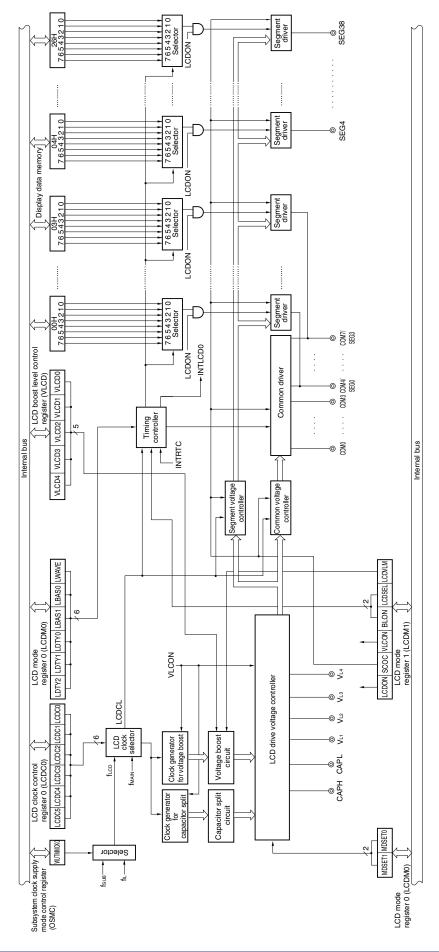


Figure 13-1. Block Diagram of LCD Controller/Driver

÷

13.3 Registers Controlling LCD Controller/Driver

The following ten registers are used to control the LCD controller/driver.

- Peripheral enable register 0 (PER0)
- LCD mode register 0 (LCDM0)
- LCD mode register 1 (LCDM1)
- <R>
- Subsystem clock supply mode control register (OSMC)
- LCD clock control register 0 (LCDC0)
- LCD boost level control register (VLCD)
- LCD input switch control register (ISCLCD)
- LCD port function registers 0 to 4 (PFSEG0 to PFSEG4)
- Port mode registers 1, 3 to 7, 12, 14 (PM1, PM3 to PM7, PM12, PM14)

13.3.1 Peripheral enable register 0 (PER0)

PER0 enables or disables supplying the clock to the peripheral hardware. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

When the LCD controller/driver is used in subsystem clock (fsub), be sure to set bit 7 (RTCEN) of this register to 1.

This register is set by using a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to 00H.

Figure 13-2. Format of Peripheral Enable Register 0 (PER0)

Address: F00F0H After reset: 00H R/W <7> 6 <5> 4 3 <2> <0> Symbol 1 PER0 **RTCEN** 0 **ADCEN** SAU0EN TAU0EN

RTCEN	Real-time clock (RTC),	LCD controller/driver, clock o	utput/buzzer output controller		
	12-bit interval timer	12-bit interval timer When subsystem clock (fsub) is selected			
0	Stops input clock supply.	Stops input clock and subsystem clock supply.	Enables input clock and main system clock supply		
	SFR used by the real-time clock (RTC) and 12-bit interval timer cannot be written. The real-time clock (RTC) and 12-bit interval timer are in the reset status.	SFR used by the LCD controller/driver and clock output/buzzer output controller can be read and written.	SFR used by the LCD controller/driver and clock output/buzzer output controller can be read and written.		
1	Enables input clock supply. SFR used by the real-time clock (RTC) and 12-bit interval timer can be read and written.	Enables input clock and subsystem clock supply SFR used by the LCD controller/driver and clock output/buzzer output controller can be read and written.			

<R>

- Cautions 1. The subsystem clock supply to peripheral functions other than the real-time clock, 12-bit interval timer, and LCD controller/driver can be stopped in STOP mode and HALT mode when the subsystem clock is used, by setting the RTCLPC bit of the subsystem clock supply mode control register (OSMC) to 1. In this case, set the RTCEN bit of the PER0 register to 1 and the other bits (bits 0 to 6) to 0.
 - 2. Be sure to set bits 1, 3, 4 and 6 to "0".

13.3.2 LCD mode register 0 (LCDM0)

LCDM0 specifies the LCD operation.

This register is set by using an 8-bit memory manipulation instruction.

Reset signal generation sets LCDM0 to 00H.

Figure 13-3. Format of LCD Mode Register 0 (LCDM0) (1/2)

Address: FFF40H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
LCDM0	MDSET1	MDSET0	LWAVE	LDTY2	LDTY1	LDTY0	LBAS1	LBAS0

MDSET1	MDSET0	LCD drive voltage generator selection			
0	0	External resistance division method			
0	1	Internal voltage boosting method			
1	0	Capacitor split method			
1	1	Setting prohibited			

LWAVE	LCD display waveform selection
0	Waveform A
1	Waveform B

LDTY2	LDTY1	LDTY0	Selection of time slice of LCD display
0	0	0	Static
0	0	1	2-time slice
0	1	0	3-time slice
0	1	1	4-time slice
1	0	1	8-time slice
(Other than abov	е	Setting prohibited

Figure 13-3. Format of LCD Mode Register 0 (LCDM0) (2/2)

Address: FFF40H After reset: 00H R/W Symbol 0 6 5 4 3 2 1 LCDM0 MDSET1 MDSET0 **LWAVE** LDTY2 LDTY1 LDTY0 LBAS1 LBAS0

LBAS1	LBAS0	LCD display bias mode selection
0	0	1/2 bias method
0	1	1/3 bias method
1	0	1/4 bias method
1	1	Setting prohibited

Cautions 1. Do not rewrite the LCDM0 value while the SCOC bit of the LCDM1 register = 1.

- 2. When "Static" is selected (LDTY2 to LDTY0 bits = 000B), be sure to set the LBAS1 and LBAS0 bits to the default value (00B). Otherwise, the operation will not be guaranteed.
- Only the combinations of display waveform, number of time slices, and bias method shown in Table 13-4 are supported.

Combinations of settings not shown in Table 13-4 are prohibited.

Table 13-4. Combinations of Display Waveform, Time Slices, and Bias Method and Frame Frequency

Display	Set Value						Driving Voltage Generation Method				
Display Waveform	Number of Time Slices	Bias Mode	LWAVE	LDTY2	LDTY1	LDTY0	LBAS1	LBAS0	External Resistance Division	Internal Voltage Boosting	Capacitor Split
Waveform A	8	1/4	0	1	0	1	1	0	(24 to 128 Hz)	(24 to 64 Hz)	×
Waveform A	4	1/3	0	0	1	1	0	1	(24 to 128 Hz)	(24 to 128 Hz)	(24 to 128 Hz)
Waveform A	3	1/3	0	0	1	0	0	1	(32 to 128 Hz)	(32 to 128 Hz)	(32 to 128 Hz)
Waveform A	3	1/2	0	0	1	0	0	0	(32 to 128 Hz)	×	×
Waveform A	2	1/2	0	0	0	1	0	0	(24 to 128 Hz)	×	×
Waveform A	Sta	atic	0	0	0	0	0	0	(24 to 128 Hz)	×	×
Waveform B	8	1/4	1	1	0	1	1	0	(24 to 128 Hz)	(24 to 64 Hz)	×
Waveform B	4	1/3	1	0	1	1	0	1	(24 to 128 Hz)	(24 to 128 Hz)	(24 to 128 Hz)

Remark O: Supported

x: Not supported

13.3.3 LCD mode register 1 (LCDM1)

LCDM1 enables or disables display operation, voltage boost circuit operation, and capacitor split circuit operation, and specifies the display data area and the low voltage mode.

LCDM1 is set using a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets LCDM1 to 00H.

Figure 13-4. Format of LCD Mode Register 1 (LCDM1) (1/2)

Address: FFF41H After reset: 00H R/W Symbol <7> <6> <5> <4> <3> 2 1 <0> LCDM1 LCDON SCOC **VLCON** LCDSEL LCDVLM **BLON** 0 0

SCOC	LCDON	LCD display enable/disable
0	0	Output ground level to segment/common pin
0	1	
1	0	Display off (all segment outputs are deselected.)
1	1	Display on

VLCON	Voltage boost circuit or capacitor split circuit operation enable/disable				
0	Stops voltage boost circuit or capacitor split circuit operation				
1 Note 1	Enables voltage boost circuit or capacitor split circuit operation				

BLON ^{Note 2}	LCDSEL	Display data area control
0	0	Displaying an A-pattern area data (lower four bits of LCD display data register)
0	1	Displaying a B-pattern area data (higher four bits of LCD display data register)
1	0	Alternately displaying A-pattern and B-pattern area data (blinking display corresponding
1	1	to the constant-period interrupt (INTRTC) timing of the real-time clock (RTC))

Notes 1. Setting is prohibited when External resistance division method.

2. When fill is selected as the LCD source clock (flcD), be sure to set the BLON bit to "0".

(Cautions are listed on the next page.)

Figure 13-4. Format of LCD Mode Register 1 (LCDM1) (2/2)

Address: FFF41H After reset: 00H B/W Symbol <7> <6> <5> <4> <3> 2 <0> 1 LCDM1 **LCDON** SCOC **VLCON BLON LCDSEL** 0 **LCDVLM**

LCDVLM ^{Note}	Control of default value of voltage boosting pin			
0	Set when V _{DD} ≥ 2.7 V			
1	Set when V _{DD} ≤ 4.2 V			

Note This bit is used to boost the voltage efficiently when using the voltage boost circuit by setting the initial VLx pin status.

If V_{DD} is 2.7 V or higher when voltage boosting starts, set the LCDVLM bit to 0; if V_{DD} is 4.2 V or lower, set the LCDVLM bit to 1.

If V_{DD} is within the range between 2.7 V and 4.2 V, the LCDVLM bit may be set to 0 or 1.

<R> Cautions 1. To reduce power consumption when nothing is to be displayed on the LCD while the voltage boost circuit is in use, set the SCOC and VLCON bits to "0", and set the MDSET1 and MDSET0 bits to "00".

> When MDSET1 and MDSET0 = 01, the internal reference voltage generator operates and so consumes power.

- 2. When the external resistance division method has been set (MDSET1 and MDSET0 of LCDM0 = 00B) or capacitor split method has been set (MDSET1 and MDSET0 = 10B), set the LCDVLM bit to 0.
- 3. Do not rewrite the VLCON and LCDVLM bits while SCOC = 1.
- 4. Set the BLON and LCDSEL bits to 0 when 8 has been selected as the number of time slices for the display mode.
- 5. To use the internal voltage boosting method, specify the reference voltage by using the VLCD register (select the internal boosting method (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default reference voltage is used), wait for the reference voltage setup time (5 ms (min.)), and then set the VLCON bit to 1.

<R>

<R> 13.3.4 Subsystem clock supply mode control register (OSMC)

OSMC is used to reduce power consumption by stopping as many unnecessary clock functions as possible.

If the RTCLPC bit is set to 1, power consumption can be reduced, because clock supply to the peripheral functions, except the real-time clock, 12-bit interval timer, clock output/buzzer output, and LCD controller/driver, is stopped in STOP mode and HALT mode while the subsystem clock is selected as the CPU clock. Set bit 7 (RTCEN) of peripheral enable register 0 (PER0) to 1 before specifying this setting.

In addition, the OSMC register can be used to select the operation clock of the real-time clock, 12-bit interval timer, and LCD controller/driver.

This register is set by using an 8-bit memory manipulation instruction.

Reset signal generation sets this register to 00H.

Figure 13-5. Format of Subsystem Clock Supply Mode Control Register (OSMC)

Address: F0	DF3H After r	eset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
OSMC	RTCLPC	0	0	WUTMMCK0	0	0	0	0

RTCLPC	Setting in HALT mode while subsystem clock is selected as CPU clock
0	Enables subsystem clock supply to peripheral functions. (See Table 19-1 for the peripheral functions whose operations are enabled.)
1	Stops subsystem clock supply to peripheral functions except real-time clock, 12-bit interval timer, and LCD controller/driver.

WUTMMCK0 ^{Note}	Selection of operation clock for real-time clock, 12-bit interval timer, and LCD driver/controller	Selection of clock output from PCLBUZn pin of clock output/buzzer output
0	Subsystem clock (fsuB)	Selecting the subsystem clock (fsub) is enabled.
1	Low-speed on-chip oscillator clock (fil.)	Selecting the subsystem clock (fsub) is disabled.

Note Be sure to select the subsystem clock (WUTMMCK0 bit = 0) if the subsystem clock is oscillating.

Cautions The subsystem clock and low-speed on-chip oscillator clock can only be switched by using the WUTMMCK0 bit if the real-time clock, 12-bit interval timer, and LCD driver/controller are all stopped. The setting must not be changed after the operation starts.

These are stopped as follows:

Real-time clock: Set the RTCE bit to 0. 12-bit interval timer: Set the RINTE bit to 0.

LCD driver/controller: Set the SCOC and VLCON bits to 0.

Remark RTCE: Bit 7 of real-time clock control register 0 (RTCC0)

RINTE: Bit 15 of interval timer control register (ITMC)

SCOC: Bit 6 of LCD mode register 1 (LCDM1) VLCON: Bit 5 of LCD mode register 1 (LCDM1)

13.3.5 LCD clock control register 0 (LCDC0)

LCDC0 specifies the LCD source clock and LCD clock.

The frame frequency is determined according to the LCD clock and the number of time slices.

This register is set by using an 8-bit memory manipulation instruction.

Reset signal generation sets LCDC0 to 00H.

Address: FFF42H After reset: 00H R/W

Figure 13-6. Format of LCD Clock Control Register 0 (LCDC0) (1/2)

Symbol	7	6	5		4		3	2	1	0
LCDC0	0	0	LCD	C05 L	CDC04	L	CDC03	LCDC02	LCDC01	LCDC00
-										(1/2)
	LCDC05	LCDC04	LCDC03	LCDC02	LCDC	01	LCDC00	L	.CD clock (LCD	CL)
	0	0	0	0	0		1	fsub/2° or fil/	2 ^{2 Note}	
	0	0	0	0	1		0	fsub/23 or fil/	2 ^{3 Note}	
	0	0	0	0	1		1	fsuв/2⁴ or fi∟/	2 ^{4 Note}	
	0	0	0	1	0		0	fsub/25 or fil/	2 ^{5 Note}	
	0	0	0	1	0		1	fsub/26 or fil./	2 ^{6 Note}	
	0	0	0	1	1		0	fsub/27 or fil/	2 ^{7 Note}	
	0	0	0	1	1		1	fsub/28 or fil/	2 ^{8 Note}	
	0	0	1	0	0		0	fsub/2° or fil./	2 ^{9 Note}	

Cautions 1. Be sure to set bits 6 and 7 to "0".

2. Set the frame frequency in a range from 32 Hz to 128 Hz (24 Hz to 128 Hz when f_{IL} is selected). And set the LCD clock (LCDCL) to no more than 512 Hz (no more than 235 Hz when f_{IL} is selected) when the internal voltage boosting method, and the capacitor split method have been specified.

fsub/2¹⁰

3. Do not set LCDC0 when the SCOC bit of the LCDM1 register is 1.

(Remark is listed on the next page.)

Figure 13-6. Format of LCD Clock Control Register 0 (LCDC0) (2/2)

 Address: FFF42H
 After reset: 00H
 R/W

 Symbol
 7
 6
 5
 4
 3
 2
 1
 0

 LCDC0
 0
 0
 LCDC05
 LCDC04
 LCDC03
 LCDC02
 LCDC01
 LCDC00

	_		_		_	(2/2
LCDC05	LCDC04	LCDC03	LCDC02	LCDC01	LCDC00	LCD clock (LCDCL)
0	1	0	0	0	1	fmain/2 ⁸
0	1	0	0	1	0	fmain/2 ⁹
0	1	0	0	1	1	fmain/2 ¹⁰
0	1	0	1	0	0	fmain/2 ¹¹
0	1	0	1	0	1	fmain/2 ¹²
0	1	0	1	1	0	fmain/2 ¹³
0	1	0	1	1	1	fmain/2 ¹⁴
0	1	1	0	0	0	fmain/2 ¹⁵
0	1	1	0	0	1	fmain/2 ¹⁶
0	1	1	0	1	0	fmain/2 ¹⁷
0	1	1	0	1	1	fmain/2 ¹⁸
1	0	1	0	1	1	fmain/2 ¹⁹
		Other th	an above			Setting prohibited

- <R> Cautions 1. Do not set LCDC0 when the SCOC bit of the LCDM1 register is 1.
 - 2. Be sure to set bits 6 and 7 to "0".
 - 3. When the internal voltage boosting method and the capacitor split method are specified, set the LCD clock (LCDCL) as follows. For details, see Table 13-4 Combinations of Display Waveform, Time Slices, and Bias Method and Frame Frequency
 - If fsub is selected, set the clock to a frequency no greater than 512 Hz.
 - If fil is selected, set the clock to a frequency no greater than 235 Hz.

Remark fmain: Main system clock frequency fsub: Subsystem clock frequency

fil: Low-speed on-chip oscillator clock frequency

<R>

13.3.6 LCD boost level control register (VLCD)

VLCD selects the reference voltage that is to be generated when operating the voltage boost circuit (contrast adjustment). The reference voltage can be selected from 16 steps.

This register is set by using an 8-bit memory manipulation instruction.

Reset signal generation sets VLCD to 04H.

Figure 13-7. Format of LCD Boost Level Control Register (VLCD)

 Address: FFF43H
 After reset: 04H
 R/W

 Symbol
 7
 6
 5
 4
 3
 2
 1
 0

 VLCD
 0
 0
 VLCD4
 VLCD3
 VLCD2
 VLCD1
 VLCD0

VLCD4	VLCD3	VLCD2	VLCD1				4 voltage
					selection (contrast adjustment)	1/3 bias method	1/4 bias method
0	0	1	0	0	1.00 V (default)	3.00 V	4.00 V
0	0	1	0	1	1.05 V	3.15 V	4.20 V
0	0	1	1	0	1.10 V	3.30 V	4.40 V
0	0	1	1	1	1.15 V	3.45 V	4.60 V
0	1	0	0	0	1.20 V	3.60 V	4.80 V
0	1	0	0	1	1.25 V	3.75 V	5.00 V
0	1	0	1	0	1.30 V	3.90 V	5.20 V
0	1	0	1	1	1.35 V	4.05 V	Setting prohibited
0	1	1	0	0	1.40 V	4.20 V	Setting prohibited
0	1	1	0	1	1.45 V	4.35 V	Setting prohibited
0	1	1	1	0	1.50 V	4.50 V	Setting prohibited
0	1	1	1	1	1.55 V	4.65 V	Setting prohibited
1	0	0	0	0	1.60 V	4.80 V	Setting prohibited
1	0	0	0	1	1.65 V	4.95 V	Setting prohibited
1	0	0	1	0	1.70 V	5.10 V	Setting prohibited
1	0	0	1	1	1.75 V	5.25 V	Setting prohibited
	(Other than above		Setting prohibited			

Cautions 1. The VLCD setting is valid only when the voltage boost circuit is operating.

- 2. Be sure to set bits 5 to 7 to "0".
- 3. Be sure to change the VLCD value after having stopped the operation of the voltage boost circuit (VLCON = 0).
- 4. To use the internal voltage boosting method, specify the reference voltage by using the VLCD register (select the internal boosting method (by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B) if the default reference voltage is used), wait for the reference voltage setup time (5 ms (min.)), and then set VLCON to 1.
- 5. With the external resistance division method and the capacitor split method, use the default value (04H) for the VLCD resistor.

13.3.7 LCD input switch control register (ISCLCD)

Input to the schmitt trigger buffer must be invalid until the CAPL/P126, CAPH/P127, and VL3/P125 pins are set to operate as LCD function pins in order to prevent through-current from entering.

This register is set by using a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets ISCLCD to 00H.

Figure 13-8. Format of LCD Input Switch Control Register (ISCLCD)

Address: F0308H Aff		After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
ISCLCD	0	0	0	0	0	0	ISCVL3	ISCCAP

ISCVL3	VL3/P125 pin Schmitt trigger buffer control
0	Input invalid
1	Input valid

ISCCAP	CAPL/P126, CAPH/P127 pins Schmitt trigger buffer control
0	Input invalid
1	Input valid

Cautions 1. If ISCVL3 = 0, set the corresponding port registers as follows:

PU125 bit of PU12 register = 0, P125 bit of P12 register = 0

2. If ISCCAP = 0, set the corresponding port registers as follows:

PU127 bit of PU12 register = 0, P127 bit of P12 register = 0

PU126 bit of PU12 register = 0, P126 bit of P12 register = 0

(a) Operation of ports that alternately function as VL3, CAPL, and CAPH pins

The functions of the VL₃/P125, CAPL/P126, and CAPH/P127 pins can be selected by using the LCD input switch control register (ISCLCD), LCD mode register 0 (LCDM0), and port mode register 12 (PM12).

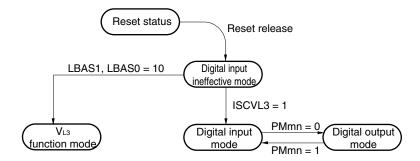

VL3/P125

Table 13-5. Settings of V_{L3}/P125 Pin Function

Bias Setting (LBAS1 and LBAS0 Bits of LCDM0 Register)	ISCVL3 Bit of ISCLCD Register	PM125 Bit of PM12 Register	Pin Function	Initial Status
Other than 1/4 bias method	0	1	Digital input ineffective mode	V
(LBAS1, LBAS0 = 00 or 01)	1	0	Digital output mode	-
	1	1	Digital input mode	_
1/4 bias method (LBAS1, LBAS0 = 10)			VL3 function mode	_
Othe	Setting prohibited	•		

The following shows the VL₃/P125 pin function status transitions.

Figure 13-9. VL3/P125 Pin Function Status Transitions

Caution Be sure to set the VL3 function mode before segment output starts (while SCOC bit of LCD mode register 1 (LCDM1) is 0).

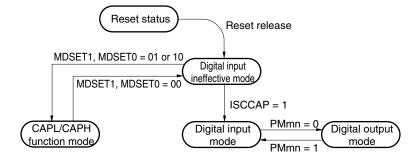

• CAPL/P126 and CAPH/P127

Table 13-6. Settings of CAPL/P126 and CAPH/P127 Pin Functions

LCD Drive Voltage Generator (MDSET1 and MDSET0 Bits of LCDM0 Register)	ISCCAP Bit of ISCLCD Register	PM126 and PM127 Bits of PM12 Register	Pin Function	Initial Status
External resistance division	0	1	Digital input ineffective mode	V
(MDSET1, MDSET0 = 00)	1	0	Digital output mode	_
	1	1	Digital input mode	_
Internal voltage boosting or capacitor split (MDSET1, MDSET0 = 01 or 10)	0	1	CAPL/CAPH function mode	_
Othe	r than above		Setting prohibited	

The following shows the CAPL/P126 and CAPH/P127 pin function status transitions.

Figure 13-10. CAPL/P126 and CAPH/P127 Pin Function Status Transitions

Caution Be sure to set the CAPL/CAPH function mode before segment output starts (while SCOC bit of LCD mode register 1 (LCDM1) is 0).

13.3.8 LCD port function registers 0 to 4 (PFSEG0 to PFSEG4)

These registers specify whether to use pins P10 to P17, P30 to P32, P41 to P43, P50 to P54, P60, P61, P70 to P74, P120, and P140 to P147 as port pins (other than segment output pins) or segment output pins.

These registers are set by using a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH.

Remark The correspondence between the segment output pins (SEGxx) and the PFSEG register (PFSEGxx bits) and the existence of SEGxx pins in each product are shown in Table 13-7 Segment Output Pins in Each Product and Correspondence with PFSEG Register (PFSEG Bits).

Figure 13-11. Format of LCD Port Function Registers 0 to 4 (64-pin Products)

Address: F0300H After reset: F0H R/W										
Symbol	7	6	5	4	3	2	1	0		
PFSEG0	PFSEG07	PFSEG06	PFSEG05	PFSEG04	0	0	0	0		
Address: F0301H After reset: FFH R/W										
Symbol	7	6	5	4	3	2	1	0		
PFSEG1	PFSEG15	PFSEG14	PFSEG13	PFSEG12	PFSEG11	PFSEG10	PFSEG09	PFSEG08		
Address: F0	302H After	reset: FFH	R/W							
Symbol	7	6	5	4	3	2	1	0		
PFSEG2	PFSEG23	PFSEG22	PFSEG21	PFSEG20	PFSEG19	PFSEG18	PFSEG17	PFSEG16		
Address: F0	303H After	reset: FFH	R/W							
Symbol	7	6	5	4	3	2	1	0		
PFSEG3	PFSEG31	PFSEG30	PFSEG29	PFSEG28	PFSEG27	PFSEG26	PFSEG25	PFSEG24		
Address: F0	304H After	reset: 7FH	R/W							
Symbol	7	6	5	4	3	2	1	0		
PFSEG4	0	PFSEG38	PFSEG37	PFSEG36	PFSEG35	PFSEG34	PFSEG33	PFSEG32		
	PFSEGxx Port (other than segment output)/segment outputs specification of Pmn pins									
	(xx = 04 to	(mn = 10 to 17, 30 to 32, 41 to 43, 50 to 54, 60, 61, 70 to 74, 120, 140 to 147)								
	46)									
	0	Used as po	rt (other than	segment out	put)					
	1	Used as seg	gment output							

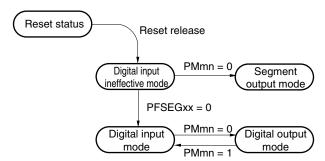
Caution To use the Pmn pins as segment output pins (PFSEGxx = 1), be sure to set the PUmn bit of the PUm register, POMmn bit of the POMm register, and PIMmn bit of the PIMm register to "0".

Table 13-7. Segment Output Pins in Each Product and Correspondence with PFSEG Register (PFSEG Bits)

Bit Name of PFSEG Register	Corresponding SEGxx Pins	Alternate Port	64-pin	48-pin
PFSEG04	SEG4	P15	$\sqrt{}$	$\sqrt{}$
PFSEG05	SEG5	P16	√	$\sqrt{}$
PFSEG06	SEG6	P17	√	$\sqrt{}$
PFSEG07	SEG7	P50	√	√
PFSEG08	SEG8	P51	√	-
PFSEG09	SEG9	P52	√	_
PFSEG10	SEG10	P53	√	-
PFSEG11	SEG11	P54	√	-
PFSEG12	SEG12	P74	√	_
PFSEG13	SEG13	P73	√	-
PFSEG14	SEG14	P72	√	-
PFSEG15	SEG15	P71	√	-
PFSEG16	SEG16	P70	√	$\sqrt{}$
PFSEG17	SEG17	P32	√	√
PFSEG18	SEG18	P31	√	√
PFSEG19	SEG19	P30	√	√
PFSEG20	SEG20	P61	√	√
PFSEG21	SEG21	P60	√	√
PFSEG22	SEG22	P43	√	_
PFSEG23	SEG23	P42	√	_
PFSEG24	SEG24	P41	√	√
PFSEG25	SEG25	P120	√	√
PFSEG26	SEG26	P141	√	√
PFSEG27	SEG27	P140	√	√
PFSEG28	SEG28	P10	√	√
PFSEG29	SEG29	P11	√	√
PFSEG30	SEG30	P12	√	√
PFSEG31	SEG31	P13	√	√
PFSEG32	SEG32	P14	√	√
PFSEG33	SEG33	P142	√	√
PFSEG34	SEG34	P143	√	V
PFSEG35	SEG35	P144	V	V
PFSEG36	SEG36	P145	V	=
PFSEG37	SEG37	P146	V	-
PFSEG38	SEG38	P147	√	_

(a) Operation of ports that alternately function as SEGxx pins

The functions of ports that also serve as segment output pins (SEGxx) can be selected by using the port mode control register (PMCxx), port mode register (PMxx), and LCD port function registers 0 to 4 (PFSEG0 to PFSEG4).


 P10 to P12, P15 to P17, P30 to P32, P42, P43, P50 to P54, P60, P61, P70 to P74, P140, P141 (ports that do not serve as analog input pins (ANIxx))

PFSEGxx Bit of Initial Status PMxx Bit of Pin Function PFSEG0 to PFSEG4 Registers PMxx Register Digital input ineffective mode $\sqrt{}$ 0 0 Digital output mode 0 1 Digital input mode 1 0 Segment output mode

Table 13-8. Settings of SEGxx/Port Pin Function

The following shows the SEGxx/port pin function status transitions.

Figure 13-12. SEGxx/Port Pin Function Status Transitions

Caution Be sure to set the segment output mode before segment output starts (while SCOC bit of LCD mode register 1 (LCDM1) is 0).

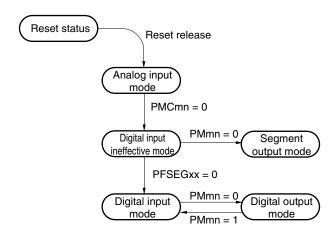

• P13, P14, P41, P120, P142 to P147 (ports that serve as analog input pins (ANIxx))

Table 13-9. Settings of ANIxx/SEGxx/Port Pin Function

PMCxx Bit of PMCxx Register	PFSEGxx Bit PFSEG0 to PFSEG4 Registers	PMxx Bit of PMxx Register	Pin Function	Initial Status
1	1	1	Analog input mode	√
0	0	0	Digital output mode	-
0	0	1	Digital input mode	-
0	1	0	Segment output mode	-
0	1	1	Digital input ineffective mode	-
	Other than above	Setting prohibited		

The following shows the ANIxx/SEGxx/port pin function status transitions.

Figure 13-13. ANIxx/SEGxx/Port Pin Function Status Transitions

Caution Be sure to set the segment output mode before segment output starts (while SCOC bit of LCD mode register 1 (LCDM1) is 0).

13.3.9 Port mode registers 1, 3 to 7, 12, 14 (PM1, PM3 to PM7, PM12, PM14)

These registers specify input/output of ports 1, 3 to 7, 12, and 14 in 1-bit units.

When using the ports (such as P10/SCK00/SEG28, P120/ANI17/SEG25) to be shared with the segment output pin for segment output, set the port mode register (PMxx) bit and port register (Pxx) bit corresponding to each port to 0.

Example: When using P10/SCK00/SEG28 for segment output Set the PM10 bit of port mode register 1 to "0".

Set the P10 bit of port register 1 to "0".

These registers are set by using a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH.

Figure 13-14. Format of Port Mode Registers 1, 3 to 7, 12, 14 (PM1, PM3 to PM7, PM12, PM14) (64-pin Products)

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM1	PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10	FFF21H	FFH	R/W
PM3	1	1	1	1	1	PM32	PM31	PM30	FFF23H	FFH	R/W
PM4	1	1	1	1	PM43	PM42	PM41	PM40	FFF24H	FFH	R/W
PM5	1	1	1	PM54	PM53	PM52	PM51	PM50	FFF25H	FFH	R/W
					1			1			
PM6	1	1	1	1	1	1	PM61	PM60	FFF26H	FFH	R/W
		1			1		-	1			
PM7	1	1	1	PM74	PM73	PM72	PM71	PM70	FFF27H	FFH	R/W
		Т									
PM12	PM127	PM126	PM125	1	1	1	1	PM120	FFF2CH	FFH	R/W
	r	П			ı			1			
PM14	PM147	PM146	PM145	PM144	PM143	PM142	PM141	PM140	FFF2EH	FFH	R/W
		T									
	PMmn	PMmn Pmn pin I/O mode selection (m = 1, 2 to 7, 12, 14; n = 0 to 7)									
	(m = 1, 3 to 7, 12, 14; n = 0 to 7) Output mode (output buffer on)										
	0				')						
	1	Input mode (output buffer off)									

Remark The figure shown above presents the format of port mode registers 1, 3 to 7, 12, and 14 of the 64-pin products. The format of the port mode register of other products, see Table 4-3 PMxx, Pxx, PUxx, PIMxx, POMxx, PMCxx registers and the bits mounted on each product.

13.4 LCD Display Data Registers

The LCD display data registers are mapped as shown in Table 13-10. The contents displayed on the LCD can be changed by changing the contents of the LCD display data registers.

Table 13-10. Relationship Between LCD Display Data Register Contents and Segment/Common Outputs (1/2)

(a) Other than 8-time-slice (static, 2-time slice, 3-time slice, and 4-time slice)

Register Name	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	64-pin	48-pin
		СОМ	СОМ	СОМ	СОМ	СОМ	СОМ	СОМ	СОМ	1	
		7	6	5	4	3	2	1	0		
SEG0	F0400H	SEG0 (E	3-pattern a	area)		SEG0 (A	A-pattern a	area)		$\sqrt{}$	√
SEG1	F0401H	SEG1 (E	3-pattern a	area)		SEG1 (A	A-pattern a	area)		$\sqrt{}$	√
SEG2	F0402H	SEG2 (E	3-pattern a	area)		SEG2 (A	A-pattern a	area)		V	√
SEG3	F0403H	SEG3 (E	3-pattern a	area)		SEG3 (A	A-pattern a	area)		$\sqrt{}$	√
SEG4	F0404H	SEG4 (E	3-pattern a	area)		SEG4 (A	A-pattern a	area)		V	√
SEG5	F0405H	SEG5 (E	3-pattern a	area)		SEG5 (A	A-pattern a	area)		$\sqrt{}$	$\sqrt{}$
SEG6	F0406H	SEG6 (E	3-pattern a	area)		SEG6 (A	A-pattern a	area)		$\sqrt{}$	$\sqrt{}$
SEG7	F0407H	SEG7 (E	3-pattern a	area)		SEG7 (A	A-pattern a	area)		V	√
SEG8	F0408H	SEG8 (E	3-pattern a	area)		SEG8 (A	A-pattern a	area)		V	-
SEG9	F0409H	SEG9 (E	3-pattern a	area)		SEG9 (A	A-pattern a	area)		$\sqrt{}$	-
SEG10	F040AH	SEG10	(B-pattern	area)		SEG10	(A-pattern	area)		V	-
SEG11	F040BH	SEG11	(B-pattern	area)		SEG11	(A-pattern	area)		V	_
SEG12	F040CH	SEG12	(B-pattern	area)		SEG12	(A-pattern	area)		V	_
SEG13	F040DH	SEG13	(B-pattern	area)		SEG13	(A-pattern	area)		V	_
SEG14	F040EH	SEG14	(B-pattern	area)		SEG14 (A-pattern area)				V	_
SEG15	F040FH	SEG15	SEG15 (B-pattern area)				SEG15 (A-pattern area)				_
SEG16	F0410H	SEG16	SEG16 (B-pattern area)				SEG16 (A-pattern area)			V	√
SEG17	F0411H	SEG17	(B-pattern	area)		SEG17 (A-pattern area)			V	√	
SEG18	F0412H	SEG18	SEG18 (B-pattern area)		SEG18 (A-pattern area)			V	√		
SEG19	F0413H	SEG19	SEG19 (B-pattern area)		SEG19 (A-pattern area)			V	√		
SEG20	F0414H	SEG20	(B-pattern	area)		SEG20 (A-pattern area)			$\sqrt{}$	$\sqrt{}$	
SEG21	F0415H	SEG21	(B-pattern	area)		SEG21 (A-pattern area)				$\sqrt{}$	√
SEG22	F0416H	SEG22	(B-pattern	area)		SEG22 (A-pattern area)			$\sqrt{}$	-	
SEG23	F0417H	SEG23	(B-pattern	area)		SEG23 (A-pattern area)			$\sqrt{}$	_	
SEG24	F0418H	SEG24	(B-pattern	area)		SEG24 (A-pattern area)				$\sqrt{}$	$\sqrt{}$
SEG25	F0419H	SEG25	(B-pattern	area)		SEG25 (A-pattern area)				$\sqrt{}$	$\sqrt{}$
SEG26	F041AH	SEG26	(B-pattern	area)		SEG26	(A-pattern	area)		$\sqrt{}$	$\sqrt{}$
SEG27	F041BH	SEG27	(B-pattern	area)		SEG27 (A-pattern area)				$\sqrt{}$	$\sqrt{}$
SEG28	F041CH	SEG28	(B-pattern	area)		SEG28 (A-pattern area)				$\sqrt{}$	$\sqrt{}$
SEG29	F041DH	SEG29	(B-pattern	area)		SEG29	(A-pattern	area)		$\sqrt{}$	$\sqrt{}$
SEG30	F041EH	SEG30	(B-pattern	area)		SEG30	(A-pattern	area)		V	√
SEG31	F041FH	SEG31	(B-pattern	area)		SEG31	(A-pattern	area)		$\sqrt{}$	$\sqrt{}$
SEG32	F0420H	SEG32	SEG32 (B-pattern area) SEG32 (A-pattern				(A-pattern	area)		$\sqrt{}$	$\sqrt{}$
SEG33	F0421H	SEG33 (B-pattern area) SEG33 (A-pattern area)					$\sqrt{}$	$\sqrt{}$			
SEG34	F0422H	SEG34 (B-pattern area) SEG34 (A-pattern area)				V	V				
SEG35	F0423H	SEG35 (B-pattern area)			SEG35 (A-pattern area)			√	√		
SEG36	F0424H	SEG36	(B-pattern	area)		SEG36	(A-pattern	area)		V	_
SEG37	F0425H	SEG37	(B-pattern	area)		SEG37	(A-pattern	area)		V	_
SEG38	F0426H	SEG38	(B-pattern	area)		SEG38	(A-pattern	area)		V	_

Remark √: Supported, –: Not supported

Table 13-10. Relationship Between LCD Display Data Register Contents and Segment/Common Outputs (2/2)

(b) 8-time slice

Register Name	Address	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	64-pin	48-pin
		COM 7	COM 6	COM 5	COM 4	COM 3	COM 2	COM 1	COM 0		
SEG0	F0400H				SEG	O ^{Note}			•	√	√
SEG1	F0401H				SEC	à1 ^{Note}				√	√
SEG2	F0402H					32 ^{Note}				√	√
SEG3	F0403H				SEC	3 ^{Note}				√	√
SEG4	F0404H				SE	G4				V	√
SEG5	F0405H				SE	G5				V	√
SEG6	F0406H				SE	G6				√	√
SEG7	F0407H				SE	G7				√	√
SEG8	F0408H				SE	G8				√	_
SEG9	F0409H				SE	G9				√	-
SEG10	F040AH				SE	G10				√	_
SEG11	F040BH				SE	G11				√	_
SEG12	F040CH				SE	G12				√	-
SEG13	F040DH				SE	G13				√	_
SEG14	F040EH				SE	G14				√	_
SEG15	F040FH		SEG15					√	-		
SEG16	F0410H		SEG16					√	√		
SEG17	F0411H		SEG17						√	√	
SEG18	F0412H		SEG18					√	√		
SEG19	F0413H		SEG19					√	√		
SEG20	F0414H		SEG20					√	√		
SEG21	F0415H		SEG21					√	√		
SEG22	F0416H		SEG22					√	-		
SEG23	F0417H		SEG23					√	-		
SEG24	F0418H				SE	G24				√	√
SEG25	F0419H		SEG25					√	√		
SEG26	F041AH				SE	G26				$\sqrt{}$	$\sqrt{}$
SEG27	F041BH				SE	G27				√	√
SEG28	F041CH				SE	G28				√	√
SEG29	F041DH				SE	G29				√	√
SEG30	F041EH		SEG30					√	√		
SEG31	F041FH		SEG31					√	√		
SEG32	F0420H	SEG32					√	√			
SEG33	F0421H	SEG33					√	√			
SEG34	F0422H	SEG34					√	√			
SEG35	F0423H	SEG35						√	√		
SEG36	F0424H	SEG36						√	-		
SEG37	F0425H				SE	G 37				√	
SEG38	F0426H				SE	G38				√	

Note The COM4 to COM7 pins and SEG0 to SEG3 pins are used alternatively.

Remark √: Supported, -: Not supported

To use the LCD display data register when the number of time slices is static, two, three, or four, the lower four bits and higher four bits of each address of the LCD display data register become an A-pattern area and a B-pattern area, respectively.

The correspondences between A-pattern area data and COM signals are as follows: bit $0 \Leftrightarrow COM0$, bit $1 \Leftrightarrow COM1$, bit $2 \Leftrightarrow COM2$, and bit $3 \Leftrightarrow COM3$.

The correspondences between B-pattern area data and COM signals are as follows: bit $4 \Leftrightarrow COM0$, bit $5 \Leftrightarrow COM1$, bit $6 \Leftrightarrow COM2$, and bit $7 \Leftrightarrow COM3$.

A-pattern area data will be displayed on the LCD panel when BLON = LCDSEL = 0 has been selected, and B-pattern area data will be displayed on the LCD panel when BLON = 0 and LCDSEL = 1 have been selected.

13.5 Selection of LCD Display Register

With R7F0C001G/L, R7F0C002G/L, to use the LCD display data registers when the number of time slices is static, two, three, or four, the LCD display data register can be selected from the following three types, according to the BLON and LCDSEL bit settings.

- Displaying an A-pattern area data (lower four bits of LCD display data register)
- Displaying a B-pattern area data (higher four bits of LCD display data register)
- Alternately displaying A-pattern and B-pattern area data (blinking display corresponding to the constant-period interrupt timing of the real-time clock (RTC))

Caution When the number of time slices is eight, LCD display data registers (A-pattern, B-pattern, or blinking display) cannot be selected.

A-pattern area and B-pattern area are alternately displayed when blinking display (BLON = 1) is selected B-pattern area A-pattern area Address Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Register COM Name COM COM COM COM COM COM COM 2 0 3 0 1 2 SEG5 F0405H Set these bits to 1 for blinking displa SEG4 F0404H SEG3 F0403H SEG2 F0402H F0401H SEG1 SEG0 F0400H

Figure 13-15. Example of Setting LCD Display Registers When Pattern Is Changed

Set a complement to these bits for blinking display

13.5.1 A-pattern area and B-pattern area data display

When BLON = LCDSEL = 0, A-pattern area (lower four bits of the LCD display data register) data will be output as the LCD display register.

When BLON = 0, and LCDSEL = 1, B-pattern area (higher four bits of the LCD display data register) data will be output as the LCD display register.

See 13.4 LCD Display Data Registers about the display area.

13.5.2 Blinking display (Alternately displaying A-pattern and B-pattern area data)

When BLON = 1 has been set, A-pattern and B-pattern area data will be alternately displayed, according to the constant-period interrupt (INTRTC) timing of the real-time clock (RTC). See **CHAPTER 7 REAL-TIME CLOCK** about the setting of the RTC constant-period interrupt (INTRTC, 0.5 s setting only) timing.

For blinking display of the LCD, set inverted values to the B-pattern area bits corresponding to the A-pattern area bits. (Example: Set 1 to bit 0 of 00H, and set 0 to bit 4 of F0400H for blinking display.) When not setting blinking display of the LCD, set the same values. (Example: Set 1 to bit 2 of F0402H, and set 1 to bit 6 of F0402H for lighting display.)

See 13.4 LCD Display Data Registers about the display area.

Next, the timing operation of display switching is shown.

Figure 13-16. Switching Operation from A-Pattern Display to Blinking Display

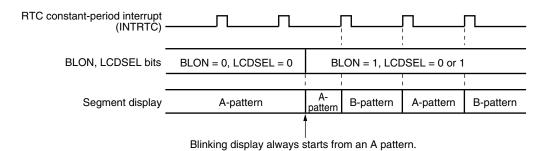
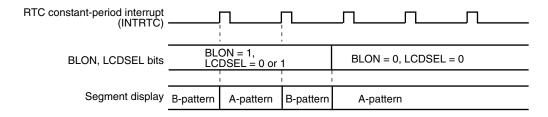
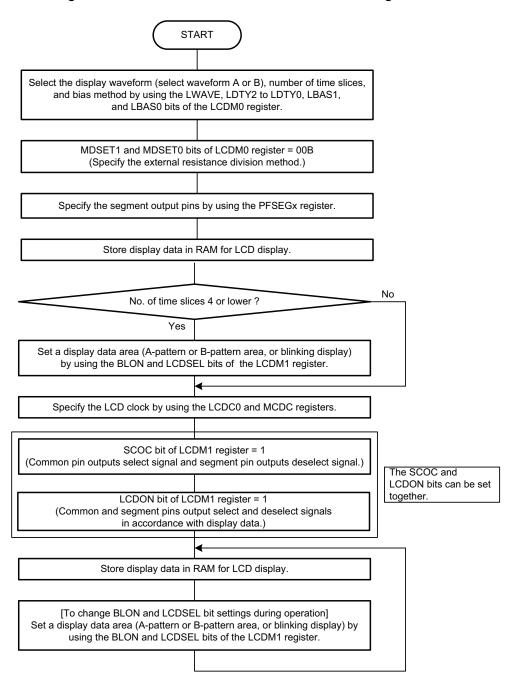



Figure 13-17. Switching Operation from Blinking Display to A-Pattern Display


13.6 Setting the LCD Controller/Driver

Set the LCD controller/driver using the following procedure.

Caution To operate the LCD controller/driver, be sure to follow procedures (1) to (3). Unless these procedures are observed, the operation will not be guaranteed.

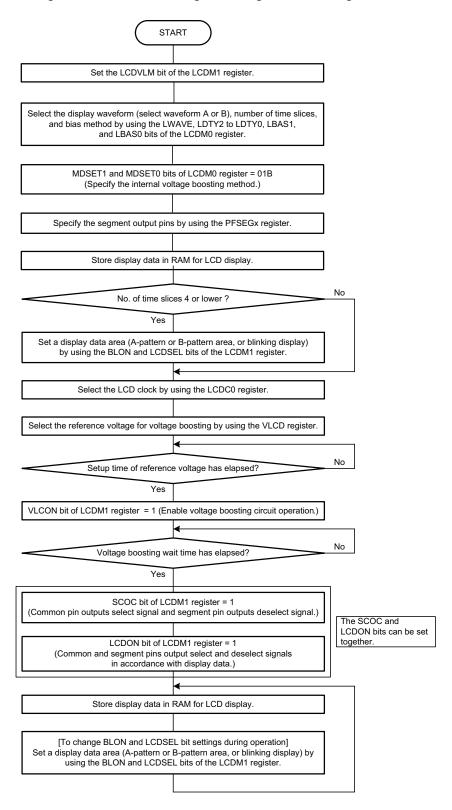
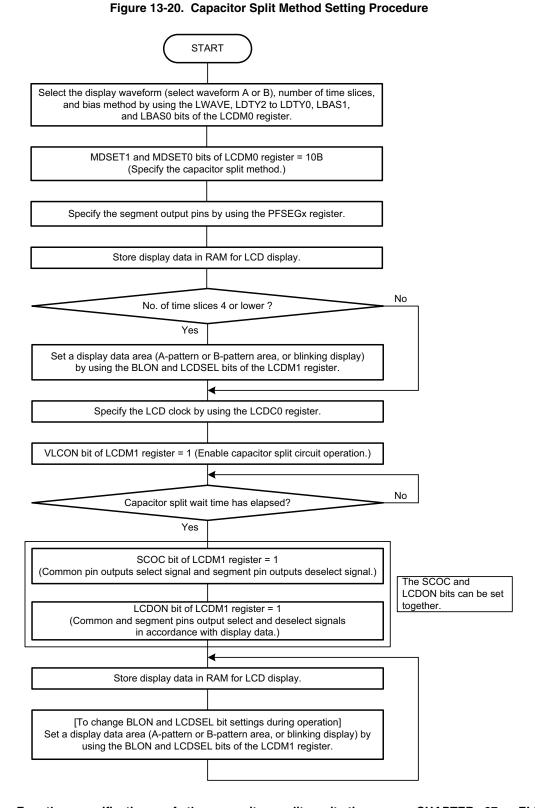

(1) External resistance division method

Figure 13-18. External Resistance Division Method Setting Procedure

(2) Internal voltage boosting method


Figure 13-19. Internal Voltage Boosting Method Setting Procedure

- Cautions 1. Wait until the setup time has elapsed even if not changing the setting of the VLCD register.
 - 2. For the specifications of the reference voltage setup time and voltage boosting wait time, see CHAPTER 27 ELECTRICAL SPECIFICATIONS.

(3) Capacitor split method

<R>

Caution For the specifications of the capacitor split wait time, see CHAPTER 27 ELECTRICAL SPECIFICATIONS.

<R>

13.7 Operation stop procedure

To stop the operation of the LCD while it is displaying waveforms, follow the steps shown in the flowchart below. The LCD stops operating when the LCDON bit of LCDM1 register and SCOC bit of the LCDM1 register are set to "0".

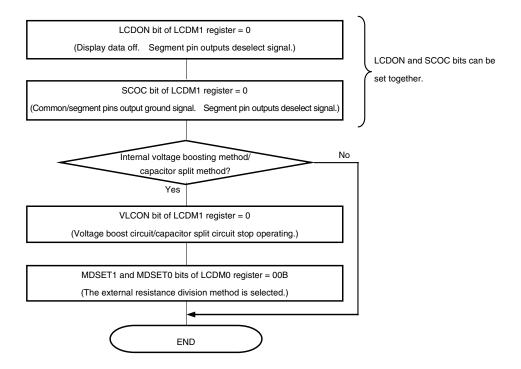
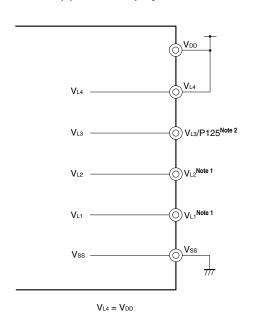


Figure 13-21. Operation Stop Procedure

Caution Stopping the voltage boost/capacitor split circuits is prohibited while the display is on (SCOC and LCDON bits of LCDM1 register = 00B). Otherwise, the operation will not be guaranteed. Be sure to turn off display (SCOC and LCDON bits of LCDM1 register = 00B) before stopping the voltage boost/capacitor split circuits (VLCON bit of LCDM1 register = 0).

13.8 Supplying LCD Drive Voltages VL1, VL2, VL3, and VL4


The power supply voltages for the LCD driver can be produced through external resistance division, internal voltage boosting, or capacitor split.

13.8.1 External resistance division method

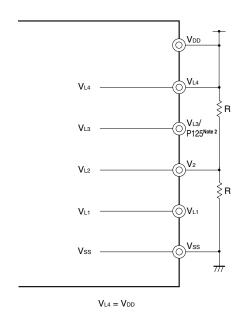
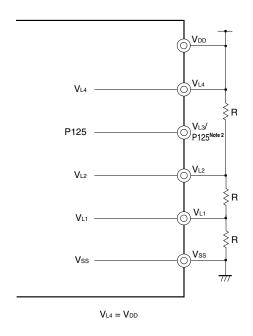
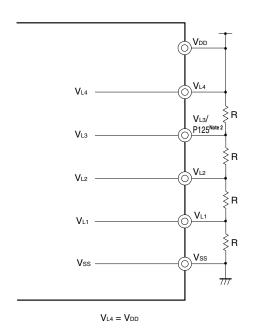

Figure 13-22 shows examples of LCD drive voltage connection, corresponding to each bias method.

Figure 13-22. Examples of LCD Drive Power Connections (External Resistance Division Method)


(a) Static display mode


(b) 1/2 bias method

(c) 1/3 bias method

(d) 1/4 bias method

Notes 1. Connect V_{L1} and V_{L2} to GND or leave open.

2. VL3 can be used as port (P125).

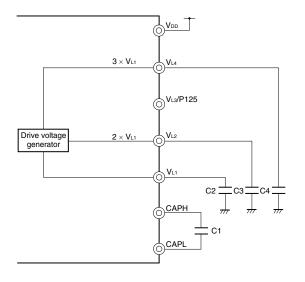
Caution The reference resistance "R" value for external resistance division is 10 k Ω to 1 M Ω . In addition, to stabilize the voltage of the V_{L1} to V_{L4} pins, connect a capacitor between each of pins V_{L1} to V_{L4} and the GND pin as needed. The reference capacitance is about 0.47 μ F but it depends on the LCD panel used, the number of segment pins, the number of common pins, the frame frequency, and the operating environment. Thoroughly evaluate these values in accordance with your system and adjust and determine the capacitance.

13.8.2 Internal voltage boosting method

R7F0C001G/L, R7F0C002G/L contains an internal voltage boost circuit for generating LCD drive power supplies. The internal voltage boost circuit and external capacitors (0.47 μ F \pm 30%) are used to generate an LCD drive voltage. Only 1/3 bias mode or 1/4 bias mode can be set for the internal voltage boosting method.

The LCD drive voltage of the internal voltage boosting method can supply a constant voltage, regardless of changes in V_{DD} , because it is a power supply separate from the main unit.

In addition, a contrast can be adjusted by using the LCD boost level control register (VLCD).


		-
Bias Method	1/3 Bias Method	1/4 Bias Method
LCD Drive Voltage Pin		
V _{L4}	3 × V _{L1}	4 × V _{L1}
V _{L3}	-	3 × V _{L1}
V _{L2}	$2\times V_{L1}$	$2\times V_{L1}$
VL1	LCD reference voltage	LCD reference voltage

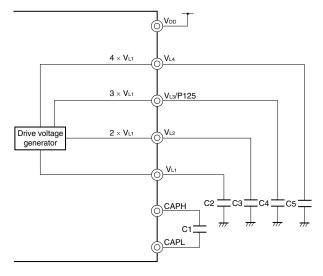

Table 13-11. LCD Drive Voltages (Internal Voltage Boosting Method)

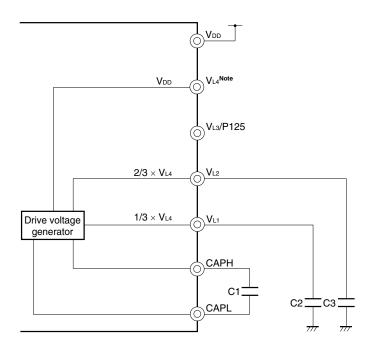
Figure 13-23. Examples of LCD Drive Power Connections (Internal Voltage Boosting Method)

(a) 1/3 bias method

(b) 1/4 bias method

Remark Use a capacitor with as little leakage as possible. In addition, make C1 a nonpolar capacitor.

13.8.3 Capacitor split method


R7F0C001G/L, R7F0C002G/L contains an internal voltage reduction circuit for generating LCD drive power supplies. The internal voltage reduction circuit and external capacitors (0.47 μ F \pm 30%) are used to generate an LCD drive voltage. Only 1/3 bias mode can be set for the capacitor split method.

Different from the external resistance division method, there is always no current flowing with the capacitor split method, so current consumption can be reduced.

Table 13-12. LCD Drive Voltages (Capacitor Split Method)

Figure 13-24. Examples of LCD Drive Power Connections (Capacitor Split Method)

· 1/3 bias method

Note When switching to internal voltage boosting, connect the capacitor C4 as shown in Figure 13-23 Examples of LCD Drive Power Connections (Internal Voltage Boosting Method).

Remark Use a capacitor with as little leakage as possible. In addition, make C1 a nonpolar capacitor.

13.9 Common and Segment Signals

Each pixel of the LCD panel turns on when the potential difference between the corresponding common and segment signals becomes higher than a specific voltage (LCD drive voltage, VLCD). The pixels turn off when the potential difference becomes lower than VLCD.

Applying DC voltage to the common and segment signals of an LCD panel causes deterioration. To avoid this problem, this LCD panel is driven by AC voltage.

(1) Common signals

Each common signal is selected sequentially according to a specified number of time slices at the timing listed in Table 13-13. In the static display mode, the same signal is output to COM0 to COM3.

In the two-time-slice mode, leave the COM2 and COM3 pins open. In the three-time-slice mode, leave the COM3 pin open.

Use the COM4 to COM7 pins other than in the eight-time-slice mode as open or segment pins.

COM Signal СОМЗ COM4 COM6 COM7 COM₀ COM₁ COM2 COM5 Number of Time Slices Static display mode Note Note Note Note Two-time-slice mode Open Open Note Note Note Note Three-time-slice mode Open Note Note Note Note Four-time-slice mode Note Note Note Note Eight-time-slice mode

Table 13-13. COM Signals

Note Use the pins as open or segment pins.

(2) Segment signals

The segment signals correspond to the LCD display data register (see 13.4 LCD Display Data Registers).

When the number of time slices is eight, bits 0 to 7 of each display data register are read in synchronization with COM0 to COM7, respectively. If a bit is 1, it is converted to the select voltage, and if it is 0, it is converted to the deselect voltage. The conversion results are output to the segment pins (SEG4 to SEG38).

When the number of time slices is number other than eight, bits 0 to 3 of each byte in A-pattern area are read in synchronization with COM0 to COM3, and bits 4 to 7 of each byte in B-pattern area are read in synchronization with COM0 to COM3, respectively. If a bit is 1, it is converted to the select voltage, and if it is 0, it is converted to the deselect voltage. The conversion results are output to the segment pins (SEG0 to SEG38).

Check, with the information given above, what combination of front-surface electrodes (corresponding to the segment signals) and rear-surface electrodes (corresponding to the common signals) forms display patterns in the LCD display data register, and write the bit data that corresponds to the desired display pattern on a one-to-one basis.

Remark The mounted segment output pins vary depending on the product.

• 48-pin products: SEG0 to SEG7, SEG16 to SEG21, SEG24 to SEG35

• 64-pin products: SEG0 to SEG38

(3) Output waveforms of common and segment signals

The voltages listed in Table 13-14 are output as common and segment signals.

When both common and segment signals are at the select voltage, a display on-voltage of $\pm V_{LCD}$ is obtained. The other combinations of the signals correspond to the display off-voltage.

Table 13-14. LCD Drive Voltage

(a) Static display mode

Segment S	Signal Selec	t Signal Level	Deselect Signal Level
Common Signal		Vss/V _{L4}	V _{L4} /Vss
V _{L4} /V _{SS}	-VLCD/+VLCD		0 V/0 V

(b) 1/2 bias method

	Segment Signal	Select Signal Level	Deselect Signal Level
Common Signal		Vss/V _{L4}	V _{L4} /Vss
Select signal level	VL4/VSS	-VLCD/+VLCD	0 V/0 V
Deselect signal level	VL2	$-\frac{1}{2}V_{LCD}/+\frac{1}{2}V_{LCD}$	$+\frac{1}{2}V_{LCD}/-\frac{1}{2}V_{LCD}$

(c) 1/3 bias method (waveform A or B)

	Segment Signal	Select Signal Level	Deselect Signal Level
Common Signal		Vss/V _{L4}	VL2/VL1
Select signal level	VL4/VSS	-VLCD/+VLCD	$-\frac{1}{3}V_{LCD}/+\frac{1}{3}V_{LCD}$
Deselect signal level	VL1/VL2	$-\frac{1}{3}$ VLCD/ $+\frac{1}{3}$ VLCD	$+\frac{1}{3}V_{LCD}/-\frac{1}{3}V_{LCD}$

(d) 1/4 bias method (waveform A or B)

	Segment Signal	Select Signal Level	Deselect Signal Level
Common Signal		Vss/V _{L4}	V _{L2}
Select signal level	VL4/VSS	-VLCD/+VLCD	$-\frac{1}{2}V_{LCD}/+\frac{1}{2}V_{LCD}$
Deselect signal level	V _{L1} /V _{L3}	$-\frac{1}{4}V_{LCD}/+\frac{1}{4}V_{LCD}$	$+\frac{1}{4}V_{LCD}/-\frac{1}{4}V_{LCD}$

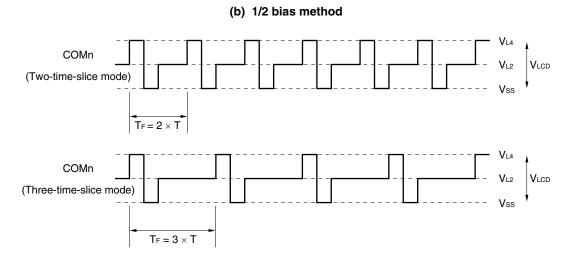
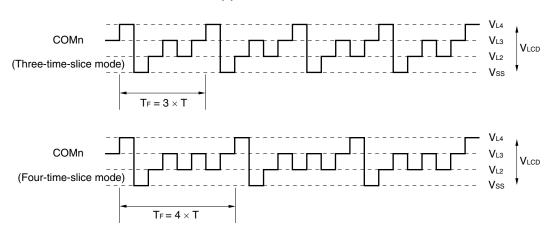

Figure 13-25 shows the common signal waveforms, and Figure 13-26 shows the voltages and phases of the common and segment signals.

Figure 13-25. Common Signal Waveforms (1/2)

(a) Static display mode COMn (Static display) TF = T

T: One LCD clock period

TF: Frame frequency



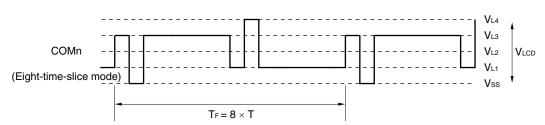
T: One LCD clock period

T_F: Frame frequency

Figure 13-25. Common Signal Waveforms (2/2)

(c) 1/3 bias method

T: One LCD clock period


T_F: Frame frequency

< Example of calculation of LCD frame frequency (When four-time slot mode is used) >

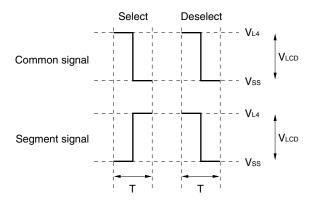
LCD clock: $32768/2^8 = 256 \text{ Hz}$ (When setting to LCDC0 = 07H)

LCD frame frequency: 64 Hz

(d) 1/4 bias method

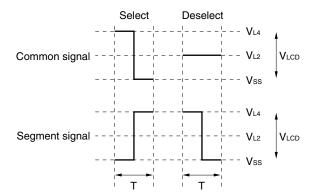
T: One LCD clock period

Tr: Frame frequency


< Example of calculation of LCD frame frequency (When eight-time slot mode is used) >

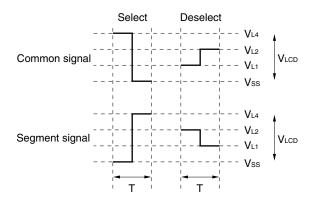
LCD clock: $32768/2^8 = 256 \text{ Hz}$ (When setting to LCDC0 = 07H)

LCD frame frequency: 32 Hz

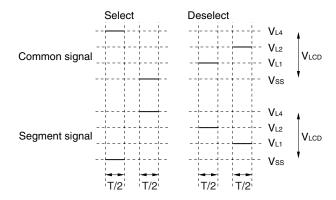

Figure 13-26. Voltages and Phases of Common and Segment Signals (1/3)

(a) Static display mode (waveform A)

T: One LCD clock period


(b) 1/2 bias method (waveform A)

T: One LCD clock period

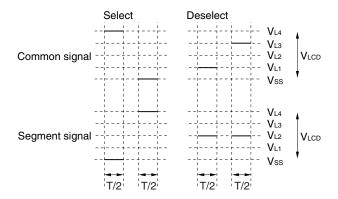

Figure 13-26. Voltages and Phases of Common and Segment Signals (2/3)

(c) 1/3 bias method (waveform A)

T: One LCD clock period


(d) 1/3 bias method (waveform B)

T: One LCD clock period


Figure 13-26. Voltages and Phases of Common and Segment Signals (3/3)

(e) 1/4 bias method (waveform A)

T: One LCD clock period

(f) 1/4 bias method (waveform B)

T: One LCD clock period

13.10 Display Modes

13.10.1 Static display example

Figure 13-28 shows how the three-digit LCD panel having the display pattern shown in Figure 13-27 is connected to the segment signals (SEG0 to SEG23) and the common signal (COM0). This example displays data "12.3" in the LCD panel. The contents of the display data register (F0400H to F0417H) correspond to this display.

The following description focuses on numeral "2." (2.) displayed in the second digit. To display "2." in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG8 to SEG15 pins according to Table 13-15 at the timing of the common signal COM0; see **Figure 13-27** for the relationship between the segment signals and LCD segments.

SEG8 SEG14 SEG15 SEG9 SEG10 SEG11 SEG12 SEG13 Segment Common COM₀ Select Deselect Select Select Deselect Select Select Select

Table 13-15. Select and Deselect Voltages (COM0)

According to Table 13-15, it is determined that the bit-0 pattern of the display data register locations (F0408H to F040FH) must be 10110111.

Figure 13-29 shows the LCD drive waveforms of SEG11 and SEG12, and COM0. When the select voltage is applied to SEG11 at the timing of COM0, an alternate rectangle waveform, +VLCD/-VLCD, is generated to turn on the corresponding LCD segment.

COM1 to COM3 are supplied with the same waveform as for COM0. So, COM0 to COM3 may be connected together to increase the driving capacity.

SEG8n+3

SEG8n+4

SEG8n+5

SEG8n+6

SEG8n+7

SEG8n+7

Figure 13-27. Static LCD Display Pattern and Electrode Connections

Remark 48-pin products: n = 0 to 2

64-pin products: n = 0 to 3

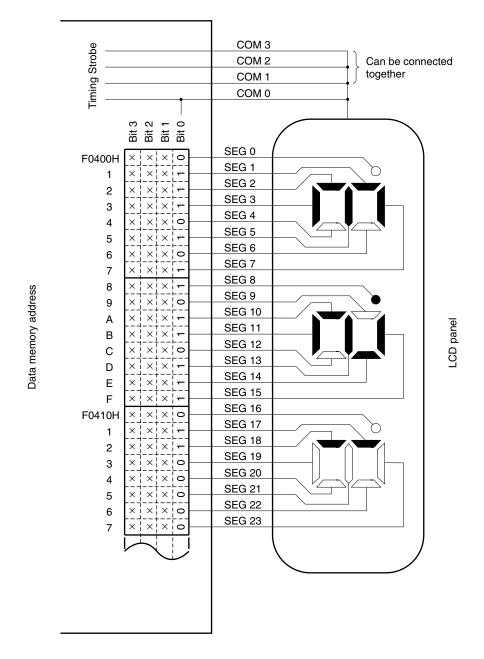


Figure 13-28. Example of Connecting Static LCD Panel

Remark ×: Don't care.

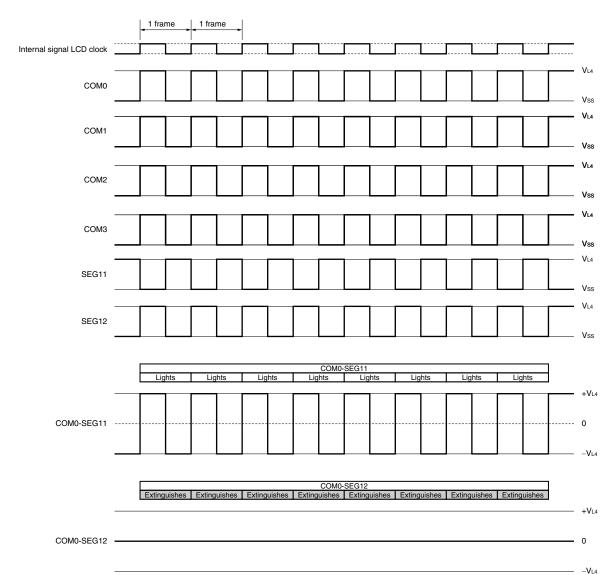


Figure 13-29. Static LCD Drive Waveform Examples for SEG11, SEG12, and COM0

13.10.2 Two-time-slice display example

Figure 13-31 shows how the 6-digit LCD panel having the display pattern shown in Figure 13-30 is connected to the segment signals (SEG0 to SEG23) and the common signals (COM0 and COM1). This example displays data "12345.6" in the LCD panel. The contents of the display data register (F0400H to F0417H) correspond to this display.

The following description focuses on numeral "3" (\exists) displayed in the fourth digit. To display "3" in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG12 to SEG15 pins according to Table 13-16 at the timing of the common signals COM0 and COM1; see **Figure 13-30** for the relationship between the segment signals and LCD segments.

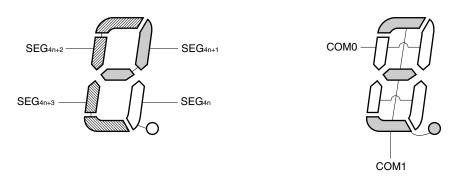

Segment SEG12 SEG13 SEG14 SEG15 Common СОМО Select Select Deselect Deselect COM₁ Deselect Select Select Select

Table 13-16. Select and Deselect Voltages (COM0 and COM1)

According to Table 13-16, it is determined that the display data register location (F040FH) that corresponds to SEG15 must contain xx10.

Figure 13-32 shows examples of LCD drive waveforms between the SEG15 signal and each common signal. When the select voltage is applied to SEG15 at the timing of COM1, an alternate rectangle waveform, +VLCD/-VLCD, is generated to turn on the corresponding LCD segment.

Figure 13-30. Two-Time-Slice LCD Display Pattern and Electrode Connections

Remark 48-pin products: n = 0 to 5 64-pin products: n = 0 to 8

COM 3 Timing strobe Open COM 2 Open COM 1 COM 0 Bit 3 Bit 2 Bit 1 SEG 0 F0400H SEG 1 1 SEG 2 2 SEG 3 SEG 4 4 SEG 5 5 SEG 6 6 SEG 7 7 Data memory address SEG 8 × × 0 -8 SEG 9 9 SEG 10 Α × | × | 0 | -LCD panel SEG 11 В x | x | 0 | 0 SEG 12 × 0 -С SEG 13 D SEG 14 Ε SEG 15 F SEG 16 $\times | \times | \circ | \circ$ F0410H SEG 17 1 SEG 18 2 SEG 19 3 SEG 20 × | × | 0 | -4 SEG 21 x | x | 0 | - x | x | 0 | 0 5 SEG 22 6 SEG 23 $\times | \times | \circ | \circ$

Figure 13-31. Example of Connecting Two-Time-Slice LCD Panel

Remark x: Don't care.

1 frame -Internal signal LCD clock - VL4 ----- V_{L2} = V_{L1} COM0 -- Vss V_{L4} $V_{L2} = V_{L1}$ COM₁ Vss SEG15 -----+VL2 = +VL1 COM0-SEG15 -------- -VL2 = -VL1 $-V_{L4}$ COM1-SEG15
hts Extinguishes Lights Extinguishes Lights Extinguishes - +VL4 -----+V_{L2} = +V_{L1} COM1-SEG15 -----.----0 −VL2 = −VL1

Figure 13-32. Two-Time-Slice LCD Drive Waveform Examples Between SEG15 and Each Common Signals (1/2 Bias Method)

−VL4

13.10.3 Three-time-slice display example

Figure 13-34 shows how the 8-digit LCD panel having the display pattern shown in Figure 13-33 is connected to the segment signals (SEG0 to SEG23) and the common signals (COM0 to COM2). This example displays data "123456.78" in the LCD panel. The contents of the display data register (addresses F0400H to F0417H) correspond to this display.

The following description focuses on numeral "6." (5.) displayed in the third digit. To display "6." in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG6 to SEG8 pins according to Table 13-17 at the timing of the common signals COM0 to COM2; see **Figure 13-33** for the relationship between the segment signals and LCD segments.

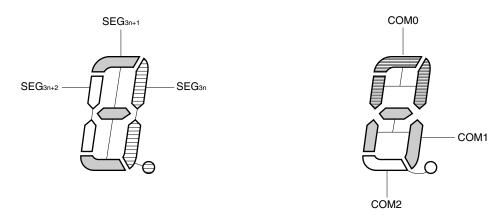

SEG7 Segment SEG6 SEG8 Common COM₀ Deselect Select Select COM₁ Select Select Select COM₂ Select Select

Table 13-17. Select and Deselect Voltages (COM0 to COM2)

According to Table 13-17, it is determined that the display data register location (F0406H) that corresponds to SEG6 must contain x110.

Figures 13-35 and 13-36 show examples of LCD drive waveforms between the SEG6 signal and each common signal in the 1/2 and 1/3 bias methods, respectively. When the select voltage is applied to SEG6 at the timing of COM1 or COM2, an alternate rectangle waveform, +VLCD/-VLCD, is generated to turn on the corresponding LCD segment.

Figure 13-33. Three-Time-Slice LCD Display Pattern and Electrode Connections

Remark 48-pin products: n = 0 to 7

64-pin products: n = 0 to 12

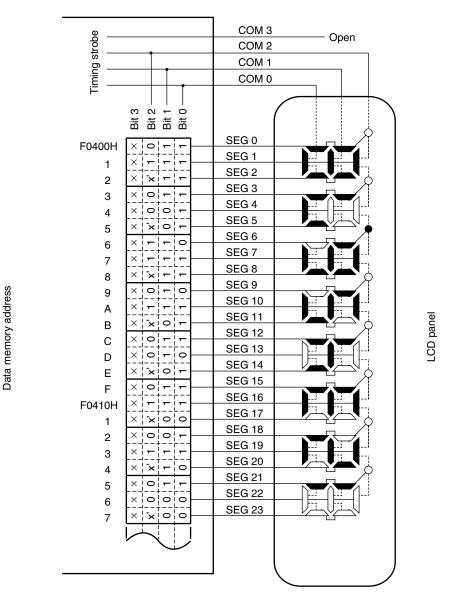


Figure 13-34. Example of Connecting Three-Time-Slice LCD Panel

Remark ×: Don't care.

x': Can be used to store any data because there is no corresponding segment in the LCD panel.

1 frame Internal signal LCD clock V_{L4} COM0 VL2 = VL1 VIA COM1 $V_{L2} = V_{L1}$ Vss V_{L4} VL2 = VL1 COM2 Vss ---- VL2 = VL1 - +VL4 $+V_{L2} = +V_{L1}$ COM0-SEG6 .---- 0 ----- -VL2 = -VL1 −VL4 - +VL4 +VL2 = +VL1 COM1-SEG6 ---------- 0 ----- -VL2 = -VL1 Extinguishes Extinguishes Lights Lights $+V_{L4}$ ----- +VL2 = +VL1 COM2-SEG6 -----0 ----- -VL2 = -VL1

Figure 13-35. Three-Time-Slice LCD Drive Waveform Examples Between SEG6 and Each Common Signals (1/2 Bias Method)

 $-V_{L4}$

 $\begin{array}{c} V_{L2} \\ V_{L1} \end{array}$ COM0 COM1 V_{L4} COM₂ V_{L1} V_{L1} Extinguishes | Exting $+V_{L4}$ +VL2 +VL1 COM0-SEG6 -VI 1 $-V_{L2}$ COM1-SEG6 $+V_{L4}$ +V12 +VL1 COM1-SEG6 -VI 1 ----- -V_{L2} +VL2 +VL1 COM2-SEG6 -VI 1

Figure 13-36. Three-Time-Slice LCD Drive Waveform Examples Between SEG6 and Each Common Signals (1/3 Bias Method)

-VL2

13.10.4 Four-time-slice display example

Figure 13-38 shows how the 12-digit LCD panel having the display pattern shown in Figure 13-37 is connected to the segment signals (SEG0 to SEG23) and the common signals (COM0 to COM3). This example displays data "123456.789012" in the LCD panel. The contents of the display data register (addresses F0400H to F0417H) correspond to this display.

The following description focuses on numeral "6." (\Box .) displayed in the seventh digit. To display "6." in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG12 and SEG13 pins according to Table 13-18 at the timing of the common signals COM0 to COM3; see **Figure 13-37** for the relationship between the segment signals and LCD segments.

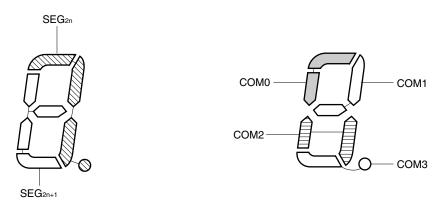

SEG12 SEG13 Segment Common COMO Select Select COM₁ Deselect Select COM₂ Select Select СОМ3 Select Select

Table 13-18. Select and Deselect Voltages (COM0 to COM3)

According to Table 13-18, it is determined that the display data register location (F040CH) that corresponds to SEG12 must contain 1101.

Figure 13-39 shows examples of LCD drive waveforms between the SEG12 signal and each common signal. When the select voltage is applied to SEG12 at the timing of COM0, an alternate rectangle waveform, +V_{LCD}/-V_{LCD}, is generated to turn on the corresponding LCD segment.

Figure 13-37. Four-Time-Slice LCD Display Pattern and Electrode Connections

Remark 48-pin products: n = 0 to 12 64-pin products: n = 0 to 18

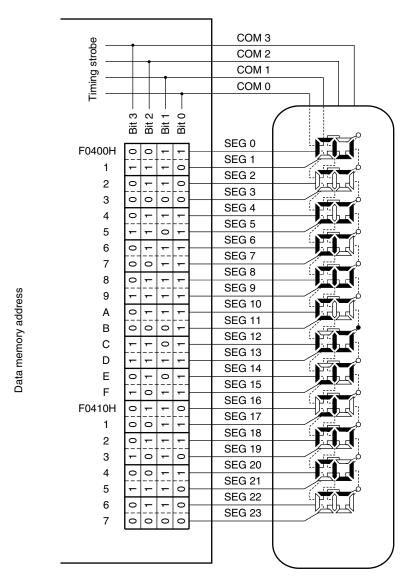


Figure 13-38. Example of Connecting Four-Time-Slice LCD Panel

LCD panel

Figure 13-39. Four-Time-Slice LCD Drive Waveform Examples Between SEG12 and Each Common Signals (1/3 Bias Method) (1/2)

(a) Waveform A

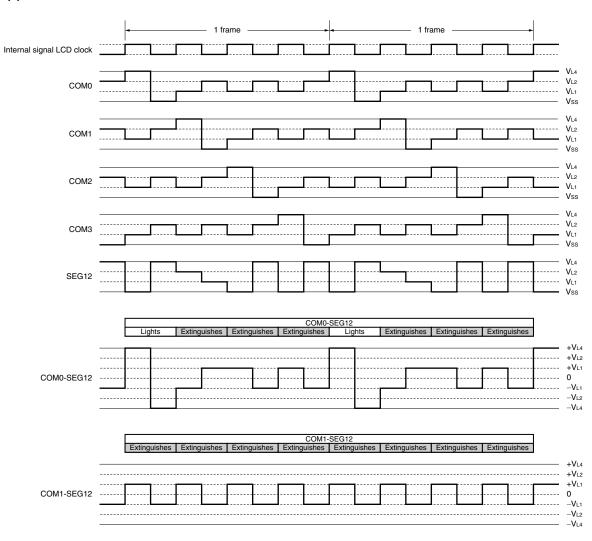
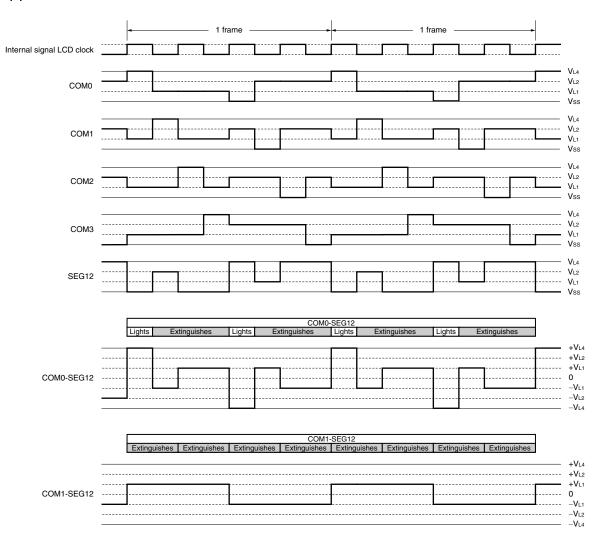



Figure 13-39. Four-Time-Slice LCD Drive Waveform Examples Between SEG12 and Each Common Signals (1/3 Bias Method) (2/2)

(b) Waveform B

13.10.5 Eight-time-slice display example

Figure 13-41 shows how the 15x8 dot LCD panel having the display pattern shown in Figure 13-40 is connected to the segment signals (SEG4 to SEG18) and the common signals (COM0 to COM7). This example displays data "123" in the LCD panel. The contents of the display data register (addresses F0404H to F0412H) correspond to this display.

The following description focuses on numeral "3." (\exists) displayed in the first digit. To display "3." in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG4 to SEG8 pins according to Table 13-19 at the timing of the common signals COM0 to COM7; see **Figure 13-40** for the relationship between the segment signals and LCD segments.

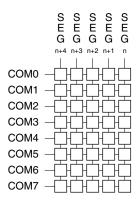

Segment	SEG4	SEG5	SEG6	SEG7	SEG8
Common					
СОМО	Select	Select	Select	Select	Select
COM1	Deselect	Select	Deselect	Deselect	Deselect
COM2	Deselect	Deselect	Select	Deselect	Deselect
COM3	Deselect	Select	Deselect	Deselect	Deselect
COM4	Select	Deselect	Deselect	Deselect	Deselect
COM5	Select	Deselect	Deselect	Deselect	Select
COM6	Deselect	Select	Select	Select	Deselect
COM7	Deselect	Deselect	Deselect	Deselect	Deselect

Table 13-19. Select and Deselect Voltages (COM0 to COM7)

According to Table 13-19, it is determined that the display data register location (F0404H) that corresponds to SEG4 must contain 00110001.

Figure 13-42 shows examples of LCD drive waveforms between the SEG4 signal and each common signal. When the select voltage is applied to SEG4 at the timing of COM0, a waveform is generated to turn on the corresponding LCD segment.

Figure 13-40. Eight-Time-Slice LCD Display Pattern and Electrode Connections

Remark 48-pin products: n = 4 to 21

64-pin products: n = 4 to 34

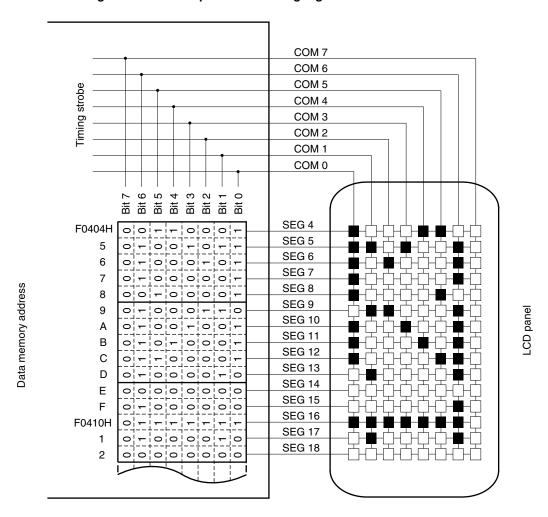


Figure 13-41. Example of Connecting Eight-Time-Slice LCD Panel

Figure 13-42. Eight-Time-Slice LCD Drive Waveform Examples Between SEG4 and Each Common Signals (1/4 Bias Method) (1/2)

(a) Waveform A

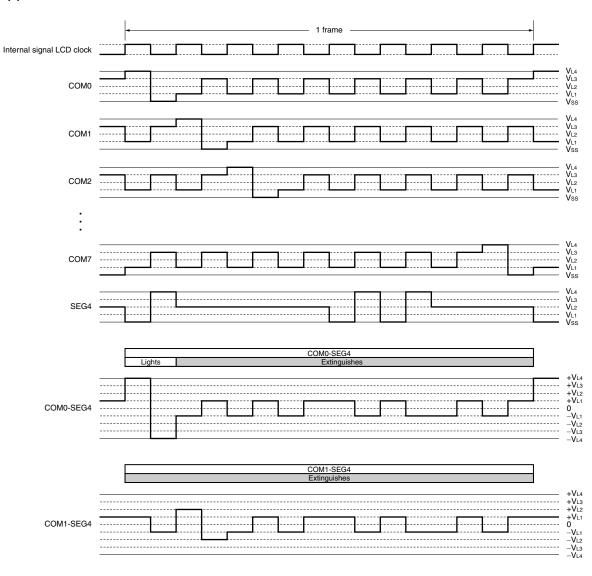
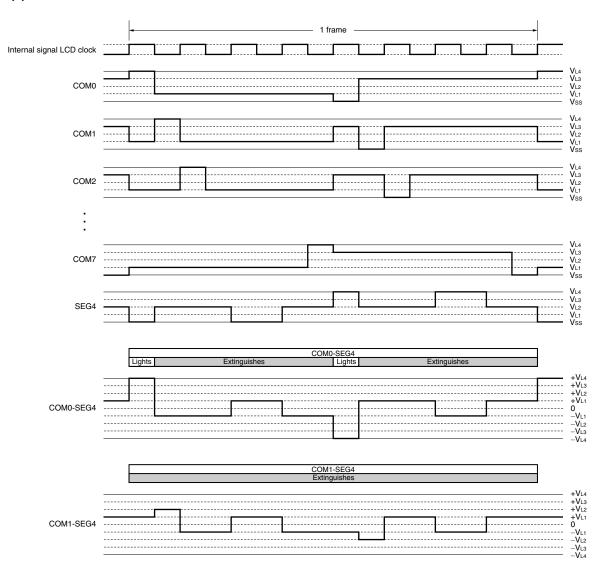



Figure 13-42. Eight-Time-Slice LCD Drive Waveform Examples Between SEG4 and Each Common Signals (1/4 Bias Method) (2/2)

(b) Waveform B

CHAPTER 14 INTERRUPT FUNCTIONS

The interrupt function switches the program execution to other processing. When the branch processing is finished, the program returns to the interrupted processing.

The number of interrupt sources differs, depending on the product.

		48-pin	64-pin
Maskable	External	7	9
interrupts	Internal	23	23

14.1 Interrupt Function Types

The following two types of interrupt functions are used.

(1) Maskable interrupts

These interrupts undergo mask control. Maskable interrupts can be divided into four priority groups by setting the priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR10L, PR10H, PR11L, PR11H, PR12L). Multiple interrupt servicing can be applied to low-priority interrupts when high-priority interrupts are generated. If two or more interrupt requests, each having the same priority, are simultaneously generated, then they are processed according to the priority of vectored interrupt servicing. For the priority order, see **Table 14-1**.

A standby release signal is generated and STOP, HALT, and SNOOZE modes are released.

External interrupt requests and internal interrupt requests are provided as maskable interrupts.

(2) Software interrupt

This is a vectored interrupt generated by executing the BRK instruction. It is acknowledged even when interrupts are disabled. The software interrupt does not undergo interrupt priority control.

14.2 Interrupt Sources and Configuration

Interrupt sources include maskable interrupts and software interrupts. In addition, they also have up to seven reset sources (see **Table 14-1**). The vector codes that store the program start address when branching due to the generation of a reset or various interrupt requests are two bytes each, so interrupts jump to a 64 K address of 00000H to 0FFFFH.

Interrupt Interrupt Source Internal/ Vector **Basic Configuration** 48-pin Default Priority^{Note} Table Type External Name Trigger Address Watchdog timer interval^{Note 3} Maskable 0 INTWDTI Internal 0004H (A) (75% of overflow time +1/2fill) Voltage detectionNote 4 INTLVI 0006H 2 INTP0 Pin input edge detection 0008H External (B) 3 INTP1 $\sqrt{}$ 000AH 4 INTP2 000CH INTP3 000EH $\sqrt{}$ 6 INTP4 0010H $\sqrt{}$ 7 INTP5 0012H INTST0 8 UART0 transmission transfer end or buffer Internal 0018H (A) empty interrupt INTCSI00 CSI00 transfer end or buffer empty interrupt INTSR0 $\sqrt{}$ $\sqrt{}$ UART0 reception transfer end 001AH INTCSI01 CSI01 transfer end or buffer empty interrupt INTSRE0 UART0 reception communication error occurrence 001CH $\sqrt{}$ INTTM01H End of timer channel 01 count or capture (at higher 8-bit timer operation) 11 INTTM00 End of timer channel 00 count or capture 0020H $\sqrt{}$ 12 INTTM03H End of timer channel 03 count or capture 0024H (at higher 8-bit timer operation)

Table 14-1. Interrupt Source List (1/3)

- **Notes 1.** The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 24 indicates the lowest priority.
 - 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 14-1.
 - 3. When bit 7 (WDTINT) of the option byte (000C0H) is set to 1.
 - 4. When bit 7 (LVIMD) of the voltage detection level register (LVIS) is cleared to 0.

Remark √: Mounted -: Not mounted

Table 14-1. Interrupt Source List (2/3)

Interrupt Type	Default Priority ^{Note 1}	Name	Interrupt Source Trigger	Internal/ External	Vector Table Address	Basic Configuration Type ^{Note 2}	64-pin	48-pin
Maskable	13	INTTM01	End of timer channel 01 count or capture	Internal	0028H	(A)	√	√
	14	INTTM02	End of timer channel 02 count or capture		002AH		V	√
	15	INTTM03	End of timer channel 03 count or capture		002CH		V	√
	16	INTAD	End of A/D conversion		002EH		V	√
	17	INTRTC	Fixed-cycle signal of real-time clock/alarm match detection		0030H		√	V
	18	INTIT	Interval signal detection		0032H		V	√
	19	INTKR	Key return signal detection	External	0034H	(C)	V	√
	20	INTTM06	End of timer channel 06 count or capture	Internal	0040H	(A)	√	\checkmark
	21	INTTM07	End of timer channel 07 count or capture		0042H		√	√
	22	INTP6	Pin input edge detection	External	0046H	(B)	√	_
	23	INTP7			0048H		V	_
	24	INTFL	End of sequencer interrupt ^{Note 3}	Internal	004CH	(A)	V	V

Notes 1. The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 24 indicates the lowest priority.

- 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 14-1.
- 3. Be used only at the self programming library.

Remark √: Mounted

-: Not mounted

64-pin Interrupt Internal/ Vector 48-pin Default Priority^{Note} Interrupt Source Basic Configuration External Table Type Address Software BRK Execution of BRK instruction 007EH (D) Reset RESET **RESET** pin input 0000H **POR** $\sqrt{}$ Power-on-reset LVD Voltage detectionNote 3 $\sqrt{}$ WDT $\sqrt{}$ Overflow of watchdog timer Execution of illegal instruction Note 4 **TRAP** $\sqrt{}$ IAW Illegal-memory access RPE RAM parity error

Table 14-1. Interrupt Source List (3/3)

- **Notes 1.** The default priority determines the sequence of interrupts if two or more maskable interrupts occur simultaneously. Zero indicates the highest priority and 24 indicates the lowest priority.
 - 2. Basic configuration types (A) to (D) correspond to (A) to (D) in Figure 14-1.
 - 3. When bit 7 (LVIMD) of the voltage detection level register (LVIS) is set to 1.
 - 4. When the instruction code in FFH is executed.
 Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

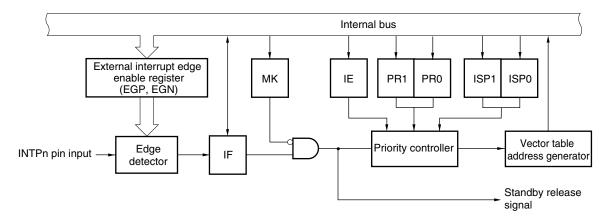
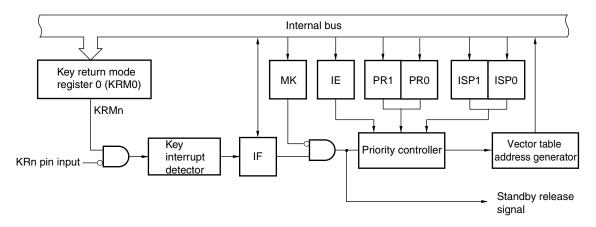

Remark √: Mounted

Figure 14-1. Basic Configuration of Interrupt Function (1/2)

(A) Internal maskable interrupt

(B) External maskable interrupt (INTPn)

IF: Interrupt request flag
 IE: Interrupt enable flag
 ISP0: In-service priority flag 0
 ISP1: In-service priority flag 1
 MK: Interrupt mask flag


PR0: Priority specification flag 0
PR1: Priority specification flag 1

Remark 48-pin: n = 0 to 5

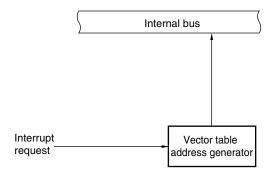

64-pin: n = 0 to 7

Figure 14-1. Basic Configuration of Interrupt Function (2/2)

(C) External maskable interrupt (INTKR)

(D) Software interrupt

IF: Interrupt request flag
IE: Interrupt enable flag
ISP0: In-service priority flag 0
ISP1: In-service priority flag 1
MK: Interrupt mask flag

PR0: Priority specification flag 0
PR1: Priority specification flag 1

Remark n = 0 to 3

14.3 Registers Controlling Interrupt Functions

The following 6 types of registers are used to control the interrupt functions.

- Interrupt request flag registers (IF0L, IF0H, IF1L, IF1H, IF2L)
- Interrupt mask flag registers (MK0L, MK0H, MK1L, MK1H, MK2L)
- Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR10L, PR10H, PR11H, PR12L)
- External interrupt rising edge enable register (EGP0)
- External interrupt falling edge enable register (EGN0)
- Program status word (PSW)

Table 14-2 shows a list of interrupt request flags, interrupt mask flags, and priority specification flags corresponding to interrupt request sources.

Table 14-2. Flags Corresponding to Interrupt Request Sources (1/3)

Interrupt Source	Interrupt Requ	est Flag	ag Interrupt Mask F		Priority Specification Flag			48-pin
Source		Register		Register		Register	64-pin	n
INTWDTI	WDTIIF	IF0L	WDTIMK	MK0L	WDTIPR0, WDTIPR1	PR00L,	V	V
INTLVI	LVIIF		LVIMK		LVIPR0, LVIPR1	PR10L	V	\checkmark
INTP0	PIF0		PMK0		PPR00, PPR10		V	\checkmark
INTP1	PIF1		PMK1		PPR01, PPR11		V	\checkmark
INTP2	PIF2		PMK2		PPR02, PPR12		V	\checkmark
INTP3	PIF3		PMK3		PPR03, PPR13		V	\checkmark
INTP4	PIF4		PMK4		PPR04, PPR14		V	\checkmark
INTP5	PIF5		PMK5		PPR05, PPR15		V	\checkmark

Remark

√: Mounted

-: Not mounted

64-pin 48-pin Interrupt Request Flag Interrupt Mask Flag Interrupt Priority Specification Flag Source Register Register Register INTST0^{Note 1} STIF0^{Note 1} STMK0^{Note 1} STPR00, STPR10Note 1 $\sqrt{}$ **IF0H** MK0H PR00H. INTCSI00Note 1 CSIIF00Note 1 CSIMK00 Note 1 CSIPR000, CSIPR100Note 1 PR10H $\sqrt{}$ INTSR0^{Note 2} SRIF0^{Note 2} SRMK0^{Note 2} SRPR00, SRPR10Note 2 INTCSI01 Note 2 CSIIF01 Note 2 CSIMK01Note 2 CSIPR001, CSIPR101 Note 2 $\sqrt{}$ $\sqrt{}$ SREIF0 Note 3 SREMK0 Note 3 $\sqrt{}$ V INTSRE0^{Note 3} SREPR00. SREPR10 Note 3 INTTM01H Note 3 TMIF01H Note 3 TMMK01H Note 3 $\sqrt{}$ $\sqrt{}$ TMPR001H, TMPR101H INTTM00 TMIF00 TMMK00 TMPR000, TMPR100 INTTM03H TMIF03H IF1L ТММК03Н MK1L TMPR003H, TMPR103H PR01L. $\sqrt{}$ PR11L INTTM01 TMIF01 TMMK01 TMPR001, TMPR101 $\sqrt{}$ INTTM02 TMIF02 TMMK02 $\sqrt{}$ TMPR002, TMPR102 INTTM03 TMIF03 TMMK03 TMPR003, TMPR103 V INTAD ADIF ADMK ADPR0, ADPR1 INTRTC **RTCIF** $\sqrt{}$ **RTCMK** RTCPR0, RTCPR1 INTIT ITIF ITMK ITPR0, ITPR1

Table 14-2. Flags Corresponding to Interrupt Request Sources (2/3)

- **Notes 1.** If one of the interrupt sources INTST0 and INTCSI00 is generated, bit 2 of the IF0H register is set to 1. Bit 2 of the MK0H, PR00H, and PR10H registers supports these two interrupt sources.
 - 2. If one of the interrupt sources INTSR0 and INTCSI01 is generated, bit 3 of the IF0H register is set to 1. Bit 3 of the MK0H, PR00H, and PR10H registers supports these two interrupt sources.
 - 3. Do not use a UART0 reception error interrupt and an interrupt of channel 1 of TAU0 (at higher 8-bit timer operation) at the same time because they share flags for the interrupt request sources. If the UART0 reception error interrupt is not used (EOC01 = 0), UART0 and channel 1 of TAU0 (at higher 8-bit timer operation) can be used at the same time. If one of the interrupt sources INTSRE0 and INTTM01H is generated, bit 7 of the IF0H register is set to 1. Bit 7 of the MK0H, PR00H, and PR10H registers supports these two interrupt sources.

Remark √: Mounted

<R>

Table 14-2. Flags Corresponding to Interrupt Request Sources (3/3)

Interrupt	Interrupt Request Flag		Interrupt Mask Flag		Priority Specification Flag			48-pin
Source		Register		Register		Register	64-pin	n
INTKR	KRIF	IF1H	KRMK	MK1H	KRPR0, KRPR1	PR01H,	1	V
INTTM06	TMIF06		TMMK06		TMPR006, TMPR106	PR11H	V	√
INTTM07	TMIF07		TMMK07		TMPR007, TMPR107		V	√
INTP6	PIF6	IF2L	PMK6	MK2L	PPR06, PPR16	PR02L,	$\sqrt{}$	_
INTP7	PIF7		PMK7		PPR07, PPR17	PR12L	V	_
INTFL	FLIF		FLMK		FLPR0, FLPR1		V	√

Remark

√: Mounted

-: Not mounted

14.3.1 Interrupt request flag registers (IF0L, IF0H, IF1L, IF1H, IF2L)

The interrupt request flags are set to 1 when the corresponding interrupt request is generated or an instruction is executed. They are cleared to 0 when an instruction is executed upon acknowledgment of an interrupt request or upon reset signal generation.

When an interrupt is acknowledged, the interrupt request flag is automatically cleared and then the interrupt routine is entered.

The IF0L, IF0H, IF1L, IF1H, and IF2L registers can be set by a 1-bit or 8-bit memory manipulation instruction. When the IF0L and IF0H registers, the IF1L and IF1H registers are combined to form 16-bit registers IF0 and IF1, they can be set by a 16-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H.

Remark If an instruction that writes data to this register is executed, the number of instruction execution clocks increases by 2 clocks.

Figure 14-2. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H, IF2L) (64-pin products)

Address: FFI	FE0H After re	eset: 00H R/V	W							
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>		
IF0L	PIF5	PIF4	PIF3	PIF2	PIF1	PIF0	LVIIF	WDTIIF		
Address: FFI	FE1H After	reset: 00H	R/W							
Symbol	7	<6>	<5>	<4>	<3>	<2>	1	0		
IF0H	0	TMIF00	0	SREIF0	SRIF0	STIF0	0	0		
				TMIF01H	CSIIF01	CSIIF00				
Address: FFI	FE2H After	reset: 00H	R/W							
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	1	<0>		
IF1L	ITIF	RTCIF	ADIF	TMIF03	TMIF02	TMIF01	0	TMIF03H		
Address: FFI	FE3H After	reset: 00H	R/W							
Address: FFI	FE3H After	reset: 00H <6>	R/W 5	4	3	2	1	<0>		
				4	3	2	1 0	<0>		
Symbol	<7>	<6>	5	ĺ	-					
Symbol	<7> TMIF07	<6>	5	ĺ	-					
Symbol IF1H	<7> TMIF07	<6> TMIF06	5	ĺ	-					
Symbol IF1H Address: FFI	<7> TMIF07 FD0H After	<6> TMIF06 reset: 00H	5 0	0	0	0	0	KRIF		
Symbol IF1H Address: FFI Symbol	<7> TMIF07 FD0H After	<6> TMIF06 reset: 00H	5 0 R/W 5	0 <4>	3	0 <2>	0 <1>	KRIF		
Symbol IF1H Address: FFI Symbol	<7> TMIF07 FD0H After	<6> TMIF06 reset: 00H	5 0 R/W 5	0 <4> FLIF	3	0 <2> PIF7	0 <1>	KRIF		
Symbol IF1H Address: FFI Symbol	<7> TMIF07 FD0H After 7 0	<6> TMIF06 reset: 00H 6 0	5 0 R/W 5 0	0 <4> FLIF	0 3 0 rrupt request	0 <2> PIF7	0 <1>	KRIF		

(Cautions are listed on the next page)

<R>

- Cautions 1. The available registers and bits differ depending on the product. For details about the registers and bits available for each product, see Table 14-2. Be sure to set bits that are not available to the initial value.
 - 2. When manipulating a flag of the interrupt request flag register, use a 1-bit memory manipulation instruction (CLR1). When describing in C language, use a bit manipulation instruction such as "IFOL.0 = 0;" or "_asm("clr1 IFOL, 0");" because the compiled assembler must be a 1-bit memory manipulation instruction (CLR1). If a program is described in C language using an 8-bit memory manipulation instruction such as "IFOL &= 0xfe;" and compiled, it becomes the assembler of three instructions.

mov a, IF0L and a, #0FEH mov IF0L, a

In this case, even if the request flag of the another bit of the same interrupt request flag register (IF0L) is set to 1 at the timing between "mov a, IF0L" and "mov IF0L, a", the flag is cleared to 0 at "mov IF0L, a". Therefore, care must be exercised when using an 8-bit memory manipulation instruction in C language.

14.3.2 Interrupt mask flag registers (MK0L, MK0H, MK1L, MK1H, MK2L)

The interrupt mask flags are used to enable/disable the corresponding maskable interrupt servicing.

The MK0L, MK0H, MK1L, MK1H, and MK2L registers can be set by a 1-bit or 8-bit memory manipulation instruction. When the MK0L and MK0H registers, and the MK1L and MK1H registers are combined to form 16-bit registers MK0 and MK1, they can be set by a 16-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH.

Remark If an instruction that writes data to this register is executed, the number of instruction execution clocks increases by 2 clocks.

Figure 14-3. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H, MK2L)(64-pin products)

Address: FFI	FE4H After	reset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
MK0L	PMK5	PMK4	PMK3	PMK2	PMK1	PMK0	LVIMK	WDTIMK
·								
Address: FFF	FE5H After	reset: FFH	R/W					
Symbol	7	<6>	<5>	<4>	<3>	<2>	1	0
MK0H	1	TMMK00	1	SREMK0	SRMK0 CSIMK01	STMK0 CSIMK00	1	1
				TMMK01H	CSINKUI	CSINKUU		
Address: FFI	FE6H After	reset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	1	<0>
MK1L	ITMK	RTCMK	ADMK	TMMK03	TMMK02	TMMK01	1	ТММК03Н
<u>'</u>								
Address: FFF	FE7H After	reset: FFH	R/W					
Symbol	<7>	<6>	<5<	<4>	3	2	1	<0>
MK1H	TMMK07	TMMK06	TMMK05	TMMK04	1	1	1	KRMK
Address: FFF	FD4H After	reset: FFH	R/W					
Symbol	7	6	5	<4>	3	<2>	<1>	0
MK2L	1	1	1	FLMK	1	PMK7	PMK6	1
i								
	XXMKX			Interru	ıpt servicing o	control		
	0	Interrupt ser	vicing enable	d				
	1	Interrupt ser	vicing disable	d				

Caution The above is the bit layout for the 64-pin products. The available bits differ depending on the product. For details about the bits available for each product, see Table 14-2.

Be sure to set bits that are not available to the initial value.

14.3.3 Priority specification flag registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR10L, PR10H, PR11L, PR11H, PR12L)

The priority specification flag registers are used to set the corresponding maskable interrupt priority level.

A priority level is set by using the PR0xy and PR1xy registers in combination (xy = 0L, 0H, 1L, 1H, or 2L).

The PR00L, PR00H, PR01L, PR01H, PR02L, PR10L, PR10H, PR11L, PR11H, and PR12L registers can be set by a 1-bit or 8-bit memory manipulation instruction. If the PR00L and PR00H registers, the PR01L and PR01H registers, the PR10L and PR10H registers, and the PR11L and PR11H registers are combined to form 16-bit registers PR00, PR01, PR10, and PR11, they can be set by a 16-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH.

Remark If an instruction that writes data to this register is executed, the number of instruction execution clocks increases by 2 clocks.

Figure 14-4. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR10L, PR10H, PR11L, PR11H, PR12L) (64-pin products) (1/2)

Address: FFF	E8H After	reset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR00L	PPR05	PPR04	PPR03	PPR02	PPR01	PPR00	LVIPR0	WDTIPR0
•								
Address: FFF	ECH After	reset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>
PR10L	PPR15	PPR14	PPR13	PPR12	PPR11	PPR10	LVIPR1	WDTIPR1
Address: FFF	E9H After	reset: FFH	R/W					
Symbol	7	<6>	5	<4>	<3>	<2>	1	0
PR00H	1	TMPR000	1	SREPR00	SRPR00	STPR00	1	1
				TMPR001H	CSIPR001	CSIPR000		
Address: FFF	EDH After	reset: FFH	R/W					
Symbol	7	<6>	5	<4>	<3>	<2>	1	0
PR10H	1	TMPR100	1	SREPR10	SRPR10	STPR10	1	1
				TMPR101H	CSIPR101	CSIPR100		
Address: FFF	EAH After	reset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	1	<0>
PR01L	ITPR0	RTCPR0	ADPR0	TMPR003	TMPR002	TMPR001	1	TMPR003H
Address: FFF	EEH After	reset: FFH	R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	1	<0>
PR11L	ITPR1	RTCPR1	ADPR1	TMPR103	TMPR102	TMPR101	1	TMPR103H

Figure 14-4. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR10L, PR10H, PR11L, PR11H, PR12L) (64-pin products) (2/2)

Address: FF	FEBH After	reset: FFH	R/W								
Symbol	<7>	<6>	5	4	3	2	1	<0>			
PR01H	TMPR007	TMPR006	1	1	1	1	1	KRPR0			
Address: FF	FEFH After	reset: FFH	R/W								
Symbol	<7>	<6>	5	4	3	2	1	<0>			
PR11H	TMPR107	TMPR106	1	1	1	1	1	KRPR1			
Address: FF	FD8H After	reset: FFH	R/W								
Symbol	7	6	5	<4>	3	<2>	<1>	0			
PR02L	1	1	1	FLPR0	1	PPR07	PPR06	1			
Address: FF	FDCH After	reset: FFH	R/W								
Symbol	7	6	5	<4>	3	<2>	<1>	0			
PR12L	1	1	1	FLPR1	1	PPR17	PPR16	1			
	XXPR1X	XXPR0X			Priority leve	el selection					
	0	0	Specify leve	l 0 (high priori	ty level)						
	0	1	Specify leve	l 1							
	1	0	Specify leve	Specify level 2							
	1	1	Specify leve	I 3 (low priority	/ level)						

Caution The above is the bit layout for the 64-pin products. The available bits differ depending on the product. For details about the bits available for each product, see Table 14-2. Be sure to set bits that are not available to the initial value.

14.3.4 External interrupt rising edge enable register (EGP0), external interrupt falling edge enable register (EGN0)

These registers specify the valid edge for INTP0 to INTP7.

The EGP0 and EGN0 registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H.

Figure 14-5. Format of External Interrupt Rising Edge Enable Register (EGP0) and External Interrupt Falling Edge Enable Register (EGN0) (64-pin products)

Address: FFI	Address: FFF38H After reset: 00H R/W										
Symbol	7	6	5	4	3	2	1	0			
EGP0	EGP7	EGP6	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0			
Address: FFI	=39H After	reset: 00H	R/W								
Symbol	7	6	5	4	3	2	1	0			
EGN0	EGN7	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0			
								,			

EGPn	EGNn	INTPn pin valid edge selection (n = 0 to 7)
0	0	Edge detection disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both rising and falling edges

Table 14-3 shows the ports corresponding to the EGPn and EGNn bits.

Table 14-3. Ports Corresponding to EGPn and EGNn Bits

Detection Enable Bit		Edge Detection Port	Interrupt Request Signal	64-pin	48-pin
EGP0	EGN0	P137	INTP0	\checkmark	\checkmark
EGP1	EGN1	P15	INTP1	\checkmark	\checkmark
EGP2	EGN2	P16	INTP2	\checkmark	\checkmark
EGP3	EGN3	P31	INTP3	\checkmark	$\sqrt{}$
EGP4	EGN4	P32	INTP4	\checkmark	$\sqrt{}$
EGP5	EGN5	P50	INTP5	\checkmark	$\sqrt{}$
EGP6	EGN6	P52	INTP6	\checkmark	ı
EGP7	EGN7	P43	INTP7	$\sqrt{}$	-

Caution Select the port mode by clearing the EGPn and EGNn bits to 0 because an edge may be detected when the external interrupt function is switched to the port function.

Remarks 1. n = 0 to 7

2. √: Mounted

-: Not mounted

<R> 14.3.5 Program status word (PSW)

The program status word is a register used to hold the instruction execution result and the current status for an interrupt request. The IE flag that sets maskable interrupt enable/disable and the ISP0 and ISP1 flags that controls multiple interrupt servicing are mapped to the PSW.

Besides 8-bit read/write, this register can carry out operations using bit manipulation instructions and dedicated instructions (EI and DI). When a vectored interrupt request is acknowledged, if the BRK instruction is executed, the contents of the PSW are automatically saved into a stack and the IE flag is reset to 0. Upon acknowledgment of a maskable interrupt request, if the value of the priority specification flag register of the acknowledged interrupt is not 00, its value minus 1 is transferred to the ISP0 and ISP1 flags. The PSW contents are also saved into the stack with the PUSH PSW instruction. They are restored from the stack with the RETI, RETB, and POP PSW instructions.

Reset signal generation sets PSW to 06H.

<7> <6> <5> <4> <3> <2> <1> 0 After reset **PSW** RBS1 AC RBS0 ISP1 ISP0 CY 06H Used when normal instruction is executed ISP1 ISP0 Priority of interrupt currently being serviced Enables interrupt of level 0 (while interrupt of level 1 or 0 is being serviced). 0 Enables interrupt of level 0 and 1 (while interrupt of level 2 is being serviced). 1 0 Enables interrupt of level 0 to 2 (while interrupt of level 3 is being serviced). 1 Enables all interrupts (waits for acknowledgment of an interrupt). ΙE Interrupt request acknowledgment enable/disable 0 Disabled 1 Enabled

Figure 14-6. Configuration of Program Status Word

14.4 Interrupt Servicing Operations

14.4.1 Maskable interrupt request acknowledgment

A maskable interrupt request becomes acknowledgeable when the interrupt request flag is set to 1 and the mask (MK) flag corresponding to that interrupt request is cleared to 0. A vectored interrupt request is acknowledged if interrupts are in the interrupt enabled state (when the IE flag is set to 1). However, a low-priority interrupt request is not acknowledged during servicing of a higher priority interrupt request.

The times from generation of a maskable interrupt request until vectored interrupt servicing is performed are listed in Table 14-4 below.

For the interrupt request acknowledgment timing, see Figures 14-8 and 14-9.

Table 14-4. Time from Generation of Maskable Interrupt Until Servicing

	Minimum Time	Maximum Time ^{Note}
Servicing time	9 clocks	16 clocks

Note Maximum time does not apply when an instruction from the internal RAM area is executed.

Remark 1 clock: 1/fclk (fclk: CPU clock)

If two or more maskable interrupt requests are generated simultaneously, the request with a higher priority level specified in the priority specification flag is acknowledged first. If two or more interrupts requests have the same priority level, the request with the highest default priority is acknowledged first.

An interrupt request that is held pending is acknowledged when it becomes acknowledgeable.

Figure 14-7 shows the interrupt request acknowledgment algorithm.

If a maskable interrupt request is acknowledged, the contents are saved into the stacks in the order of PSW, then PC, the IE flag is reset (0), and the contents of the priority specification flag corresponding to the acknowledged interrupt are transferred to the ISP1 and ISP0 flags. The vector table data determined for each interrupt request is the loaded into the PC and branched.

Restoring from an interrupt is possible by using the RETI instruction.

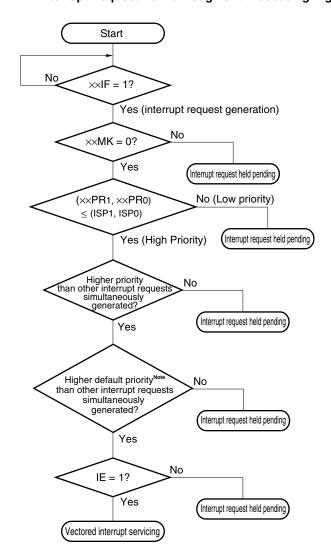
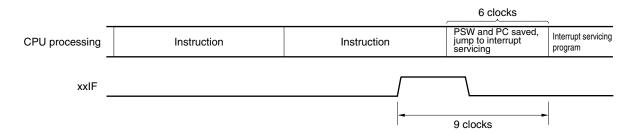


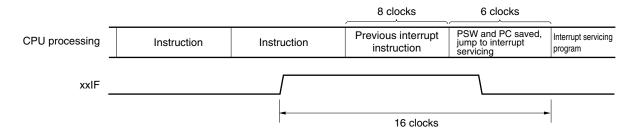
Figure 14-7. Interrupt Request Acknowledgment Processing Algorithm


xxIF: Interrupt request flagxxMK: Interrupt mask flagxxPR0: Priority specification fl

××PR0: Priority specification flag 0××PR1: Priority specification flag 1

IE: Flag that controls acknowledgment of maskable interrupt request (1 = Enable, 0 = Disable)
ISP0, ISP1: Flag that indicates the priority level of the interrupt currently being serviced (see **Figure 14-6**)

Note For the default priority, refer to Table 14-1 Interrupt Source List.


Figure 14-8. Interrupt Request Acknowledgment Timing (Minimum Time)

Remark 1 clock: 1/fclk (fclk: CPU clock)

<R>

Figure 14-9. Interrupt Request Acknowledgment Timing (Maximum Time)

Remark 1 clock: 1/fclk (fclk: CPU clock)

14.4.2 Software interrupt request acknowledgment

A software interrupt request is acknowledged by BRK instruction execution. Software interrupts cannot be disabled.

If a software interrupt request is acknowledged, the contents are saved into the stacks in the order of the program status word (PSW), then program counter (PC), the IE flag is reset (0), and the contents of the vector table (0007EH, 0007FH) are loaded into the PC and branched.

Restoring from a software interrupt is possible by using the RETB instruction.

Caution Can not use the RETI instruction for restoring from the software interrupt.

14.4.3 Multiple interrupt servicing

Multiple interrupt servicing occurs when another interrupt request is acknowledged during execution of an interrupt.

Multiple interrupt servicing does not occur unless the interrupt request acknowledgment enabled state is selected (IE =

1). When an interrupt request is acknowledged, interrupt request acknowledgment becomes disabled (IE = 0). Therefore, to enable multiple interrupt servicing, it is necessary to set (1) the IE flag with the EI instruction during interrupt servicing to enable interrupt acknowledgment.

Moreover, even if interrupts are enabled, multiple interrupt servicing may not be enabled, this being subject to interrupt priority control. Two types of priority control are available: default priority control and programmable priority control. Programmable priority control is used for multiple interrupt servicing.

In the interrupt enabled state, if an interrupt request with a priority equal to or higher than that of the interrupt currently being serviced is generated, it is acknowledged for multiple interrupt servicing. If an interrupt with a priority lower than that of the interrupt currently being serviced is generated during interrupt servicing, it is not acknowledged for multiple interrupt servicing. Interrupt requests that are not enabled because interrupts are in the interrupt disabled state or because they have a lower priority are held pending. When servicing of the current interrupt ends, the pending interrupt request is acknowledged following execution of at least one main processing instruction execution.

Table 14-5 shows relationship between interrupt requests enabled for multiple interrupt servicing and Figure 14-10 shows multiple interrupt servicing examples.

Table 14-5. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing

During Interrupt Servicing

<R>

<R>

Multiple Interrupt Request			Software							
			,		Priority Level 1 (PR = 01)		Priority Level 2 (PR = 10)		Level 3 = 11)	Interrupt Request
Interrupt Being Service	ed	IE = 1	IE = 0	IE = 1	IE = 0	IE = 1	IE = 0	IE = 1	IE = 0	
Maskable interrupt	ISP1 = 0 ISP0 = 0	0	×	×	×	×	×	×	×	0
	ISP1 = 0 ISP0 = 1	0	×	0	×	×	×	×	×	0
	ISP1 = 1 ISP0 = 0	0	×	0	×	0	×	×	×	0
	ISP1 = 1 ISP0 = 1	0	0	0	0	0	0	0	0	0
Software interrupt		0	×	0	×	0	×	0	×	0

Remarks 1. O: Multiple interrupt servicing enabled

- 2. x: Multiple interrupt servicing disabled
- 3. ISP0, ISP1, and IE are flags contained in the PSW.

ISP1 = 0, ISP0 = 0: An interrupt of level 1 or level 0 is being serviced.

ISP1 = 0, ISP0 = 1: An interrupt of level 2 is being serviced.

ISP1 = 1, ISP0 = 0: An interrupt of level 3 is being serviced.

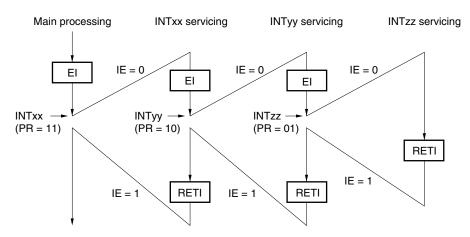
ISP1 = 1, ISP0 = 1: Wait for An interrupt acknowledgment (all interrupts are enabled).

IE = 0: Interrupt request acknowledgment is disabled.

IE = 1: Interrupt request acknowledgment is enabled.

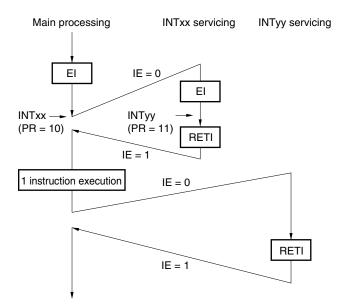
4. PR is a flag contained in the PR00L, PR00H, PR01L, PR01H, PR02L, PR10L, PR10H, PR11L, PR11H, and PR12L registers.

PR = 00: Specify level 0 with $\times \times$ PR1 \times = 0, $\times \times$ PR0 \times = 0 (higher priority level)


PR = 01: Specify level 1 with $\times \times$ PR1 \times = 0, $\times \times$ PR0 \times = 1

PR = 10: Specify level 2 with $\times \times PR1 \times = 1$, $\times \times PR0 \times = 0$

PR = 11: Specify level 3 with $\times \times$ PR1 \times = 1, $\times \times$ PR0 \times = 1 (lower priority level)


Figure 14-10. Examples of Multiple Interrupt Servicing (1/2)

Example 1. Multiple interrupt servicing occurs twice

During servicing of interrupt INTxx, two interrupt requests, INTyy and INTzz, are acknowledged, and multiple interrupt servicing takes place. Before each interrupt request is acknowledged, the EI instruction must always be issued to enable interrupt request acknowledgment.

Example 2. Multiple interrupt servicing does not occur due to priority control

Interrupt request INTyy issued during servicing of interrupt INTxx is not acknowledged because its priority is lower than that of INTxx, and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

PR = 00: Specify level 0 with $\times \times$ PR1 \times = 0, $\times \times$ PR0 \times = 0 (higher priority level)

PR = 01: Specify level 1 with $\times \times$ PR1 \times = 0, $\times \times$ PR0 \times = 1

PR = 10: Specify level 2 with $\times \times$ PR1 \times = 1, $\times \times$ PR0 \times = 0

PR = 11: Specify level 3 with $\times \times$ PR1 \times = 1, $\times \times$ PR0 \times = 1 (lower priority level)

IE = 0: Interrupt request acknowledgment is disabled

IE = 1: Interrupt request acknowledgment is enabled.

Example 3. Multiple interrupt servicing does not occur because interrupts are not enabled

Main processing INTxx servicing INTyy servicing

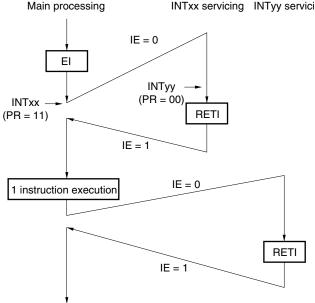


Figure 14-10. Examples of Multiple Interrupt Servicing (2/2)

Interrupts are not enabled during servicing of interrupt INTxx (EI instruction is not issued), therefore, interrupt request INTyy is not acknowledged and multiple interrupt servicing does not take place. The INTyy interrupt request is held pending, and is acknowledged following execution of one main processing instruction.

PR = 00: Specify level 0 with $\times \times$ PR1 \times = 0, $\times \times$ PR0 \times = 0 (higher priority level)

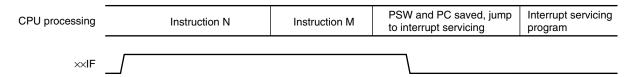
PR = 01: Specify level 1 with $\times \times$ PR1 \times = 0, $\times \times$ PR0 \times = 1

PR = 10: Specify level 2 with $\times \times PR1 \times = 1$, $\times \times PR0 \times = 0$

PR = 11: Specify level 3 with $\times \times$ PR1 \times = 1, $\times \times$ PR0 \times = 1 (lower priority level)

IE = 0: Interrupt request acknowledgment is disabled

IE = 1: Interrupt request acknowledgment is enabled.


14.4.4 Interrupt request hold

There are instructions where, even if an interrupt request is issued while the instructions are being executed, interrupt request acknowledgment is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- MOV PSW, #byte
- MOV PSW, A
- MOV1 PSW. bit, CY
- SET1 PSW. bit
- · CLR1 PSW. bit
- RETB
- RETI
- POP PSW
- BTCLR PSW. bit, \$addr20
- EI
- DI
- SKC
- SKNC
- SKZ
- SKNZ
- SKH
- SKNH
- Manipulation instructions for the IF0L, IF0H, IF1L, IF1H, IF2L, MK0L, MK0H, MK1L, MK1H, MK2L, PR00L, PR00H, PR01L, PR01H, PR02L, PR10L, PR10H, PR11L, PR11H, and PR12L registers

Figure 14-11 shows the timing at which interrupt requests are held pending.

Figure 14-11. Interrupt Request Hold

Remarks 1. Instruction N: Interrupt request hold instruction

2. Instruction M: Instruction other than interrupt request hold instruction

CHAPTER 15 KEY INTERRUPT FUNCTION

15.1 Functions of Key Interrupt

A key interrupt (INTKR) can be generated by inputting a rising edge/falling edge to the key interrupt input pins (KR0 to KR3).

<R>

Table 15-1. Assignment of Key Interrupt Detection Pins

Key interrupt input pins	Key return mode registers (KRM)
KR0	KRM0
KR1	KRM1
KR2	KRM2
KR3	KRM3

15.2 Configuration of Key Interrupt

The key interrupt includes the following hardware.

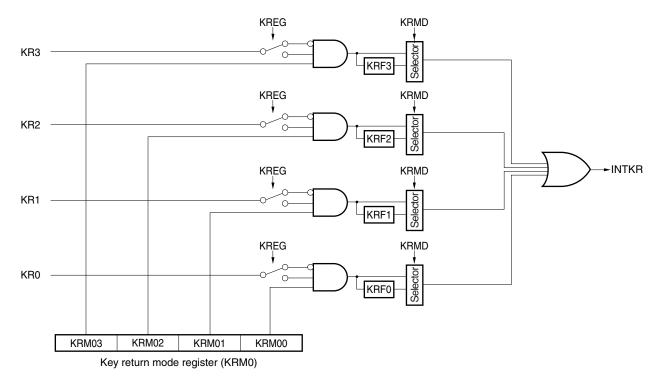

<R>

Table 15-2. Configuration of Key Interrupt

Item	Configuration
Control register	Key return control register (KRCTL)
	Key return mode register 0 (KRM0)
	Port mode registers3, 7 (PM3, PM7) Note

Note The port mode registers (PMxx) to be set differ depending on the product. For details, see 15.3.4 Port mode registers 3, 7 (PM3, PM7).

Figure 15-1. Block Diagram of Key Interrupt

15.3 Register Controlling Key Interrupt

The key interrupt function is controlled by the following five registers:

- Key return control register (KRCTL)
- Key return mode register 0 (KRM0)
- Key return flag register (KRF)
- Port mode registers 3, 7 (PM3, PM7) Note

Note The port mode registers (PMxx) to be set differ depending on the product. For details, see 15.3.4 Port mode registers 3, 7 (PM3, PM7).

15.3.1 Key return control register (KRCTL)

This register controls the usage of the key interrupt flags (KRF0 to KRF3) and sets the detection edge.

The KRCTL register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 15-2. Format of Key Return Control Register (KRCTL)

Address: FFF34H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
KRCTL	KRMD	0	0	0	0	0	0	KREG

KRMD	Usage of t key interrupt flags (KRF0 to KRF3)					
0	Does not use key interrupt flags					
1	Uses key interrupt flags					

KRMD	Selection of Detection Edge (KR0 to KR3)
0	Falling edge
1	Rising edge

15.3.2 Key return mode register 0 (KRM0)

This register sets the key interrupt mode.

The KRM0 register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears these registers to 00H.

Figure 15-3. Format of Key Return Mode Register 0 (KRM0)

Address: FFF37H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
KRM0	0	0	0	0	KRM03	KRM02	KRM01	KRM00

KRM0n	Key interrupt mode control					
0	Does not detect key interrupt signal					
1	Detects key interrupt signal					

Cautions 1. The internal pull-up resistor can be used by setting the corresponding bits to 1 in the pull-up resistor registers 3, 7 (PU3, PU7) of key interrupt input pins.

- 2. An interrupt will be generated if the target bit of the KRM0 register is set while a low level (when KREG = 0)/high level (when KREG = 1) is being input to the key interrupt input pin. To ignore this interrupt, set the KRM0 register after disabling interrupt servicing by using the interrupt mask flag. Afterward, clear the interrupt request flag and enable interrupt servicing after waiting for the key interrupt input high-level width/low-level width (see 27.4 AC Characteristics).
- 3. The pins not used in the key interrupt mode can be used as normal ports.

Remark n = 0 to 3

15.3.3 Key return flag register (KRF)

This register controls the key interrupt flags (KRF0 to KRF3).

The KRF register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 15-4. Format of Key return Flag Register (KRF)

Address: FFF35H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
KRF	0	0	0	0	KRF3	KRF2	KRF1	KRF0

KRFn	Key interrupt flag (n = 0 to 3)
0	No key interrupt signal has been detected.
1	A key interrupt signal has been detected.

Caution When KRMD = 0, setting the KRFn bit to 1 is prohibited.

15.3.4 Port mode registers 3, 7 (PM3, PM7)

These registers set the input and output of port 3, 7 in 1-bit units.

The presence or absence of key input pins depends on the product. When using the key interrupt function, set the following port mode registers according to the product used.

48-pin products: PM3, PM7 64-pin products: PM7

When using P30/KR3 to P32/KR1, or P70/KR0 to P73/KR3 as a key input pin, set the bit of the port mode registers (PM3, PM7) corresponding to the port pin to 1.

The PM3, PM7 registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears these registers to FFH.

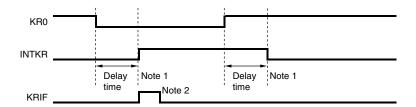
Figure 15-5. Format of Port Mode Register 7 (PM7) (64-pin products)

Address: FFF27H After reset: 00H R/W 7 5 3 2 0 Symbol 4 1 PM7 1 1 1 PM74 PM73 PM72 PM71 PM70

PM7n	I/O mode selection for P7n pin (n = 0 to 4)					
0	Output mode (output buffer on)					
1	Input mode (output buffer off)					

Remark The figure shown above presents the format of port mode register 7 of the 64-pin products.

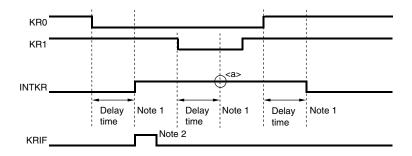
The format of the port mode register of other products, see Table 4-3 PMxx, Pxx, PUxx, PIMxx, POMxx, PMCxx registers and the bits mounted on each product.


15.4 Key Interrupt Operation

15.4.1 When not using the key interrupt flag (KRMD = 0)

A key interrupt (INTKR) is generated when the valid edge specified by the setting of the KREG bit is input to a key interrupt pin (KR0 to KR3). The channel to which the valid edge was input can be identified by reading the port register and checking the port level after the key interrupt (INTKR) is generated.

The INTKR signal changes according to the input level of the key interrupt input pin (KR0 to KR3).


Figure 15-6. Operation of INTKR Signal When a Key Interrupt is Input to a Single Channel (When KRMD = 0 and KREG = 0)

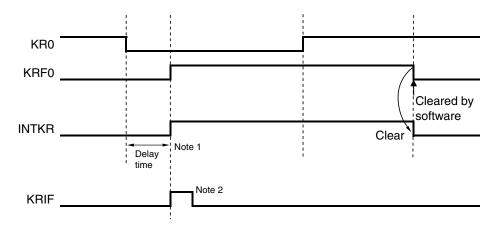
- **Notes 1.** The maximum delay time is the maximum value of the high-level width and low-level width of the key interrupt input (see **27.4 AC Characteristics** for details).
 - 2. Acknowledgment of vectored interrupt request or bit cleared by software

The operation when a valid edge is input to multiple key interrupt input pins is shown in Figure 15-7 below. The INTKR signal is set while a low level is being input to one pin (when KREG is set to 0). Therefore, even if a falling edge is input to another pin in this period, a key interrupt (INTKR) will not be generated again (<1> in the figure).

Figure 15-7. Operation of INTKR Signal When Key Interrupts Are Input to Multiple Channels (When KRMD = 0 and KREG = 0)

- **Notes 1.** The maximum delay time is the maximum value of the high-level width and low-level width of the key interrupt input (see **27.4 AC Characteristics** for details).
 - 2. Acknowledgment of vectored interrupt request or bit cleared by software

15.4.2 When using the key interrupt flag (KRMD = 1)


A key interrupt (INTKR) is generated when the valid edge specified by the setting of the KREG bit is input to a key interrupt pin (KR0 to KR3). The channels to which the valid edge was input can be identified by reading the key return flag register (KRF) after the key interrupt (INTKR) is generated.

If the KRMD bit is set to 1, the INTKR signal is cleared by clearing the corresponding bit in the KRF register.

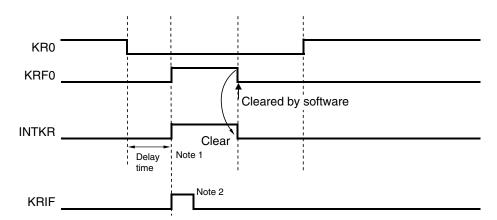

As shown in Figure 15-8, only one interrupt is generated each time a falling edge is input to one channel (when KREG = 0), regardless of whether the KRFn bit is cleared before or after a rising edge is input.

Figure 15-8. Basic Operation of the INTKR Signal When the Key Interrupt Flag Is Used (When KRMD = 1 and KREG = 0)

(a) When KRF0 is cleared after a rising edge is input to the KR0 pin

(b) When KRF0 is cleared before a rising edge is input to the KR0 pin

- **Notes 1.** The maximum delay time is the maximum value of the high-level width and low-level width of the key interrupt input (see **27.4 AC Characteristics** for details).
 - 2. Acknowledgment of vectored interrupt request or bit cleared by software

The operation when a valid edge is input to multiple key interrupt input pins is shown in Figure 15-9 below. A falling edge is also input to the KR1 and KR3 pins after a falling edge was input to the KR0 pin (when KREG = 0). The KRF1 bit is set when the KRF0 bit is cleared. A key interrupt (INTKR) is therefore generated one clock (fcLk) after the KRF0 bit is cleared (<1> in the figure). Also, after a falling edge has been input to the KR3 pin, a low level continues to be input to this pin (<3> in the figure) until the KRF1 bit is cleared (<2> in the figure). A key interrupt (INTKR) is therefore generated one clock (fCLK) after the KRF1 bit is cleared (<4> in the figure). It is thus possible to generate a key interrupt (INTKR) when a valid edge is input to multiple channels.

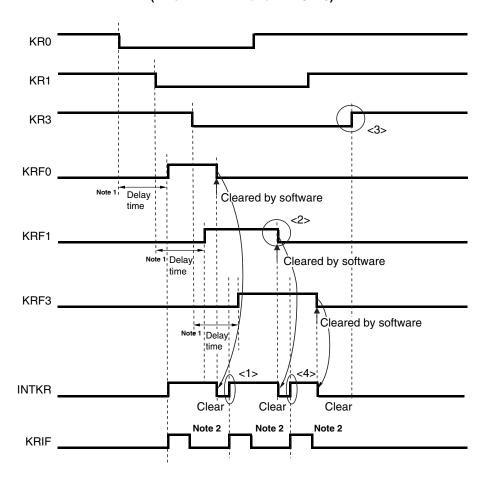


Figure 15-9. Operation of INTKR Signal When Key Interrupts Are Input to Multiple Channels (When KRMD = 1 and KREG = 0)

- **Notes 1.** The maximum delay time is the maximum value of the high-level width and low-level width of the key interrupt input (see **27.4 AC Characteristics** for details).
 - 2. Acknowledgment of vectored interrupt request or bit cleared by software

Remark fclk: CPU/peripheral hardware clock frequency

CHAPTER 16 STANDBY FUNCTION

16.1 Standby Function and Configuration

16.1.1 Standby function

The standby function reduces the operating current of the system, and the following three modes are available.

(1) HALT mode

HALT instruction execution sets the HALT mode. In the HALT mode, the CPU operation clock is stopped. If the high-speed system clock oscillator, high-speed on-chip oscillator, or subsystem clock oscillator is operating before the HALT mode is set, oscillation of each clock continues. In this mode, the operating current is not decreased as much as in the STOP mode, but the HALT mode is effective for restarting operation immediately upon interrupt request generation and carrying out intermittent operations frequently.

(2) STOP mode

STOP instruction execution sets the STOP mode. In the STOP mode, the high-speed system clock oscillator and high-speed on-chip oscillator stop, stopping the whole system, thereby considerably reducing the CPU operating current.

Because this mode can be cleared by an interrupt request, it enables intermittent operations to be carried out. However, because a wait time is required to secure the oscillation stabilization time after the STOP mode is released when the X1 clock is selected, select the HALT mode if it is necessary to start processing immediately upon interrupt request generation.

(3) SNOOZE mode

In the case of CSI00 or UART0 data reception and an A/D conversion request by the timer trigger signal (the interrupt request signal (INTRTC/INTIT)), the STOP mode is exited, the CSI00 or UART0 data is received without operating the CPU, and A/D conversion is performed. This can only be specified when the high-speed on-chip oscillator is selected for the CPU/peripheral hardware clock (fclk).

In either of these two modes, all the contents of registers, flags and data memory just before the standby mode is set are held. The I/O port output latches and output buffer statuses are also held.

- Cautions 1. The STOP mode can be used only when the CPU is operating on the main system clock. Do not set to the STOP mode while the CPU operates with the subsystem clock. The HALT mode can be used when the CPU is operating on either the main system clock or the subsystem clock.
 - 2. When shifting to the STOP mode, be sure to stop the peripheral hardware operation operating with main system clock before executing STOP instruction (except SNOOZE mode setting unit).
 - 3. When using CSI00, UART0, or the A/D converter in the SNOOZE mode, set up serial standby control register 0 (SSC0) and A/D converter mode register 2 (ADM2) before switching to the STOP mode. For details, see 12.3 Registers Controlling Serial Array Unit and 11.3 Registers Used in A/D Converter.
 - 4. The following sequence is recommended for power consumption reduction of the A/D converter when the standby function is used: First clear bit 7 (ADCS) and bit 0 (ADCE) of A/D converter mode register 0 (ADM0) to 0 to stop the A/D conversion operation, and then execute the STOP instruction.
 - 5. It can be selected by the option byte whether the low-speed on-chip oscillator continues oscillating or stops in the HALT or STOP mode. For details, see CHAPTER 22 OPTION BYTE.

16.2 Registers controlling standby function

The registers which control the standby function are described below.

- <R> Subsystem clock supply mode control register (OSMC)
 - Oscillation stabilization time counter status register (OSTC)
 - Oscillation stabilization time select register (OSTS)

Remark For details of registers described above, see CHAPTER 5 CLOCK GENERATOR. For registers which control the SNOOZE mode, see CHAPTER 11 A/D CONVERTER and CHAPTER 12 SERIAL ARRAY UNIT.

16.3 Standby Function Operation

16.3.1 HALT mode

(1) HALT mode

The HALT mode is set by executing the HALT instruction. HALT mode can be set regardless of whether the CPU clock before the setting was the high-speed system clock, high-speed on-chip oscillator clock, or subsystem clock. The operating statuses in the HALT mode are shown below.

<R> Caution Because the interrupt request signal is used to clear the HALT mode, if the interrupt mask flag is 0 (the interrupt processing is enabled) and the interrupt request flag is 1 (the interrupt request signal is generated), the HALT mode is not entered even if the HALT instruction is executed in such a situation.

Table 16-1. Operating Statuses in HALT Mode (1/2)

	HALT Mode	Setting	When HALT Instruction Is	s Executed While CPU Is Operati	ing on Main System Clock
Item			When CPU Is Operating on High-Speed On-Chip Oscillator Clock (fiн)	When CPU Is Operating on X1 Clock (fx)	When CPU Is Operating on External Main System Clock (f _{EX})
System cloc	k		Clock supply to the CPU is stop	pped	
Main system clock f _{IH}		fıн	Operation continues (cannot be stopped) Operation disabled		
		fx	Operation disabled	Operation continues (cannot be stopped)	Cannot operate
		fex		Cannot operate	Operation continues (cannot be stopped)
Subsyste	em clock	fxT	Status before HALT mode was	set is retained	
		fexs			
fıL			Set by bits 0 (WDSTBYON) and 4 (WDTON) of option byte (000C0H), and WUTMMCK0 bit of subsystem clock supply mode control register (OSMC) • WUTMMCK0 = 1: Oscillates • WUTMMCK0 = 0 and WDTON = 0: Stops • WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 1: Oscillates • WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 0: Stops		
CPU			Operation stopped		
Code flash n	nemory				
Data flash m	nemory				
RAM					
Port (latch)			Status before HALT mode was set is retained		
Timer array	unit		Operable		
Real-time clock (RTC)					
12-bit interva	al timer				
Watchdog tir	mer		See CHAPTER 10 WATCHDOG TIMER		
Clock output	t/buzzer out	put	Operable		
A/D converte	er				
Serial array					
LCD driver/controller			Operable (However, this depends on the status of the clock selected as the LCD source clock: operation is possible if the selected clock is operating, but operation will stop if the selected clock is stopped.)		
Power-on-re	set function	1	Operable		
Voltage dete	ection functi	on			
External interrupt					
Key interrupt function					
CRC	High-speed CRC				
operation function	General-p CRC	urpose	Operation stopped		
RAM parity error detection function					
RAM guard function					
SFR guard function					
Illegal-memory access detection function					

Remark Operation stopped: Operation is automatically stopped before switching to the HALT mode.

 $Operation \ disabled: \quad Operation \ is \ stopped \ before \ switching \ to \ the \ HALT \ mode.$

fin:High-speed on-chip oscillator clockfin:Low-speed on-chip oscillator clockfx:X1 clockfex:External main system clockfxr:XT1 clockfexs:External subsystem clock

Table 16-1. Operating Statuses in HALT Mode (2/2)

HALT Mode Setting		e Setting	When HALT Instruction Is Executed While CPU Is Operating on Subsystem Clock		
Item			When CPU Is Operating on XT1 Clock (fxr)	When CPU Is Operating on External Subsystem Clock (fexs)	
System clock			Clock supply to the CPU is stopped		
Main sys	stem clock	fıн	Operation disabled		
	fx fex				
Subsyst	em clock	fхт	Operation continues (cannot be stopped)	Cannot operate	
		fexs	Cannot operate	Operation continues (cannot be stopped)	
f _{IL}			Set by bits 0 (WDSTBYON) and 4 (WDTON) of option byte (000C0H), and WUTMMCK0 bit of subsystem clock supply mode control register (OSMC) • WUTMMCK0 = 1: Oscillates • WUTMMCK0 = 0 and WDTON = 0: Stops • WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 1: Oscillates • WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 0: Stops		
CPU			Operation stopped		
Code flash r	nemory		- Character Stepped		
Data flash m					
RAM					
Port (latch)			Status before HALT mode was set is retained		
Timer array	unit		Operates when the RTCLPC bit is 0 (operation is disabled when the RTCLPC bit is not 0).		
Real-time clock (RTC)			Operable		
12-bit interva	al timer				
Watchdog ti	mer		See CHAPTER 10 WATCHDOG TIMER		
Clock output	t/buzzer out	put	Operates when the RTCLPC bit is 0 (operation is disabled when the RTCLPC bit is not 0).		
A/D converte	er		Operation disabled		
Serial array	unit (SAU)		Operates when the RTCLPC bit is 0 (operation is disabled when the RTCLPC bit is not 0).		
LCD driver/controller			Operable (However, this depends on the status of the clock selected as the LCD source clock: operation is possible if the selected clock is operating, but operation will stop if the selected clock is stopped.)		
Power-on-re	set function	1	Operable		
Voltage dete	ection functi	on			
External interrupt					
Key interrupt function					
CRC	High-spe	ed CRC	Operation disabled		
operation function	General-p CRC	ourpose	Operation stopped		
RAM parity error detection function					
RAM guard function					
SFR guard function					
Illegal-memory access detection function					

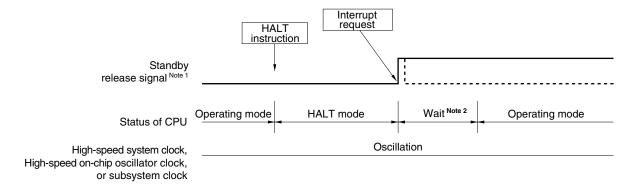
Remark Operation stopped: Operation is automatically stopped before switching to the HALT mode.

Operation disabled: Operation is stopped before switching to the HALT mode.

fін: High-speed on-chip oscillator clock fex: External main system clock

fı∟: Low-speed on-chip oscillator clock fx⊤: XT1 clock

fx: X1 clock fexs: External subsystem clock


(2) HALT mode release

The HALT mode can be released by the following two sources.

(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the HALT mode is released. If interrupt acknowledgment is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgment is disabled, the next address instruction is executed.

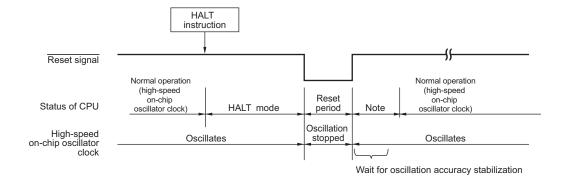
Figure 16-1. HALT Mode Release by Interrupt Request Generation

Notes 1. For details of the standby release signal, see Figure 14-1.

<R>

2. Wait time for HALT mode release

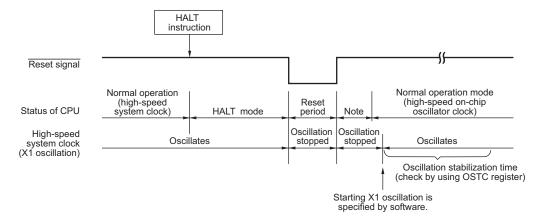
When vectored interrupt servicing is carried out
Main system clock:
Subsystem clock (RTCLPC = 0):
Subsystem clock (RTCLPC = 1):
10 to 11 clock
11 to 12 clock
When vectored interrupt servicing is not carried out
Main system clock:
Subsystem clock (RTCLPC = 0):
4 to 5 clock
Subsystem clock (RTCLPC = 1):
5 to 6 clock


Remark The broken lines indicate the case when the interrupt request which has released the standby mode is acknowledged.

(b) Release by reset signal generation

When the reset signal is generated, HALT mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

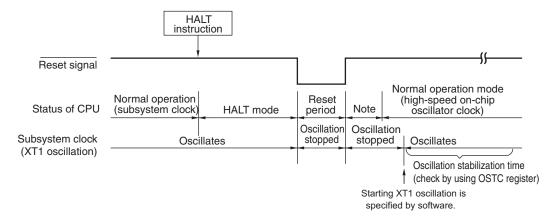
Figure 16-2. HALT Mode Release by Reset (1/2)


(1) When high-speed on-chip oscillator clock is used as CPU clock

<R>

<R>

(2) When high-speed system clock is used as CPU clock



Note For the reset processing time, see CHAPTER 17 RESET FUNCTION.

For the reset processing time of the power-on-reset circuit (POR) and voltage detector (LVD), see **CHAPTER 18 POWER-ON-RESET CIRCUIT.**

Figure 16-2. HALT Mode Release by Reset (2/2)

(3) When subsystem clock is used as CPU clock

Note For the reset processing time, see CHAPTER17 RESET FUNCTION.

For the reset processing time of the power-on-reset circuit (POR) and voltage detector (LVD), see CHAPTER 18 POWER-ON-RESET CIRCUIT.

16.3.2 STOP mode

(1) STOP mode setting and operating statuses

The STOP mode is set by executing the STOP instruction, and it can be set only when the CPU clock before the setting was the main system clock.

- Cautions 1. Because the interrupt request signal is used to clear the STOP mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the STOP mode is immediately cleared if set. Thus, when a STOP instruction is executed in this situation, the system returns to its normal operating mode as soon as the wait time set by using the oscillation stabilization time select register (OSTS) has elapsed. Note that the operating current during this period is the same as in the HALT mode because the clock is not stopped.
 - When using CSI00, UART0, or the A/D converter in the SNOOZE mode, set up serial standby control register 0 (SSC0) and A/D converter mode register 2 (ADM2) before switching to the STOP mode. For details, see 12.3 Registers Controlling Serial Array Unit and 11.3 Registers Used in A/D Converter.

The operating statuses in the STOP mode are shown below.

Table 16-2. Operating Statuses in STOP Mode

		STOP Mode	Setting	When STOP Instruction Is	Executed While CPU Is Operati	ng on Main System Clock
Item				When CPU Is Operating on High-Speed On-Chip Oscillator Clock (fiн)	When CPU Is Operating on X1 Clock (fx)	When CPU Is Operating on External Main System Clock (f∈x)
Sys	System clock			Clock supply to the CPU is stopp	ped	
	Main system clock fin		fıн	Stopped		
			fx			
			fex			
	Subsyste	em clock	fхт	Status before STOP mode was	set is retained	
			fexs			
fiL				Set by bits 0 (WDSTBYON) and 4 (WDTON) of option byte (000C0H), and WUTMMCK0 bit of subsystem clock supply mode control register (OSMC) • WUTMMCK0 = 1: Oscillates • WUTMMCK0 = 0 and WDTON = 0: Stops • WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 1: Oscillates • WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 0: Stops		
СР	U			Operation stopped	·	
Со	de flash n	nemory				
Da	ta flash m	nemory		Operation stopped		
RA	M			Operation stopped		
Po	rt (latch)			Status before STOP mode was set is retained		
Tin	ner array	unit		Operation disabled		
Re	al-time cl	ock (RTC)		Operable		
12-	bit interva	al timer				
Wa	tchdog tir	mer		See CHAPTER 10 WATCHDO	G TIMER	
Clock output/buzzer output			tput	Operates when the subsystem clock is selected as the clock source for counting and the RTCLPC bit is 0 (operation is disabled when a clock other than the subsystem clock is selected and the RTCLPC bit is not 0).		
A/E	converte	er		Wakeup operation is enabled (switching to the SNOOZE mode)		
Serial array unit (SAU)				Wakeup operation is enabled only for CSI00 and UART0 (switching to the SNOOZE mode) Operation is disabled for anything other than CSI00 and UART0		
LCD driver/controller				Operable (However, this depends on the status of the clock selected as the LCD source clock: operation is possible if the selected clock is operating, but operation will stop if the selected clock is stopped.)		
Po	wer-on-re	set function	1	Operable		
Vo	tage dete	ection functi	on			
Ext	External interrupt					
Key interrupt function						
CR	-	High-spee	ed CRC	Operation stopped		
	eration ction	General-p CRC	ourpose			
	RAM parity error detection function					
RAM guard function						
SFR guard function						
	Illegal-memory access detection function					

Remark Operation stopped: Operation is automatically stopped before switching to the STOP mode.

Operation disabled: Operation is stopped before switching to the STOP mode.

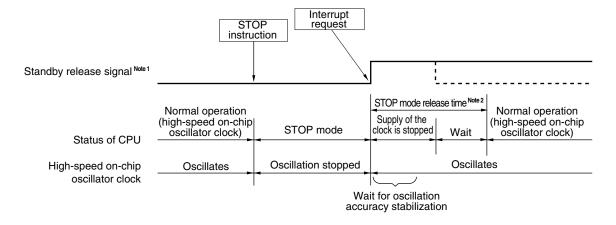
 $f_{IH:}$ High-speed on-chip oscillator clock $f_{IL:}$ Low-speed on-chip oscillator clock $f_{X:}$ X1 clock $f_{EX:}$ External main system clock $f_{EX:}$ XT1 clock $f_{EX:}$ External subsystem clock

- Cautions 1. To stop the low-speed on-chip oscillator clock in the STOP mode, must previously be set an option byte to stop the watchdog timer operation in the HALT/STOP mode (bit 0 (WDSTBYON) of 000C0H = 0).
 - 2. To shorten oscillation stabilization time after the STOP mode is released when the CPU operates with the high-speed system clock (X1 oscillation), temporarily switch the CPU clock to the high-speed on-chip oscillator clock before the execution of the STOP instruction. Before changing the CPU clock from the high-speed on-chip oscillator clock to the high-speed system clock (X1 oscillation) after the STOP mode is released, check the oscillation stabilization time with the oscillation stabilization time counter status register (OSTC).

(2) STOP mode release

<R>

< R >


The STOP mode can be released by the following two sources.

(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the STOP mode is released. After the oscillation stabilization time has elapsed, if interrupt acknowledgment is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgment is disabled, the next address instruction is executed.

Figure 16-3. STOP Mode Release by Interrupt Request Generation (1/2)

(1) When high-speed on-chip oscillator clock is used as CPU clock

Notes 1. For details of the standby release signal, see Figure 14-1.

2. STOP mode release time

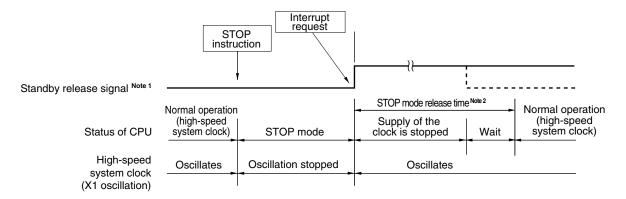
Supply of the clock is stopped: 18 μs to 65 μs

Wait

- When vectored interrupt servicing is carried out: 7 clocks
- When vectored interrupt servicing is not carried out: 1 clock
- Remarks 1. The clock supply stop time varies depending on the temperature conditions and STOP mode period.
 - 2. The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.

<R>

<R>


<R>

<R>

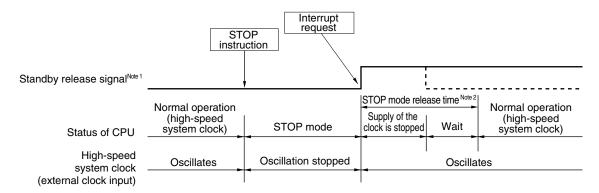
<R>

Figure 16-3. STOP Mode Release by Interrupt Request Generation (2/2)

(2) When high-speed system clock (X1 oscillation) is used as CPU clock

Notes 1. For details of the standby release signal, see Figure 14-1.

2. STOP mode release time


Supply of the clock is stopped: $18 \mu s$ to "whichever is longer 65 μs and the oscillation

stabilization time (set by OSTS)"

Wait

When vectored interrupt servicing is carried out: 10 to 11 clocks
When vectored interrupt servicing is not carried out: 4 to 5 clocks

(3) When high-speed system clock (external clock input) is used as CPU clock

- Notes 1. For details of the standby release signal, see Figure 14-1.
 - 2. STOP mode release time

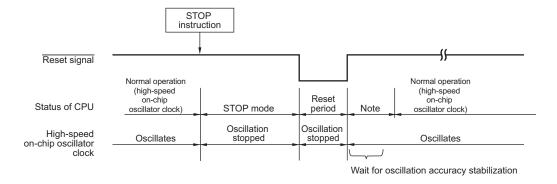
Supply of the clock is stopped: $18 \mu s$ to $65 \mu s$

Wai

When vectored interrupt servicing is carried out: 7 clocks
When vectored interrupt servicing is not carried out: 1 clock

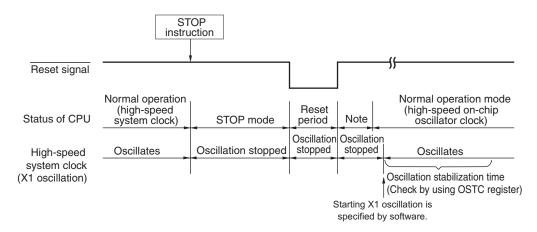
Caution To reduce the oscillation stabilization time after release from the STOP mode while CPU operates based on the high-speed system clock (X1 oscillation), switch the clock to the high-speed on-chip oscillator clock temporarily before executing the STOP instruction.

- **Remarks 1.** The clock supply stop time varies depending on the temperature conditions and STOP mode period.
 - 2. The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.


(b) Release by reset signal generation

When the reset signal is generated, STOP mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

Figure 16-4. STOP Mode Release by Reset


<R>

(1) When high-speed on-chip oscillator clock is used as CPU clock

<R>

(2) When high-speed system clock is used as CPU clock

Note For the reset processing time, see CHAPTER 17 RESET FUNCTION.

For the reset processing time of the power-on-reset circuit (POR) and voltage detector (LVD), see **CHAPTER 18 POWER-ON-RESET CIRCUIT**.

16.3.3 SNOOZE mode

(1) SNOOZE mode setting and operating statuses

The SNOOZE mode can only be specified for CSI00, UART0, or the A/D converter. Note that this mode can only be specified if the CPU clock is the high-speed on-chip oscillator clock.

When using CSI00 or UART0 in the SNOOZE mode, set the SWCm bit of the serial standby control register m (SSCm) to 1 immediately before switching to the STOP mode. For details, see 12.3 Registers Controlling Serial Array Unit.

When using the A/D converter in the SNOOZE mode, set the AWC bit of the A/D converter mode register 2 (ADM2) to 1 immediately before switching to the STOP mode. For details, see **11.3 Registers Used in A/D Converter**.

In SNOOZE mode transition, wait status to be only following time.

- <R> Transition time from STOP mode to SNOOZE mode: 18 μ s to 65 μ s
- Remark Transition time from STOP mode to SNOOZE mode varies depending on the temperature conditions and the STOP mode period.
- <R> From SNOOZE to normal operation
 - When vectored interrupt servicing is carried out:

HS (High-speed main) mode : 4.99 to 9.44 μ s + 7 clocks LS (Low-speed main) mode : 1.10 to 5.08 μ s + 7 clocks LV (Low-voltage main) mode : 16.58 to 25.40 μ s + 7 clocks

• When vectored interrupt servicing is not carried out:

HS (High-speed main) mode : 4.99 to $9.44~\mu$ s + 1 clock LS (Low-speed main) mode : 1.10 to $5.08~\mu$ s + 1 clock LV (Low-voltage main) mode : 16.58 to $25.40~\mu$ s + 1 clock

The operating statuses in the SNOOZE mode are shown below.

Table 16-3. Operating Statuses in SNOOZE Mode

_)P Mode	Setting	When Inputting CSI00/UART0 Data Reception Signal or A/D Converter Timer Trigger Signal		
STOP Mode Setting		Setting	While in STOP Mode			
				When CPU Is Operating on High-Speed On-Chip Oscillator Clock (fін)		
System clock				Clock supply to the CPU is stopped		
	Main syster	n clock	fıн	Operation started		
	-		fx	Stopped		
			fex			
	Subsystem	clock	fхт	Use of the status while in the STOP mode continues		
			fexs			
fiL			Set by bits 0 (WDSTBYON) and 4 (WDTON) of option byte (000C0H), and WUTMMCK0 bit of subsystem clock supply mode control register (OSMC) • WUTMMCK0 = 1: Oscillates • WUTMMCK0 = 0 and WDTON = 0: Stops • WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 1: Oscillates • WUTMMCK0 = 0, WDTON = 1, and WDSTBYON = 0: Stops			
СР	U			Operation stopped		
Co	de flash men	nory				
Dat	ta flash mem	ory				
RA	М	-				
Poi	rt (latch)			Use of the status while in the STOP mode continues		
Tim	ner array unit	t		Operation disabled		
Real-time clock (RTC)				Operable		
12-	bit interval ti	mer				
Wa	tchdog time	r		See CHAPTER 10 WATCHDOG TIMER		
Clock output/buzzer output			put	Operates when the subsystem clock is selected as the clock source for counting and the RTCLPC bit is 0 (operation is disabled when a clock other than the subsystem clock is selected and the RTCLPC bit is not 0).		
A/E) converter			Operable		
Sei	rial array unit	t (SAU)		Operable only CSI00 and UART0 only. Operation disabled other than CSI00 and UART0.		
LCD driver/controller				Operable (However, this depends on the status of the clock selected as the LCD source clock: operation is possible if the selected clock is operating, but operation will stop if the selected clock is stopped.)		
Pov	wer-on-reset	function	ı	Operable		
Vol	tage detection	on function	on			
External interrupt						
Key interrupt function						
CRC	C Hi	High-speed CRC General-purpose CRC		Operation stopped		
	eration G					
RAM parity error detection function			on			
RAM guard function						
SFR guard function						
Illegal-memory access detection function						

Remark Operation stopped: Operation is automatically stopped before switching to the SNOOZE mode.

Operation disabled: Operation is stopped before switching to the SNOOZE mode. f_{IH} : High-speed on-chip oscillator clock f_{IL} : Low-speed on-chip oscillator clock

CHAPTER 17 RESET FUNCTION

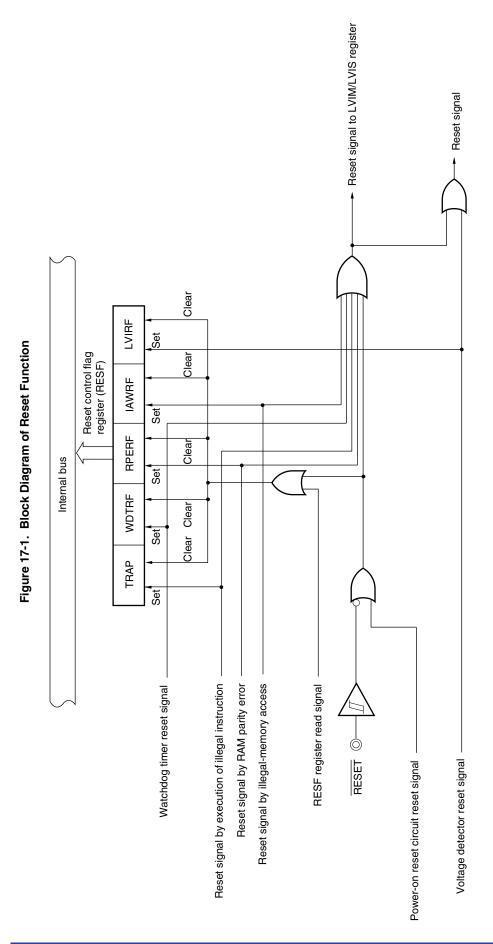
The following seven operations are available to generate a reset signal.

- (1) External reset input via RESET pin
- (2) Internal reset by watchdog timer program loop detection
- (3) Internal reset by comparison of supply voltage and detection voltage of power-on-reset (POR) circuit
- (4) Internal reset by comparison of supply voltage of the voltage detector (LVD) and detection voltage
- (5) Internal reset by execution of illegal instruction Note
- (6) Internal reset by RAM parity error
- (7) Internal reset by illegal-memory access

External and internal resets start program execution from the address stored at 0000H and 0001H when the reset signal is generated.

A reset is effected when a low level is input to the RESET pin, the watchdog timer overflows, or by POR and LVD circuit voltage detection, execution of illegal instruction^{Note}, RAM parity error or illegal-memory access, and each item of hardware is set to the status shown in Table 17-1.

Note The illegal instruction is generated when instruction code FFH is executed.


Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

- Cautions 1. For an external reset, input a low level for 10 μ s or more to the RESET pin.
 - To perform an external reset upon power application, input a low level to the RESET pin, turn power on, continue to input a low level to the pin for 10 us or more within the operating voltage range shown in 27.4 AC Characteristics, and then input a high level to the pin.
 - During reset input, the X1 clock, XT1 clock, high-speed on-chip oscillator clock, and low-speed on-chip oscillator clock stop oscillating. External main system clock input and external subsystem clock input become invalid.
 - The port pins become the following state because each SFR and 2nd SFR are initialized after reset.
 - P40: High-impedance during the external reset period or reset period by the POR. High level during other types of reset or after receiving a reset signal (connected to the internal pullup resistor).
 - P130: Low level during the reset period or after receiving a reset signal.
 - Ports other than P40 and P130: High-impedance during the reset period or after receiving a reset signal.

Remark VPOR: POR power supply rise detection voltage

<R> VLVD: LVD detection voltage

<R>

Caution An LVD circuit internal reset does not reset the LVD circuit.

Remarks 1. LVIM: Voltage detection register

2. LVIS: Voltage detection level register

17.1 Timing of Reset Operation

This LSI is reset by input of the low level on the RESET pin and released from the reset state by input of the high level on the RESET pin. After reset processing, execution of the program with the high-speed on-chip oscillator clock as the operating clock starts.

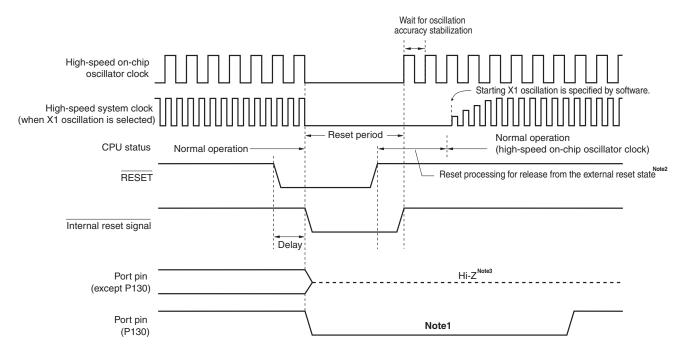
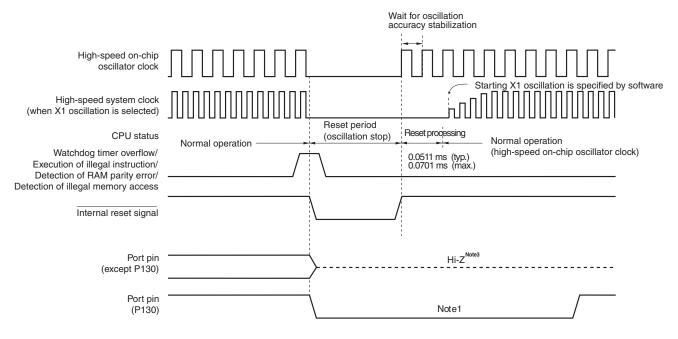



Figure 17-2. Timing of Reset by RESET Input

Figure 17-3. Timing of Reset Due to Execution of Illegal Instruction, Watchdog Timer Overflow, RAM Parity Error, or Illegal Memory Access Overflow

(Notes, Caution, and Remark are listed on the next page.)

<R>

- **Notes 1.** When P130 is set to high-level output before reset is effected, the output signal of P130 can be dummyoutput as a reset signal to an external device, because P130 outputs a low level when reset is effected. To release a reset signal to an external device, set P130 to high-level output by software.
 - 2. Reset times (times for release from the external reset state)

After the first release of the POR: 0.672 ms (typ.), 0.832 ms (max.) when the LVD is in use.

0.399 ms (typ.), 0.519 ms (max.) when the LVD is off.

After the second release of the POR: 0.531 ms (typ.), 0.675 ms (max.) when the LVD is in use.

0.259 ms (typ.), 0.362 ms (max.) when the LVD is off.

After power is supplied, a voltage stabilization waiting time of about 0.99 ms (typ.) and up to 2.30 ms (max.) is required before reset processing starts after release of the external reset.

- 3. The state of P40 is as follows.
 - High-impedance during the external reset period or reset period by the POR.
 - High level during other types of reset or after receiving a reset signal (connected to the internal pull-up resistor).

Caution A watchdog timer internal reset resets the watchdog timer.

Remark For the reset timing of the power-on-reset circuit and voltage detector, see CHAPTER 18 POWER-ON-RESET CIRCUIT and CHAPTER 19 VOLTAGE DETECTOR.

17.2 States of Operation During Reset Periods

Table 17-1 shows the states of operation during reset periods. Table 17-2 shows the states of the hardware after receiving a reset signal.

Table 17-1. States of Operation During Reset Period

Item			During Reset Period			
System clo	System clock		Clock supply to the CPU is stopped.			
Main sy	ystem clock	fін	Operation stopped			
fx		fx	Operation stopped (the X1 and X2 pins are input port mode)			
		fex	Clock input invalid (the pin is input port mode)			
Subsys	Subsystem clock		Operation stopped (the XT1 and XT2 pins are input port mode)			
		fexs	Clock input invalid (the pin is input port mode)			
fıL			Operation stopped			
CPU			Operation stopped			
Code flash	memory		Operation stopped			
Data flash	memory		Operation stopped			
RAM			Operation stopped			
Port (latch)			High impedance ^{Note}			
Timer array	Timer array unit		Operation stopped			
Real-time o	clock (RTC)					
12-bit inter	val timer					
Watchdog	timer					
Clock outpr	ut/buzzer output					
A/D conver	ter					
Serial array	Serial array unit (SAU)					
LCD contro	LCD controller/driver		Operation stopped			
			(COM only pin, COM/SEG alternate pin: GND output,			
			SEG/general-purpose port alternate pin: high-impedance output,			
			V _{L1} to V _{L4} pins: high-impedance output,			
			CAPH/P127 pin, CAPL/P126 pin: high-impedance output)			
Power-on-r	Power-on-reset function		Detection operation possible			
Voltage det	tection function		Operation stopped			
External int	External interrupt Key interrupt function CRC High-speed CRC operation General-purpose CRC function RAM parity error detection function RAM guard function		Operation stopped			
Key interru						
1 -						
SFR guard						
	nory access detec	tion				

(Note and Remark are listed on the next page.)

<R> Note P40 and P130 become the following state.

- P40: High-impedance during the external reset period or reset period by the POR. High level during other types of reset (connected to the internal pull-up resistor).
- P130: Low level during the reset period

Remark fin: High-speed on-chip oscillator clock

fx: X1 oscillation clock

fex: External main system clock

fxT: XT1 oscillation clock fexs: External subsystem clock

fı∟: Low-speed on-chip oscillator clock

<R> Table 17-2. State of Hardware After Receiving a Reset Signal

	After Reset Acknowledgment ^{Note}				
Program counter (PC)	Program counter (PC)				
Stack pointer (SP) Undefined					
Program status word (PSW) 06H					
RAM	Data memory	Undefined			
	General-purpose registers	Undefined			

Note During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.

<R> Remark For the state of the special function register (SFR) after receiving a reset signal, see 3.2.4 Special function registers (SFRs) and 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

17.3 Register for Confirming Reset Source

17.3.1 Reset Control Flag Register (RESF)

Many internal reset generation sources exist in the R7F0C001G/L, R7F0C002G/L. The reset control flag register (RESF) is used to store which source has generated the reset request.

The RESF register can be read by an 8-bit memory manipulation instruction.

RESET input, reset by power-on-reset (POR) circuit, and reading the RESF register clear TRAP, WDTRF, RPERF, IAWRF, and LVIRF flags.

Figure 17-4. Format of Reset Control Flag Register (RESF)

Address: FFFA8H After reset Note 1: R 7 0 Symbol 5 3 2 1 **RESF WDTRF RPERF IAWRF TRAP** 0 0 0 **LVIRF**

TRAP	Internal reset request by execution of illegal instruction Note 2
0	Internal reset request is not generated, or the RESF register is cleared.
1	Internal reset request is generated.

WDTRF	Internal reset request by watchdog timer (WDT)
0	Internal reset request is not generated, or the RESF register is cleared.
1	Internal reset request is generated.

RPERF	Internal reset request t by RAM parity
0	Internal reset request is not generated, or the RESF register is cleared.
Internal reset request is generated.	

IAWRF	Internal reset request by illegal-memory access
0	Internal reset request is not generated, or the RESF register is cleared.
1	Internal reset request is generated.

LVIRF	Internal reset request by voltage detector (LVD)
0	Internal reset request is not generated, or the RESF register is cleared.
1	Internal reset request is generated.

Notes 1. The value after reset varies depending on the reset source. See Table 17-3.

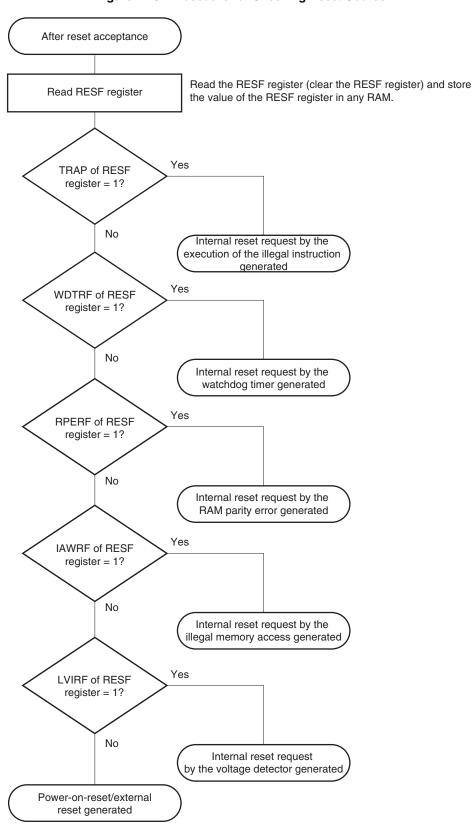
The illegal instruction is generated when instruction code FFH is executed.
 Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Cautions 1. Do not read data by a 1-bit memory manipulation instruction.

2. When enabling RAM parity error resets (RPERDIS = 0), be sure to initialize the used RAM area at data access or the used RAM area + 10 bytes at execution of instruction from the RAM area.

Reset generation enables RAM parity error resets (RPERDIS = 0). For details, see 20.3.3 RAM parity error detection function.

The status of the RESF register when a reset request is generated is shown in Table 17-3.


Table 17-3. RESF Register Status When Reset Request Is Generated

Reset Source	RESET Input	Reset by POR	Reset by Execution of Illegal Instruction	Reset by WDT	Reset by RAM parity error	Reset by illegal- memory access	Reset by LVD
TRAP bit	Cleared (0)	Cleared (0)	Set (1)	Held	Held	Held	Held
WDTRF bit			Held	Set (1)			
RPERF bit				Held	Set (1)		
IAWRF bit					Held	Set (1)	
LVIRF bit						Held	Set (1)

<R> The RESF register is automatically cleared when it is read by an 8-bit memory manipulation instruction. Figure 17-5 shows the procedure for checking a reset source.

<R>

Figure 17-5. Procedure for Checking Reset Source

CHAPTER 18 POWER-ON-RESET CIRCUIT

<R> 18.1 Functions of Power-on-reset Circuit

The power-on-reset circuit (POR) has the following functions.

- Generates internal reset signal at power on.
 The reset signal is released when the supply voltage (V_{DD}) exceeds the detection voltage (V_{POR}). Note that the reset state must be retained until the operating voltage becomes in the range defined in 27.4 AC Characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal.
- Compares supply voltage (VDD) and detection voltage (VPDR), generates internal reset signal when VDD < VPDR. Note that, after power is supplied, this LSI should be placed in the STOP mode, or in the reset state by utilizing the voltage detection circuit or externally input reset signal, before the operation voltage falls below the range defined in 27.4 or AC Characteristics. When restarting the operation, make sure that the operation voltage has returned within the range of operation.

Caution If an internal reset signal is generated in the power-on-reset circuit, the reset control flag register (RESF) is cleared.

- Remarks 1. The R7F0C001G/L, R7F0C002G/L incorporates multiple hardware functions that generate an internal reset signal. A flag that indicates the reset source is located in the reset control flag register (RESF) for when an internal reset signal is generated by the watchdog timer (WDT), voltage-detector (LVD), illegal instruction execution, RAM parity error, or illegal-memory access. The RESF register is not cleared to 00H and the flag is set to 1 when an internal reset signal is generated by the watchdog timer (WDT), voltage-detector (LVD), illegal instruction execution, RAM parity error, or illegal-memory access. For details of the RESF register, see CHAPTER 17 RESET FUNCTION.
 - 2. VPOR: POR power supply rise detection voltage

VPDR: POR power supply fall detection voltage

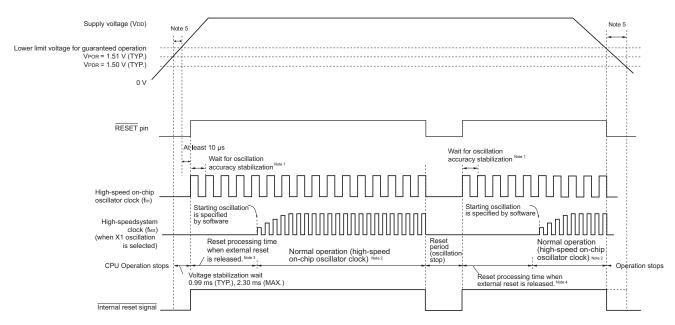
For details, see 27.6.3 POR circuit characteristics.

18.2 Configuration of Power-on-reset Circuit

The block diagram of the power-on-reset circuit is shown in Figure 18-1.

source

Internal reset signal Reference voltage


Figure 18-1. Block Diagram of Power-on-reset Circuit

<R> 18.3 Operation of Power-on-reset Circuit

The timing of generation of the internal reset signal by the power-on-reset circuit and voltage detector is shown below.

<R> Figure 18-2. Timing of Generation of Internal Reset Signal by Power-on-reset Circuit and Voltage Detector (1/3)

(1) When the externally input reset signal on the RESET pin is used

- **Notes 1.** The internal reset processing time includes the oscillation accuracy stabilization time of the high-speed onchip oscillator clock.
 - 2. The high-speed on-chip oscillator clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the oscillation stabilization time counter status register (OSTC) to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.
 - 3. The time until normal operation starts includes the following reset processing time when the external reset is released (after the first release of POR) after the RESET signal is driven high (1) as well as the voltage stabilization wait time after VPOR (1.51 V, typ.) is reached.

Reset processing time when the external reset is released is shown below.

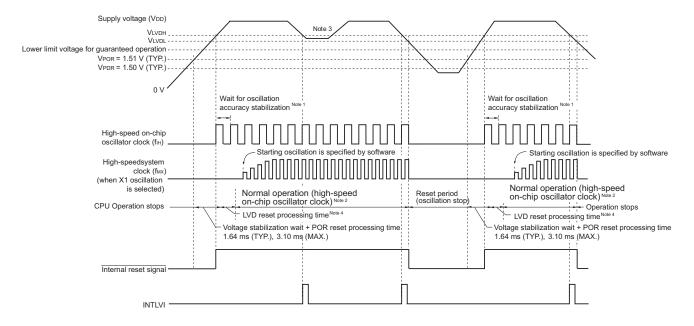
After the first release of POR: 0.672 ms (typ.), 0.832 ms (max.) (when the LVD is in use)

0.399 ms (typ.), 0.519 ms (max.) (when the LVD is off)

4. Reset processing time when the external reset is released after the second release of POR is shown below. After the second release of POR: 0.531 ms (typ.), 0.675 ms (max.) (when the LVD is in use)

0.259 ms (typ.), 0.362 ms (max.) (when the LVD is off)

5. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 27.4 AC Characteristics. This is done by controlling the externally input reset signal. After power supply is turned off, this LSI should be placed in the STOP mode, or in the reset state by utilizing the voltage detection circuit or externally input reset signal, before the voltage falls below the operating range. When restarting the operation, make sure that the operation voltage has returned within the range of operation.


Remark VPOR: POR power supply rise detection voltage

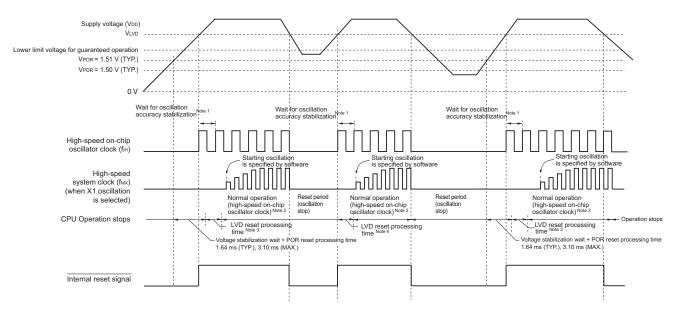
VPDR: POR power supply fall detection voltage

Caution For power-on reset, be sure to use the externally input reset signal on the RESET pin when the LVD is off. For details, see CHAPTER 19 VOLTAGE DETECTOR.

<R> Figure 18-2. Timing of Generation of Internal Reset Signal by Power-on-reset Circuit and Voltage Detector (2/3)

(2) LVD interrupt & reset mode (option byte 000C1: LVIMDS1, LVIMDS0 = 1, 0)

- **Notes 1.** The internal reset processing time includes the oscillation accuracy stabilization time of the high-speed onchip oscillator clock.
 - 2. The high-speed on-chip oscillator clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the oscillation stabilization time counter status register (OSTC) to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.
 - 3. After the first interrupt request signal (INTLVI) is generated, the LVIL and LVIMD bits of the voltage detection level register (LVIS) are automatically set to 1. After INTLVI is generated, the initial settings should be made by software after the required save processing if the supply voltage might return to the high voltage detection level (VLVDH) or higher without falling below the low voltage detection level (VLVDH).
 - 4. The time until normal operation starts includes the following LVD reset processing time after the LVD detection level (VLVDH) is reached as well as the voltage stabilization wait + POR reset processing time after the VPOR (1.51 V, typ.) is reached.


LVD reset processing time: 0 ms to 0.0701 ms (max.)

Remark VLVDH, VLVDL: LVD detection voltage

VPOR: POR power supply rise detection voltage
VPDR: POR power supply fall detection voltage

<R> Figure 18-2. Timing of Generation of Internal Reset Signal by Power-on-reset Circuit and Voltage Detector (3/3)

(3) LVD reset mode (option byte 000C1H: LVIMDS1 = 1, LVIMDS0 = 1)

- **Notes 1.** The internal reset processing time includes the oscillation accuracy stabilization time of the high-speed onchip oscillator clock.
 - 2. The high-speed on-chip oscillator clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the oscillation stabilization time counter status register (OSTC) to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.
 - 3. The time until normal operation starts includes the following LVD reset processing time after the LVD detection level (VLVD) is reached as well as the voltage stabilization wait + POR reset processing time after the VPOR (1.51 V, typ.) is reached.
 - LVD reset processing time: 0 ms to 0.0701 ms (max.)
 - 4. When the power supply voltage is below the lower limit for operation and the power supply voltage is then restored after an internal reset is generated only by the voltage detector (LVD), the following LVD reset processing time is required after the LVD detection level (VLVD) is reached.
 LVD reset processing time: 0.0511 ms (typ.), 0.0701 ms (max.)

Remark VPOR: POR power supply rise detection voltage VPDR: POR power supply fall detection voltage

CHAPTER 19 VOLTAGE DETECTOR

<R> 19.1 Functions of Voltage Detector

The operation mode and detection voltages (VLVDH, VLVDL, VLVD) for the voltage detector is set by using the option byte (000C1H).

The voltage detector (LVD) has the following functions.

- The LVD circuit compares the supply voltage (VDD) with the detection voltage (VLVDH, VLVDL), and generates an internal reset or internal interrupt signal.
- The detection level for the power supply detection voltage (VLVDH, VLVDL) can be selected by using the option byte as
 one of 14 levels (For details, see CHAPTER 22 OPTION BYTE).
- Operable in STOP mode.
- After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 27.4 AC Characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H).
- (a) Interrupt & reset mode (option byte LVIMDS1, LVIMDS0 = 1, 0)

 The two detection voltages (VLVDH, VLVDL) are selected by the option byte 000C1H. The high-voltage detection level (VLVDH) is used for releasing resets and generating interrupts. The low-voltage detection level (VLVDL) is used for generating resets.
- (b) Reset mode (option byte LVIMDS1, LVIMDS0 = 1, 1)

 The detection voltage (V_{LVD}) selected by the option byte 000C1H is used for generating/releasing resets.
- (c) Interrupt mode (option byte LVIMDS1, LVIMDS0 = 0, 1)

 The detection voltage (V_{LVD}) selected by the option byte 000C1H is used for releasing resets/generating interrupts.

The reset and internal interrupt signals are generated in each mode as follows.

Interrupt & reset mode	Reset mode	Interrupt mode
(LVIMDS1, LVIMDS0 = 1, 0)	(LVIMDS1, LVIMDS0 = 1, 1)	(LVIMDS1, LVIMDS0 = 0, 1)
Generates an interrupt request signal by detecting V _{DD} < V _{LVDH} when the operating voltage falls, and an internal reset by detecting V _{DD} < V _{LVDL} . Releases an internal reset by detecting V _{DD} ≥ V _{LVDH} .	Releases an internal reset by detecting $V_{DD} \ge V_{LVD}$. Generates an internal reset by detecting $V_{DD} < V_{LVD}$.	Releases an internal reset by detecting V _{DD} ≥ V _{LVD} at power on after the first release of the POR. Generates an interrupt request signal by detecting V _{DD} < V _{LVD} or V _{DD} ≥ V _{LVD} at power on after the second release of the POR.

While the voltage detector is operating, whether the supply voltage is more than or less than the detection level can be checked by reading the voltage detection flag (LVIF: bit 0 of the voltage detection register (LVIM)).

Bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of the RESF register, see **CHAPTER 17 RESET FUNCTION**.

19.2 Configuration of Voltage Detector

The block diagram of the voltage detector is shown in Figure 19-1.

N-ch - Internal reset signal Voltage detection level selector Controller VLVDH Selector ► INTLVI Reference voltage source Option byte (000C1H) LVIS1, LVIS0 LVIOMSK LVISEN LVIMD LVILV Option byte (000C1H) Voltage detection Voltage detection VPOC2 to VPOC0 level register (LVIS) register (LVIM) Internal bus

Figure 19-1. Block Diagram of Voltage Detector

19.3 Registers Controlling Voltage Detector

The voltage detector is controlled by the following registers.

- Voltage detection register (LVIM)
- Voltage detection level register (LVIS)

19.3.1 Voltage detection register (LVIM)

This register is used to specify whether to enable or disable rewriting the voltage detection level register (LVIS), as well as to check the LVD output mask status.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

<R>

Figure 19-2. Format of Voltage Detection Register (LVIM)

Address:	FFFA9H	After reset: 00h	H Note 1 R/W	Note 2				
Symbol	<7>	6	5	4	3	2	<1>	<0>
LVIM	LVISEN	0	0	0	0	0	LVIOMSK	LVIF
	Note 3							

LVISEN Note 3	(1.40)				
0	Disabling of rewriting the LVIS register (LVIOMSK = 0 (Mask of LVD output is invalid)				
1	Enabling of rewriting the LVIS register Note 3 (LVIOMSK = 1 (Mask of LVD output is valid)				

LVIOMSK	Mask status flag of LVD output			
0	Mask of LVD output is invalid			
1	Mask of LVD output is valid Note 4			

LVIF	Voltage detection flag				
0	Supply voltage (V _{DD}) ≥ detection voltage (V _{LVD}), or when LVD is off				
1	Supply voltage (V _{DD}) < detection voltage (V _{LVD})				

Notes 1. The reset value changes depending on the reset source.

If the LVIS register is reset by LVD, it is not reset but holds the current value. In other reset, LVISEN is cleared to 0.

- 2. Bits 0 and 1 are read-only.
- 3. LVISEN and LVIOMSK can only be set in the interrupt & reset mode (option byte LVIMDS1, LVIMDS0 = 1, 0). Do not change the initial value in other modes.
- **4.** LVIOMSK bit is only automatically set to "1" during the following period and reset or interrupt by LVD is masked.
 - Period during LVISEN = 1
 - Waiting period from the time when LVD interrupt is generated until LVD detection voltage becomes stable
 - Waiting period from the time when the value of LVILV bit changes until LVD detection voltage becomes stable

19.3.2 Voltage detection level register (LVIS)

This register selects the voltage detection level.

This register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation input sets this register to 00H/01H/81H Note1.

Figure 19-3. Format of Voltage Detection Level Select Register (LVIS)

Address: FFFAAH		After reset: 00H	H/01H/81H Note	1 R/W				
Symbol	<7>	6	5	4	3	2	1	<0>
LVIS	LVIMD	0	0	0	0	0	0	LVILV

LVIMD Note 2	Operation mode of voltage detection
0	Interrupt mode
1	Reset mode

LVILV Note 2	LVD detection level
0	High-voltage detection level (VLVDH)
1	Low-voltage detection level (VLVDL or VLVDL)

Notes 1. The reset value changes depending on the reset source and the setting of the option byte. This register is not cleared (00H) by LVD reset.

The generation of reset signal other than an LVD reset sets as follows.

- When option byte LVIMDS1, LVIMDS0 = 1, 0: 00H
- When option byte LVIMDS1, LVIMDS0 = 1, 1: 81H
- When option byte LVIMDS1, LVIMDS0 = 0, 1: 01H
- 2. Writing "0" can only be allowed in the interrupt & reset mode (option byte LVIMDS1, LVIMDS0 = 1, 0). Do not set LVIMD and LVILV in other cases. The value is switched automatically when reset or interrupt is generated in the interrupt & reset mode.

Cautions 1. Rewrite the value of the LVIS register according to Figures 19-7 and 19-8.

2. Specify the LVD operation mode and detection voltage (VLVDH, VLVDL, VLVD) of each mode by using the option byte 000C1H. Table 19-1 shows the format of the user option byte (000C1H). For details about the option byte, see CHAPTER 22 OPTION BYTE.

<R>> Table 19-1. LVD Operation Mode and Detection Voltage Settings for User Option Byte (000C1H) (1/2)

Address: 000C1H

7	6	5	4	3	2	1	0
VPOC2	VPOC1	VPOC0	1	LVIS1	LVIS0	LVIMDS1	LVIMDS0

• LVD setting (interrupt & reset mode)

Detection voltage			Option byte setting value								
VL	.VDH	V _{LVDL}	VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting		
Rising edge	Falling edge	Falling edge						LVIMDS1	LVIMDS0		
1.77 V	1.73 V	1.63 V	0	0	0	1	0	1	0		
1.88 V	1.84 V					0	1				
2.92 V	2.86 V					0	0				
1.98 V	1.94 V	1.84 V		0	1	1	0				
2.09 V	2.04 V					0	1				
3.13 V	3.06 V					0	0				
2.61 V	2.55 V	2.45 V		1	0	1	0				
2.71 V	2.65 V					0	1				
3.75 V	3.67 V					0	0				
2.92 V	2.86 V	2.75 V		1	1	1	0				
3.02 V	2.96 V					0	1				
4.06 V	3.98 V					0	0				
Oth	er than ab	ove	Setting prohib	oited.							

• LVD setting (reset mode)

	on voltage			Opt	ion byte setting	g value		
VL	.VD	VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting
Rising edge	Falling edge						LVIMDS1	LVIMDS0
1.67 V	1.63 V	0	0	0	1	1	1	1
1.77 V	1.73 V		0	0	1	0		
1.88 V	1.84 V		0	1	1	1		
1.98 V	1.94 V		0	1	1	0		
2.09 V	2.04 V		0	1	0	1		
2.50 V	2.45 V		1	0	1	1		
2.61 V	2.55 V		1	0	1	0		
2.71 V	2.65 V		1	0	0	1		
2.81 V	2.75 V		1	1	1	1		
2.92 V	2.86 V		1	1	1	0		
3.02 V	2.96 V		1	1	0	1		
3.13 V	3.06 V		0	1	0	0		
3.75 V	3.67 V		1	0	0	0		
4.06 V	3.98 V		1	1	0	0		
Other tha	an above	Setting prohib	oited.					

Caution Be sure to set bit 4 to 1.

<R> Table 19-1. LVD Operation Mode and Detection Voltage Settings for User Option Byte (000C1H) (2/2)

Address: 000C1H

_	7	6	5	4	3	2	1	0
	VPOC2	VPOC1	VPOC0	1	LVIS1	LVIS0	LVIMDS1	LVIMDS0

• LVD setting (interrupt mode)

Detection	n voltage		Option byte setting value							
Vı	V LVD		VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting		
Rising edge	Falling edge						LVIMDS1	LVIMDS0		
1.67 V	1.63 V	0	0	0	1	1	0	1		
1.77 V	1.73 V		0	0	1	0				
1.88 V	1.84 V		0	1	1	1				
1.98 V	1.94 V		0	1	1	0				
2.09 V	2.04 V		0	1	0	1				
2.50 V	2.45 V		1	0	1	1				
2.61 V	2.55 V		1	0	1	0				
2.71 V	2.65 V		1	0	0	1				
2.81 V	2.75 V		1	1	1	1				
2.92 V	2.86 V		1	1	1	0				
3.02 V	2.96 V		1	1	0	1				
3.13 V	3.06 V		0	1	0	0				
3.75 V	3.67 V		1	0	0	0				
4.06 V	3.98 V		1	1	0	0				
Other tha	an above	Setting prohib	oited.							

• LVD off (use of external reset input via RESET pin)

Detection	n voltage	Option byte setting value								
V _{LVD}		VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting		
Rising edge	Falling edge						LVIMDS1	LVIMDS0		
-	-	1	×	×	×	×	0/1	1		
Other than above		Setting prohib	oited.							

Cautions 1. Be sure to set bit 4 to 1.

2. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 27.4 AC Characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal, before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H).

Remarks 1. ×: don't care

- 2. For details on the LVD circuit, see CHAPTER 19 VOLTAGE DETECTOR.
- 3. The detection voltage is a TYP. value. For details, see 27.6.4 LVD circuit characteristics.

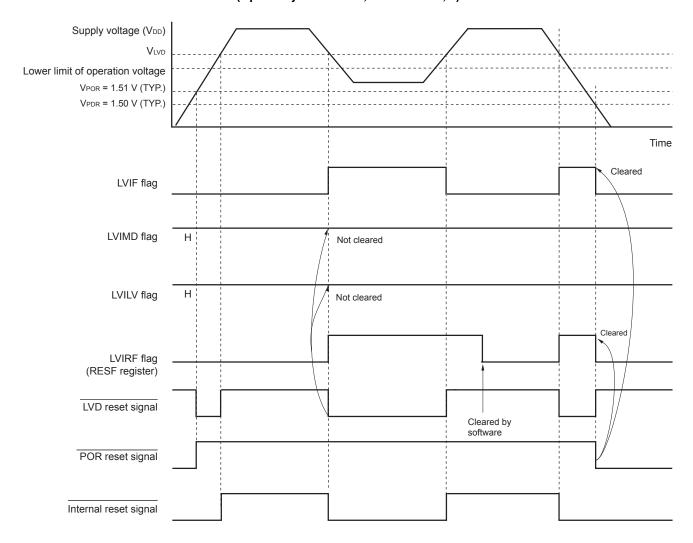
19.4 Operation of Voltage Detector

<R> 19.4.1 When used as reset mode

Specify the operation mode (the reset mode (LVIMDS1, LVIMDS0 = 1, 1)) and the detection voltage (V_{LVD}) by using the option byte 000C1H.

The operation is started in the following initial setting state when the reset mode is set.

- Bit 7 (LVISEN) of the voltage detection register (LVIM) is set to 0 (disable rewriting of voltage detection level register (LVIS))
- The initial value of the voltage detection level select register (LVIS) is set to 81H.
 Bit 7 (LVIMD) is 1 (reset mode).
 Bit 0 (LVILV) is 1 (low-voltage detection level: V_{LVD}).
- Operation in LVD reset mode


In the reset mode (option byte LVIMDS1, LVIMDS0 = 1, 1), the state of an internal reset by LVD is retained until the supply voltage (V_{DD}) exceeds the voltage detection level (V_{LVD}) after power is supplied. The internal reset is released when the supply voltage (V_{DD}) exceeds the voltage detection level (V_{LVD}).

At the fall of the operating voltage, an internal reset by LVD is generated when the supply voltage (VDD) falls below the voltage detection level (VLVD).

Figure 19-4 shows the timing of the internal reset signal generated in the LVD reset mode.

<R>

Figure 19-4. Timing of Voltage Detector Internal Reset Signal Generation (Option Byte LVIMDS1, LVIMDS0 = 1, 1)

Remark VPOR: POR power supply rise detection voltage

VPDR: POR power supply fall detection voltage

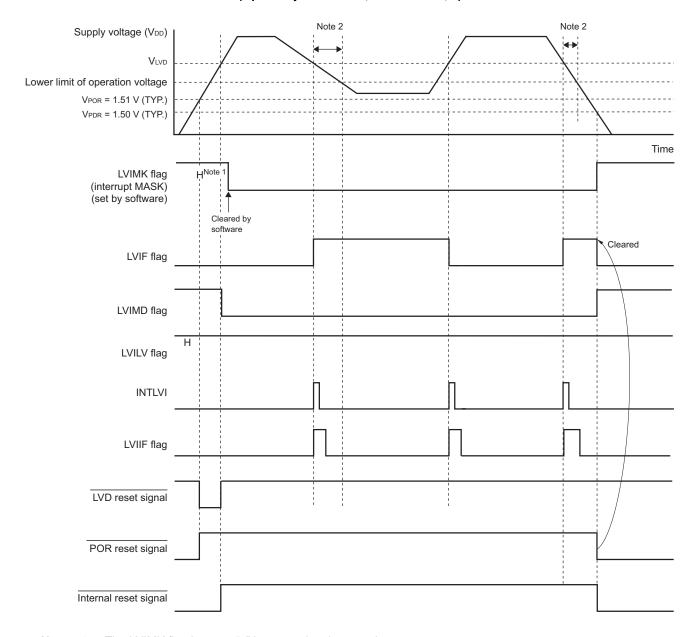
<R> 19.4.2 When used as interrupt mode

Specify the operation mode (the interrupt mode (LVIMDS1, LVIMDS0 = 0, 1)) and the detection voltage (V_{LVD}) by using the option byte 000C1H.

The operation is started in the following initial setting state when the interrupt mode is set.

- Bit 7 (LVISEN) of the voltage detection register (LVIM) is set to 0 (disable rewriting of voltage detection level register (LVIS))
- The initial value of the voltage detection level select register (LVIS) is set to 01H.
 Bit 7 (LVIMD) is 0 (interrupt mode).
 Bit 0 (LVILV) is 1 (low-voltage detection level: VLVD).

• Operation in LVD interrupt mode


In the interrupt mode (option byte LVIMDS1, LVIMDS0 = 0, 1), the state of an internal reset by LVD is retained until the supply voltage (V_{DD}) exceeds the voltage detection level (V_{LVD}) after power is supplied (after the first release of the POR). The internal reset is released when the supply voltage (V_{DD}) exceeds the voltage detection level (V_{LVD}).

An interrupt request signal by LVD (INTLVD) is generated, when the supply voltage (V_{DD}) falls below the voltage detection level (V_{LVD}) or when the supply voltage (V_{DD}) exceeds the voltage detection level (V_{LVD}) after the second release of the POR. When the voltage falls, this LSI should be placed in the STOP mode, or placed in the reset state by controlling the externally input reset signal, before the voltage falls below the operating voltage range defined in **27.4 AC characteristics**. When restarting the operation, make sure that the operation voltage has returned within the range of operation.

Figure 19-5 shows the timing of the interrupt request signal generated in the LVD interrupt mode.

<R>

Figure 19-5. Timing of Voltage Detector Internal Interrupt Signal Generation (Option Byte LVIMDS1, LVIMDS0 = 0, 1)

- **Notes 1.** The LVIMK flag is set to "1" by reset signal generation.
 - 2. When the voltage falls, this LSI should be placed in the STOP mode, or placed in the reset state by controlling the externally input reset signal, before the voltage falls below the operating voltage range defined in 27.4 AC characteristics. When restarting the operation, make sure that the operation voltage has returned within the range of operation.

Remark VPOR: POR power supply rise detection voltage VPDR: POR power supply fall detection voltage

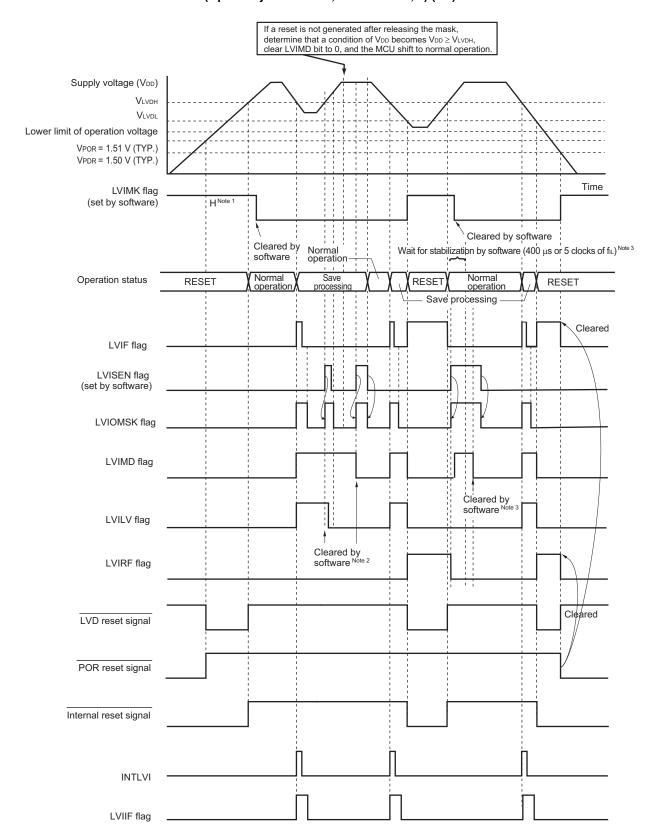
19.4.3 When used as interrupt and reset mode

· When starting operation

Specify the operation mode (the interrupt and reset (LVIMDS1, LVIMDS0 = 1, 0)) and the detection voltage (V_{LVDH} , V_{LVDL}) by using the option byte 000C1H.

Start in the following initial setting state.

- Set bit 7 (LVISEN) of the voltage detection register (LVIM) to 0 (disable rewriting of voltage detection level register (LVIS)).
- When the option byte LVIMDS1 is set to 1 and LVIMDS0 is cleared to 0, the initial value of the LVIS register is set to 00H.


Bit 7 (LVIMD) is 0 (interrupt mode).

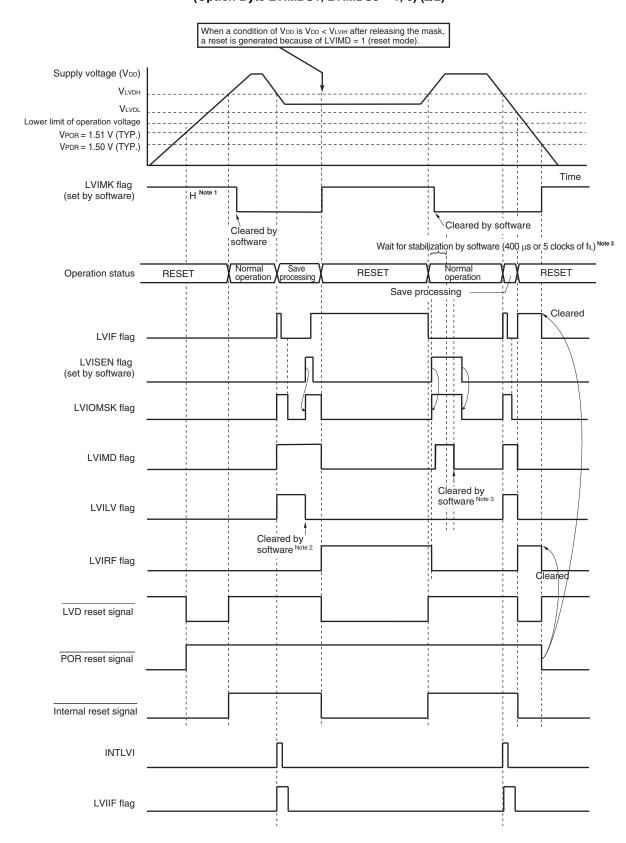
Bit 0 (LVILV) is 0 (low-voltage detection level: VLVDH).

Figure 19-6 shows the timing of the internal reset signal and interrupt signal generated by the voltage detector. Perform the processing according to **Figure 19-7 Processing Procedure After an Interrupt is Generated**.

<R>

Figure 19-6. Timing of Voltage Detector Reset Signal and Interrupt Signal Generation (Option Byte LVIMDS1, LVIMDS0 = 1, 0) (1/2)

RENESAS

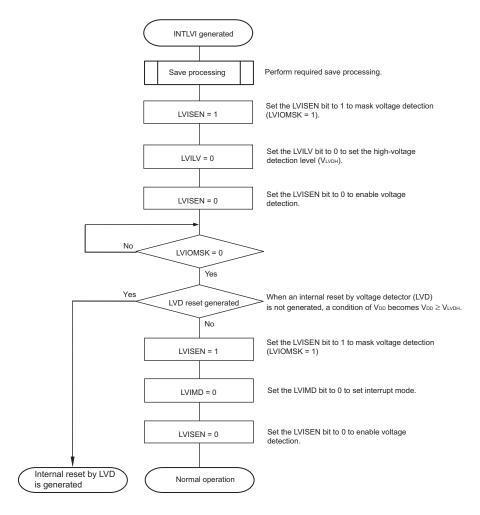

(Notes and Remark are listed on the next page.)

- **Notes 1.** The LVIMK flag is set to "1" by reset signal generation.
 - 2. After an interrupt is generated, perform the processing according to Figure 19-7 Processing Procedure After an Interrupt Is Generated.
 - 3. After a reset is released, perform the processing according to Figure 19-8 Initial Setting of Interrupt and Reset Mode.

Remark VPOR: POR power supply rise detection voltage

VPDR: POR power supply fall detection voltage

<R> Figure 19-6. Timing of Voltage Detector Reset Signal and Interrupt Signal Generation (Option Byte LVIMDS1, LVIMDS0 = 1, 0) (2/2)



(Notes and Remark are listed on the next page.)

- Notes 1. The LVIMK flag is set to "1" by reset signal generation.
 - After an interrupt is generated, perform the processing according to Figure 19-7 Processing Procedure
 After an Interrupt Is Generated.
 - 3. After a reset is released, perform the processing according to Figure 19-8 Initial Setting of Interrupt and Reset Mode.

Remark VPOR: POR power supply rise detection voltage VPDR: POR power supply fall detection voltage

Figure 19-7. Processing Procedure After an Interrupt Is Generated

When setting an interrupt and reset mode (LVIMDS1, LVIMDS0 = 1, 0), voltage detection stabilization wait time for 400 μ s or 5 clocks of fill is necessary after LVD reset is released (LVIRF = 1). After waiting until voltage detection stabilizes, (0) clear the LVIMD bit for initialization. While voltage detection stabilization wait time is being counted and when the LVIMD bit is rewritten, set LVISEN to 1 to mask a reset or interrupt generation by LVD.

Figure 19-9 shows the procedure for initial setting of interrupt and reset mode.

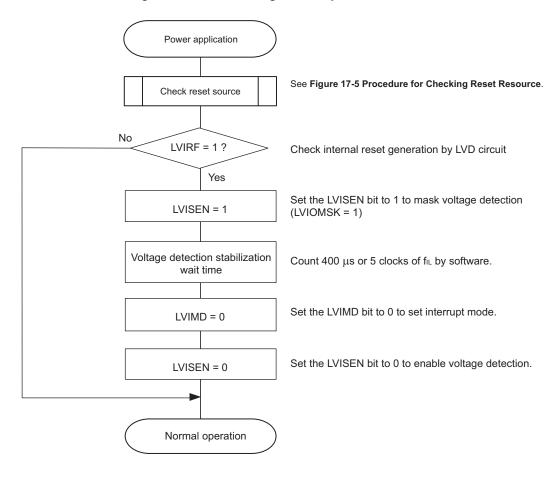
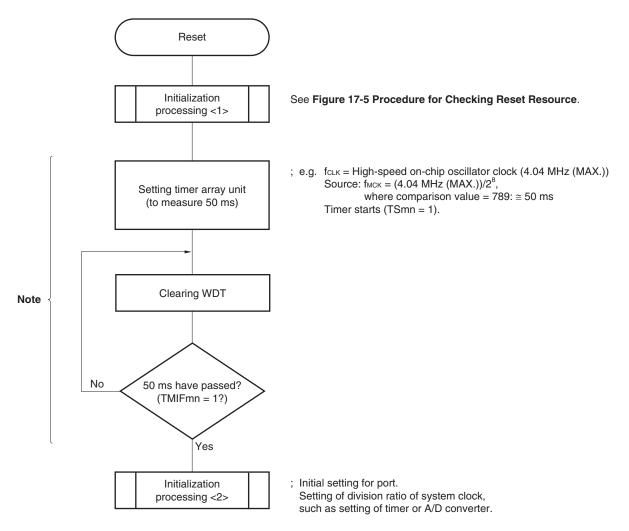


Figure 19-8. Initial Setting of Interrupt and Reset Mode

Remark fil: Low-speed on-chip oscillator clock frequency

<R> 19.5 Cautions for Voltage Detector

(1) Voltage fluctuation when power is supplied


In a system where the supply voltage (V_{DD}) fluctuates for a certain period in the vicinity of the LVD detection voltage, the system may be repeatedly reset and released from the reset status. In this case, the time from release of reset to the start of the operation of the microcontroller can be arbitrarily set by taking the following action.

<Action>

After releasing the reset signal, wait for the supply voltage fluctuation period of each system by means of a software counter that uses a timer, and then initialize the ports.

Figure 19-9. Example of Software Processing If Supply Voltage Fluctuation is 50 ms or Less in Vicinity of LVD

Detection Voltage

Note If reset is generated again during this period, initialization processing <2> is not started.

Remark
$$m = 0$$

 $n = 0 \text{ to } 3, 6, 7$

(2) Delay from the time LVD reset source is generated until the time LVD reset has been generated or released

There is some delay from the time supply voltage $(V_{DD}) < LVD$ detection voltage (V_{LVD}) until the time LVD reset has been generated.

In the same way, there is also some delay from the time LVD detection voltage $(V_{LVD}) \le supply$ voltage (V_{DD}) until the time LVD reset has been released (see **Figure 19-10**).

Supply voltage (V_{DD})

V_{LVD}

Time

Figure 19-10. Delay from the time LVD reset source is generated until the time LVD reset has been generated or released

<1>: Detection delay (300 μs (MAX.))

(3) Power on when LVD is off

LVD reset signal

Use the external rest input via the RESET pin when the LVD is off.

For an external reset, input a low level for 10 μ s or more to the \overline{RESET} pin. To perform an external reset upon power application, input a low level to the \overline{RESET} pin, turn power on, continue to input a low level to the pin for 10 μ s or more within the operating voltage range shown in **27.4 AC Characteristics**, and then input a high level to the pin.

(4) Operating voltage fall when LVD is off or LVD interrupt mode is selected

When the operating voltage falls with the LVD is off or with the LVD interrupt mode is selected, this LSI should be placed in the STOP mode, or placed in the reset state by controlling the externally input reset signal, before the voltage falls below the operating voltage range defined in **27.4 AC characteristics**. When restarting the operation, make sure that the operation voltage has returned within the range of operation.

CHAPTER 20 SAFETY FUNCTIONS

20.1 Overview of Safety Functions

The following safety functions are provided in the R7F0C001G/L, R7F0C002G/L to comply with the IEC60730 and IEC61508 safety standards.

These functions enable the microcontroller to self-diagnose abnormalities and stop operating if an abnormality is detected.

(1) Flash memory CRC operation function (high-speed CRC, general-purpose CRC)

This detects data errors in the flash memory by performing CRC operations.

Two CRC functions are provided in the R7F0C001G/L, R7F0C002G/L that can be used according to the application or purpose of use.

- High-speed CRC: The CPU can be stopped and a high-speed check executed on its entire code flash memory area during the initialization routine.
- General CRC: This can be used for checking various data in addition to the code flash memory area while the CPU is running.

(2) RAM parity error detection function

This detects parity errors when reading RAM data.

(3) RAM guard function

This prevents RAM data from being rewritten when the CPU freezes.

(4) SFR guard function

This prevents SFRs from being rewritten when the CPU freezes.

(5) Invalid memory access detection function

This detects illegal accesses to invalid memory areas (such as areas where no memory is allocated and areas to which access is restricted).

<R> (6) Frequency detection function

This function allows a self-check of the CPU/peripheral hardware clock frequencies using the timer array unit.

<R> (7) A/D test function

This is used to perform a self-check of the A/D converter by performing A/D conversion of the A/D converter's positive and negative reference voltages, analog input channel (ANI), temperature sensor output voltage, and internal reference voltage.

<R> Remark For usage examples of the safety functions complying with the IEC60730 safety standards, refer to the RL78 MCU series IEC60730/60335 self-test library application notes (R01AN1062 and R01AN1296).

20.2 Registers Used by Safety Functions

The safety functions use the following registers for each function.

Register	Each Function of Safety Function		
Flash memory CRC control register (CRC0CTL)	Flash memory CRC operation function		
Flash memory CRC operation result register (PGCRCL)	(high-speed CRC)		
CRC input register (CRCIN)	CRC operation function		
CRC data register (CRCD)	(general-purpose CRC)		
RAM parity error control register (RPECTL)	RAM parity error detection function		
Invalid memory access detection control register (IAWCTL)	RAM guard function		
	SFR guard function		
	Invalid memory access detection function		
Timer input select register 0 (TIS0)	Frequency detection function		
A/D test register (ADTES)	A/D test function		

The content of each register is described in 20.3 Operation of Safety Functions.

20.3 Operation of Safety Functions

20.3.1 Flash memory CRC operation function (high-speed CRC)

The IEC60730 standard mandates the checking of data in the flash memory, and recommends using CRC to do it. The high-speed CRC provided in the R7F0C001G/L, R7F0C002G/L can be used to check the entire code flash memory area during the initialization routine. The high-speed CRC can be executed only when the program is allocated on the RAM and in the HALT mode of the main system clock.

The high-speed CRC performs an operation by reading 32-bit data per clock from the flash memory while stopping the CPU. This function therefore can finish a check in a shorter time (for example, 341 μ s@24 MHz with 32 KB flash memory). The CRC generator polynomial used complies with "X¹⁶ + X¹² + X⁵ + 1" of CRC-16-CCITT.

The high-speed CRC operates in MSB first order from bit 31 to bit 0.

Cautions The CRC operation result might differ during on-chip debugging because the monitor program is allocated.

Remark The operation result is different between the high-speed CRC and the general CRC, because the general CRC operates in LSB first order.

20.3.1.1 Flash memory CRC control register (CRC0CTL)

This register is used to control the operation of the high-speed CRC ALU, as well as to specify the operation range.

The CRC0CTL register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 20-1. Format of Flash Memory CRC Control Register (CRC0CTL)

Address: Fo	02F0H After	reset: 00H F	R/W					
Symbol	<7>	6	5	4	3	2	1	0
CRC0CTL	CRC0EN	0	FEA5	FEA4	FEA3	FEA2	FEA1	FEA0

CRC0EN	Control of CRC ALU operation
0	Stop the operation.
1	Start the operation according to HALT instruction execution.

FEA5	FEA4	FEA3	FEA2	FEA1	FEA0	High-speed CRC operation range
0	0	0	0	0 0 0000H to 3FFBH (16 K to 4 bytes)		
0	0 0 0 0 0 1				1	0000H to 7FFBH (32 K to 4 bytes)
		Other than	Setting prohibited			

Remark Input the expected CRC operation result value to be used for comparison in the lowest 4 bytes of the flash memory. Note that the operation range will thereby be reduced by 4 bytes.

20.3.1.2 Flash memory CRC operation result register (PGCRCL)

This register is used to store the high-speed CRC operation results.

The PGCRCL register can be set by a 16-bit memory manipulation instruction.

Reset signal generation clears this register to 0000H.

Figure 20-2. Format of Flash Memory CRC Operation Result Register (PGCRCL)

Address: Fo	02F2H After	reset: 0000H	R/W					
Symbol	15	14	13	12	11	10	9	8
PGCRCL	PGCRC15	PGCRC14	PGCRC13	PGCRC12	PGCRC11	PGCRC10	PGCRC9	PGCRC8
	7	6	5	4	3	2	1	0
	PGCRC7	PGCRC6	PGCRC5	PGCRC4	PGCRC3	PGCRC2	PGCRC1	PGCRC0
	PGCRC15 to PGCRC0 High-speed CRC operation results							
	0000H to FFFFH Store the high-speed CBC operation results.							

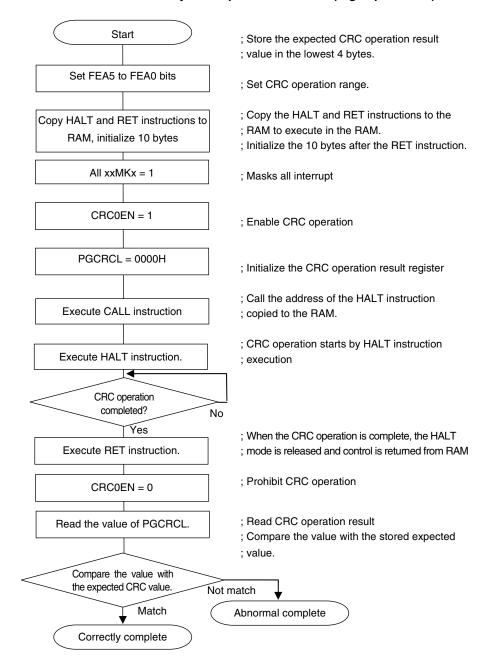

Caution The PGCRCL register can only be written if CRC0EN (bit 7 of the CRC0CTL register) = 1.

Figure 20-3 shows the flowchart of flash memory CRC operation function (high-speed CRC).

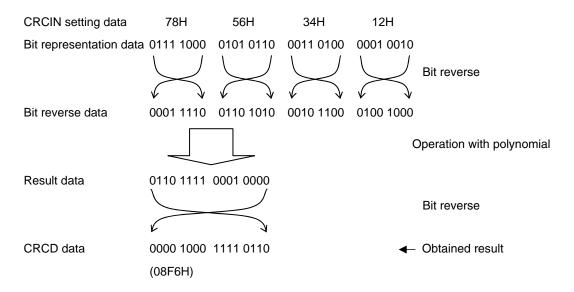
<Operation flow>

<R>

Figure 20-3. Flowchart of Flash Memory CRC Operation Function (High-speed CRC)

- Cautions 1. The CRC operation is executed only on the code flash.
 - 2. Store the expected CRC operation value in the area below the operation range in the code flash.
 - The CRC operation is enabled by executing the HALT instruction in the RAM area.Be sure to execute the HALT instruction in RAM area.

The expected CRC value can be calculated by using the Integrated Development Environment CubeSuite+. See the Integrated Development Environment CubeSuite+ user's manual for details.


20.3.2 CRC operation function (general-purpose CRC)

In order to guarantee safety during operation, the IEC61508 standard mandates the checking of data even while the CPU is operating.

In the R7F0C001G/L, R7F0C002G/L, a general CRC operation can be executed as a peripheral function while the CPU is operating. The general CRC can be used for checking various data in addition to the code flash memory area. The data to be checked can be specified by using software (a user-created program). CRC calculation function in the HALT mode can be used only during the DMA transmission.

The general CRC operation can be executed in the main system clock operation mode as well as the subsystem clock operation mode.

The CRC generator polynomial used is " $X^{16} + X^{12} + X^5 + 1$ " of CRC-16-CCITT. The data to be input is inverted in bit order and then calculated to allow for LSB-first communication. For example, if the data 12345678H is sent from the LSB, values are written to the CRCIN register in the order of 78H, 56H, 34H, and 12H, enabling a value of 08F6H to be obtained from the CRCD register. This is the result obtained by executing a CRC operation on the bit rows shown below, which consist of the data 12345678H inverted in bit order.

Caution Because the debugger rewrites the software break setting line to a break instruction during program execution, the CRC operation result differs if a software break is set in the CRC operation target area.

20.3.2.1 CRC input register (CRCIN)

CRCIN register is an 8-bit register that is used to set the CRC operation data of general-purpose CRC.

The possible setting range is 00H to FFH.

The CRCIN register can be set by an 8-bit memory manipulation instruction.

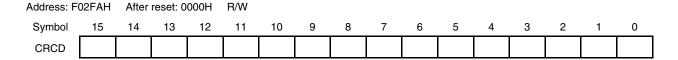
Reset signal generation clears this register to 00H.

Figure 20-4. Format of CRC Input Register (CRCIN)

Address: FI	FFACH A	After reset: 00H	H/W					
Symbol	7	6	5	4	3	2	1	0
CRCIN								
	Е	Bits 7 to 0			Fun	ction		
	00H to FFH		Data input.					

20.3.2.2 CRC data register (CRCD)

This register is used to store the CRC operation result of the general-purpose CRC.

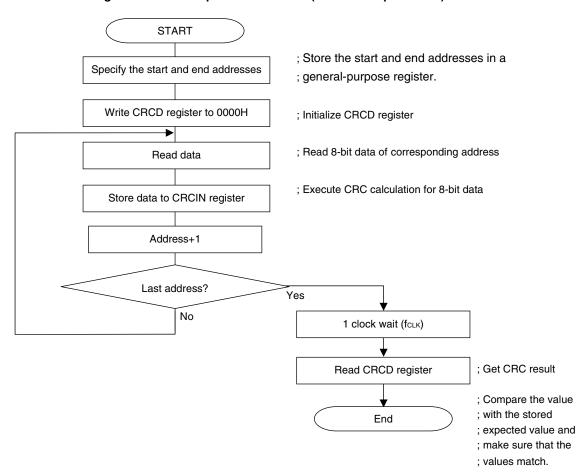

The setting range is 0000H to FFFFH.

After 1 clock of CPU/peripheral hardware clock (fclk) has elapsed from the time CRCIN register is written, the CRC operation result is stored to the CRCD register.

The CRCD register can be set by a 16-bit memory manipulation instruction.

Reset signal generation clears this register to 0000H.

Figure 20-5. Format of CRC Data Register (CRCD)



Cautions 1. Read the value written to CRCD register before writing to CRCIN register.

2. If conflict between writing and storing operation result to CRCD register occurs, the writing is ignored.

<Operation flow>

Figure 20-6. CRC Operation Function (General-Purpose CRC)

20.3.3 RAM parity error detection function

The IEC60730 standard mandates the checking of RAM data. A single-bit parity bit is therefore added to all 8-bit data in the R7F0C001G/L, R7F0C002G/L's RAM. By using this RAM parity error detection function, the parity bit is appended when data is written, and the parity is checked when the data is read. This function can also be used to trigger a reset when a parity error occurs.

20.3.3.1 RAM parity error control register (RPECTL)

This register is used to control parity error generation check bit and reset generation due to parity errors.

The RPECTL register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 20-7. Format of RAM Parity Error Control Register (RPECTL)

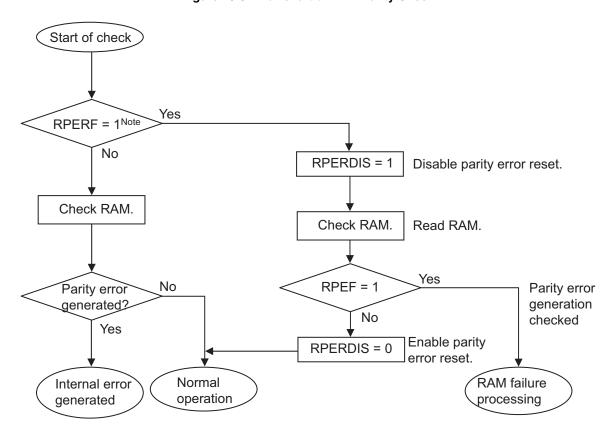
Address: F00F5H After reset: 00H		reset: 00H R	/W					
Symbol	<7>	6	5	4	3	2	1	<0>
RPECTL	RPERDIS	0	0	0	0	0	0	RPEF

RPERDIS	Parity error reset mask flag			
0	nable parity error resets.			
1	Disable parity error resets.			

RPEF	Parity error status flag				
0	o parity error has occurred.				
1	A parity error has occurred.				

Caution The parity bit is appended when data is written, and the parity is checked when the data is read.

Therefore, while RAM parity error resets are enabled (RPERDIS = 0), be sure to initialize RAM areas where data access is to proceed before reading data.


The RL78's CPU executes look-ahead due to the pipeline operation, the CPU might read an uninitialized RAM area that is allocated beyond the RAM used, which causes a RAM parity error.

Therefore, while RAM parity error resets are enabled (RPERDIS = 0), be sure to initialize the RAM area + 10 bytes when instructions are fetched from RAM areas.

- <R> Remarks 1. The parity error reset is enabled by default (RPERDIS = 0).
 - 2. Even if the parity error reset is disabled (RPERDIS = 1), the RPEF flag will be set (1) if a parity error occurs. If parity error resets are enabled (RPERDIS = 0) with RPEF set to 1, a parity error reset is generated when the RPERDIS bit is cleared to 0.
 - 3. The RPEF flag in the RPECTL register is set (1) when the RAM parity error occurs and cleared (0) by writing 0 to it or by any reset source. When RPEF = 1, the value is retained even if RAM for which no parity error has occurred is read.
 - **4.** The general registers are not included for RAM parity error detection.

<R>

Figure 20-8. Flowchart of RAM Parity Check

Note To check internal reset status using a RAM parity error, see CHAPTER 17 RESET FUNCTION.

20.3.4 RAM guard function

In order to guarantee safety during operation, the IEC61508 standard mandates that important data stored in the RAM be protected, even if the CPU freezes.

This RAM guard function is used to protect data in the specified memory space.

If the RAM guard function is specified, writing to the specified RAM space is disabled, but reading from the space can be carried out as usual.

20.3.4.1 Invalid memory access detection control register (IAWCTL)

This register is used to control the detection of invalid memory access and RAM/SFR guard function.

GRAM1 and GRAM0 bits are used in RAM guard function.

The IAWCTL register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 20-9. Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: F	0078H After i	reset: 00H R	W					
Symbol	7	6	5	4	3	2	1	0
IAWCTL	IAWEN	0	GRAM1	GRAM0	0	GPORT	GINT	GCSC

GRAM1	GRAM0	RAM guard space ^{Note}					
0	0	sabled. RAM can be written to.					
0	1	he 128 bytes starting at the RAM address					
1	0	The 256 bytes starting at the RAM address					
1	1	The 512 bytes starting at the RAM address					

Note The RAM start address differs depending on the size of the RAM provided with the product.

20.3.5 SFR guard function

In order to guarantee safety during operation, the IEC61508 standard mandates that important SFRs be protected from being overwritten, even if the CPU freezes.

This SFR guard function is used to protect data in the control registers used by the port function, interrupt function, clock control function, voltage detection function, and RAM parity error detection function.

If the SFR guard function is specified, writing to the specified SFRs is disabled, but reading from the SFRs can be carried out as usual.

20.3.5.1 Invalid memory access detection control register (IAWCTL)

This register is used to control the detection of invalid memory access and RAM/SFR guard function.

GPORT, GINT and GCSC bits are used in SFR guard function.

The IAWCTL register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 20-10. Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: Fo	0078H After i	reset: 00H R	/W					
Symbol	7	6	5	4	3	2	1	0
IAWCTL	IAWEN	0	GRAM1	GRAM0	0	GPORT	GINT	GCSC

GPORT	Control registers of port function guard
0	Disabled. Control registers of port function can be read or written to.
1	Enabled. Writing to control registers of port function is disabled. Reading is enabled.
	[Guarded SFR] PMxx, PUxx, PIMxx, POMxx, PMCxx, ADPC, PIOR, PFSEGxx, ISCLCD Note 1

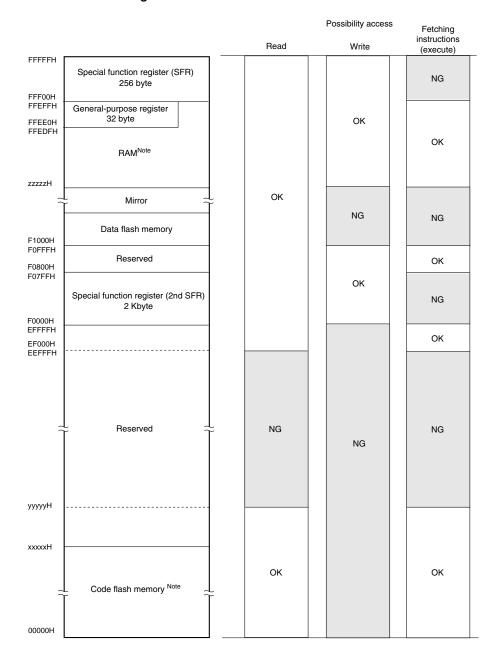
GINT	Registers of interrupt function guard				
0	Disabled. Registers of interrupt function can be read or written to.				
1	Enabled. Writing to registers of interrupt function is disabled. Reading is enabled.				
	[Guarded SFR] IFxx, MKxx, PRxx, EGPx, EGNx				

GCSC Notes 2	Control registers of clock control function, voltage detector and RAM parity error detection function guard
0	Disabled. Control registers of clock control function, voltage detector and RAM parity error detection function can be read or written to.
1	Enabled. Writing to control registers of clock control function, voltage detector and RAM parity error detection function is disabled. Reading is enabled.
	[Guarded SFR] CMC, CSC, OSTS, CKC, PERx, OSMC, LVIM, LVIS, RPECTL

Notes 1. Pxx (Port register) is not guarded.

2. Clear GCSC bit to 0, during self programming /serial programming.

20.3.6 Invalid memory access detection function


The IEC60730 standard mandates checking that the CPU and interrupts are operating correctly.

The illegal memory access detection function triggers a reset if a memory space specified as access-prohibited is accessed.

The illegal memory access detection function applies to the areas indicated by NG in Figure 20-11.

<R>

Figure 20-11. Invalid access detection area

<R> Note The following table lists the code flash memory, RAM, and lowest detection address for each product:

The fellenting table lists and obtain memory, it is any and to react action and are seen product.										
Products	Code flash memory	RAM	Detected lowest address							
	(00000H to xxxxxH)	(zzzzzH to FFEFFH)	for read/instruction fetch							
			(execution) (yyyyyH)							
R7F0C001G,	16384 × 8 bit	1024 × 8 bit	10000H							
R7F0C001L	(00000H to 03FFFH)	(FFB00H to FFEFFH)								
R7F0C002G,	32768 × 8 bit	1536 × 8 bit	10000H							
R7F0C002L	(00000H to 07FFFH)	(FF900H to FFEFFH)								

20.3.6.1 Invalid memory access detection control register (IAWCTL)

This register is used to control the detection of invalid memory access and RAM/SFR guard function.

IAWEN bit is used in invalid memory access detection function.

The IAWCTL register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 20-12. Format of Invalid Memory Access Detection Control Register (IAWCTL)

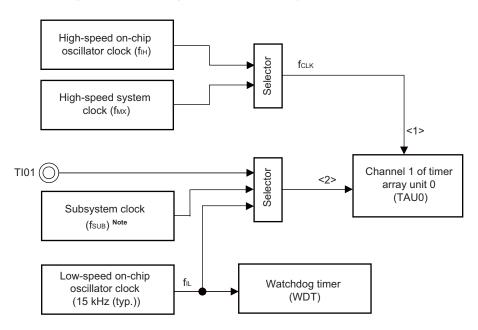
Address: F0078H After reset: 00H Symbol 2 0 5 4 3 1 **IAWCTL** IAWEN 0 GRAM1 GRAM0 0 **GPORT GINT GCSC**

IAWEN Note	Control of invalid memory access detection						
0	Disable the detection of invalid memory access.						
1	Enable the detection of invalid memory access.						

Note Only writing 1 to the IAWEN bit is enabled, not writing 0 to it after setting it to 1.

Remark By specifying WDTON = 1 for the option byte, the invalid memory access function is always enabled regardless of the setting for the IAWEN bit. (For details, see **CHAPTER 22 OPTION BYTE**.)

<R> 20.3.7 Frequency detection function


The IEC60730 standard mandates checking that the oscillation frequency is correct.

By using the CPU/peripheral hardware clock frequency (fclk) and measuring the pulse width of the input signal to channel 1 of the timer array unit 0 (TAU0), whether the proportional relationship between the two clock frequencies is correct can be determined. Note that, however, if one or both clock operations are completely stopped, the proportional relationship between the clocks cannot be determined.

<Clocks to be compared>

- <1> CPU/peripheral hardware clock frequency (fclk):
 - High-speed on-chip oscillator clock (fin)
 - High-speed system clock (fmx)
- <2> Input to channel 1 of the timer array unit
 - Timer input to channel 1 (TI01)
 - Low-speed on-chip oscillator clock (fil: 15 kHz (typ.))
 - Subsystem clock (fsub) Note

Figure 20-13. Configuration of Frequency Detection Function

<Operational overview>

Whether the clock frequency is correct or not can be judged by measuring the pulse interval under the following conditions:

- The high-speed on-chip oscillator clock (f_{IH}) or the external X1 oscillation clock (f_{MX}) is selected as the CPU/peripheral hardware clock (f_{CLK}).
- The low-speed on-chip oscillator clock (fil: 15 kHz) is selected as the timer input for channel 1 of timer array unit 0 (TAU0).

If input pulse interval measurement results in an abnormal value, it can be concluded that the clock frequency is abnormal.

For how to execute input pulse interval measurement, see 6.8.4 Operation as input pulse interval measurement.

Note Can only be selected in the products incorporating the subsystem clock.

20.3.7.1 Timer input select register 0 (TIS0)

This register is used to select the timer input of channel 1.

By selecting the low-speed on-chip oscillator clock for the timer input, its pulse width can be measured to determine whether the proportional relationship between the low-speed on-chip oscillator clock and the timer operation clock is correct.

The TIS0 register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 20-14. Format of Timer Input Select Register 0 (TIS0)

Address: F0074H		After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
TIS0	0	0	0	0	0	TIS02	TIS01	TIS00

TIS02	TIS01	TIS00	Selection of timer input used with channel 1			
0	0	0	Input signal of timer input pin (TI01)			
1	0	0	Low-speed on-chip oscillator clock (fil.)			
1 0 1 Subsystem			Subsystem clock (fsuB)			
Other than the above		ove	Setting prohibited			

<R> 20.3.8 A/D test function

The IEC60730 standard mandates testing the A/D converter. The A/D test function checks whether or not the A/D converter is operating normally by executing A/D conversions of the A/D converter's positive and negative reference voltages, analog input channel (ANI), temperature sensor output voltage, and the internal reference voltage. For details of the check method, see the safety function (A/D test) application note (R01AN0955).

The analog multiplexer can be checked using the following procedure.

- <1> Select the ANIx pin for A/D conversion using the ADTES register (ADTES1 = 0, ADTES0 = 0).
- <2> Perform A/D conversion for the ANIx pin (conversion result 1-1).
- <3> Select the A/D converter's negative reference voltage for A/D conversion using the ADTES register (ADTES1 = 1, ADTES0 = 0)
- <4> Perform A/D conversion of the negative reference voltage of the A/D converter (conversion result 2-1).
- <5> Select the ANIx pin for A/D conversion using the ADTES register (ADTES1 = 0, ADTES0 = 0).
- <6> Perform A/D conversion for the ANIx pin (conversion result 1-2).
- <7> Select the A/D converter's positive reference voltage for A/D conversion using the ADTES register (ADTES1 = 1, ADTES0 = 1)
- <8> Perform A/D conversion of the positive reference voltage of the A/D converter (conversion result 2-2).
- <9> Select the ANIx pin for A/D conversion using the ADTES register (ADTES1 = 0, ADTES0 = 0).
- <10> Perform A/D conversion for the ANIx pin (conversion result 1-3).
- <11> Check that the conversion results 1-1, 1-2, and 1-3 are equal.
- <12> Check that the A/D conversion result 2-1 is all zero and conversion result 2-2 is all one.

Using the procedure above can confirm that the analog multiplexer is selected and all wiring is connected.

- **Remarks 1.** If the analog input voltage is variable during A/D conversion in steps <1> to <10> above, use another method to check the analog multiplexer.
 - 2. The conversion results might contain an error. Consider an appropriate level of error when comparing the conversion results.

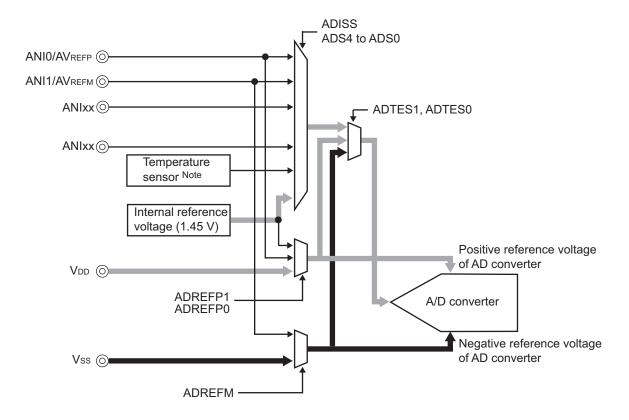


Figure 20-15. Configuration of A/D Test Function

Note This setting can be used only in HS (high-speed main) mode.

<R> 20.3.8.1 A/D test register (ADTES)

This register is used to select the A/D converter's positive reference voltage, A/D converter's negative reference voltage, analog input channel (ANIxx), temperature sensor output voltage, or internal reference voltage (1.45 V) as the target of A/D conversion.

When using the A/D test function, specify the following settings:

- Select negative reference voltage as the target of A/D conversion for zero-scale measurement.
- Select positive reference voltage as the target of A/D conversion for full-scale measurement.

The ADTES register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 20-16. Format of A/D Test Register (ADTES)

Address	: F0013H	After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
ADTES	0	0	0	0	0	0	ADTES1	ADTES0

ADTES1	ADTES0	A/D conversion target			
0	0	ANIxx/temperature sensor output voltage Note/internal reference voltage (1.45 V) Note (This is specified using the analog input channel specification register (ADS).)			
1	0	Negative reference voltage (selected with the ADREFM bit in ADM2)			
1	1	Positive reference voltage (selected with the ADREFP1 or ADREFP0 bit in ADM2)			
Other than	the above	Setting prohibited			

Note Temperature sensor output voltage and internal reference voltage (1.45 V) can be used only in HS (high-speed main) mode.

<R> 20.3.8.2 Analog input channel specification register (ADS)

This register specifies the input channel of the analog voltage to be A/D converted.

Set A/D test register (ADTES) to 00H when measuring the ANIxx/temperature sensor output voltage/internal reference voltage (1.45 V).

The ADS register can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

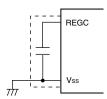
Figure 20-17. Format of Analog Input Channel Specification Register (ADS)

Address: FFF31H After reset: 00H		After reset: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
ADS	ADISS	0	0	ADS4	ADS3	ADS2	ADS1	ADS0
-	1							

ADISS	ADS4	ADS3	ADS2	ADS1	ADS0	Analog input channel	Input source
0	0	0	0	0	0	ANI0	P20/ANI0/AVREFP pin
0	0	0	0	0	1	ANI1	P21/ANI1/AVREFM pin
0	1	0	0	0	0	ANI16	P41/ANI16 pin
0	1	0	0	0	1	ANI17	P120/ANI17 pin
0	1	0	0	1	0	ANI18	P13/ANI18 pin
0	1	0	0	1	1	ANI19	P14/ANI19 pin
0	1	0	1	0	0	ANI20	P142/ANI20 pin
0	1	0	1	0	1	ANI21	P143/ANI21 pin
0	1	0	1	1	0	ANI22	P144/ANI22 pin
0	1	0	1	1	1	ANI23	P145/ANI23 pin
1	0	0	0	0	0	_	Temperature sensor output voltage Note
1	0	0	0	0	1	-	Internal reference voltage (1.45 V) Note
	Other than the above						ited

Note Can only be used in HS (high-speed main) mode.

Cautions 1. Be sure to clear bits 5 and 6 to 0.


- 2. Select input mode for the ports which are set to analog input with the ADPC and PMC registers, using the port mode registers 1, 2, 4, 12, and 14 (PM1, PM2, PM4, PM12, and PM14).
- 3. Do not use the ADS register to set the pins which should be set as digital I/O with the A/D port configuration register (ADPC).
- 4. Do not use the ADS register to set the pins which should be set as digital I/O with the port mode control registers 1, 4, 12, and 14 (PMC1, PMC4, PMC12, and PMC14).
- 5. Only rewrite the value of the ADISS bit while conversion operation is stopped (ADCS = 0, ADCE = 0).
- 6. If using AVREFP as the + side reference voltage source of the A/D converter, do not select ANI0 as an A/D conversion channel.
- 7. If using AVREFM as the side reference voltage source of the A/D converter, do not select ANI1 as an A/D conversion channel.
- 8. When ADISS is 1, the internal reference voltage (1.45 V) cannot be used for the positive reference voltage. In addition, the first conversion result obtained after setting ADISS to 1 is not available. For detailed setting flow, see 11.7.4 Setup when temperature sensor

- output voltage/internal reference voltage is selected (example for software trigger mode and one-shot conversion mode).
- 9. If a transition is made to STOP mode or a transition is made to HALT mode during CPU operation with subsystem clock, do not set ADISS to 1. When ADISS is 1, the A/D converter reference voltage current (IADREF) shown in 27.3.2 Supply current characteristics is added.

CHAPTER 21 REGULATOR

21.1 Regulator Overview

The R7F0C001G/L, R7F0C002G/L contain a circuit for operating the device with a constant voltage. At this time, in order to stabilize the regulator output voltage, connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.

Caution Keep the wiring length as short as possible for the broken-line part in the above figure.

The regulator output voltage, see Table 21-1.

Table 21-1. Regulator Output Voltage Conditions

Mode	Output Voltage	Condition
LV (low voltage main) mode	1.8 V	-
LS (low-speed main) mode		
HS (high-speed main) mode	1.8 V	In STOP mode
		When both the high-speed system clock (f _{MX}) and the high-speed on-chip oscillator clock (f _{IH}) are stopped during CPU operation with the subsystem clock (f _{XT})
		When both the high-speed system clock (f _{MX}) and the high-speed on-chip oscillator clock (f _{IH}) are stopped during the HALT mode when the CPU operation with the subsystem clock (f _{XT}) has been set
	2.1 V	Other than above (include during OCD mode) ^{Note}

Note When it shifts to the subsystem clock operation or STOP mode during the on-chip debugging, the regulator output voltage is kept at 2.1 V (not decline to 1.8 V).

CHAPTER 22 OPTION BYTE

22.1 Functions of Option Bytes

Addresses 000C0H to 000C3H of the flash memory of the R7F0C001G/L, R7F0C002G/L form an option byte area.

Option bytes consist of user option byte (000C0H to 000C2H) and on-chip debug option byte (000C3H).

Upon power application or resetting and starting, an option byte is automatically referenced and a specified function is set. When using the product, be sure to set the following functions by using the option bytes.

For the bits to which no function is allocated, be sure to set the value specified in this manual.

22.1.1 User option byte (000C0H to 000C2H)

(1) 000C0H

- O Operation of watchdog timer
 - Operation is stopped or enabled in the HALT or STOP mode.
- O Setting of overflow time of watchdog timer
- O Operation of watchdog timer
 - Operation is stopped or enabled.
- O Setting of window open period of watchdog timer
- O Setting of interval interrupt of watchdog timer
 - · Used or not used

<R> (2) 000C1H

- O Setting of LVD operation mode
 - Interrupt & reset mode.
 - Reset mode.
 - · Interrupt mode.
 - LVD off (by controlling the externally input reset signal on the RESET pin)
- O Setting of LVD detection level (VLVDH, VLVDL, VLVD)

Caution After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 27.4 AC Characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal, before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H).

(3) 000C2H

- O Setting of flash operation mode
 - · LV (low voltage main) mode
 - LS (low speed main) mode
 - HS (high speed main) mode
- O Setting of the frequency of the high-speed on-chip oscillator
- <R> Select from 24 MHz/16 MHz/12 MHz/8 MHz/6 MHz/4 MHz/3 MHz/2 MHz/1 MHz (TYP.).

22.1.2 On-chip debug option byte (000C3H)

- O Control of on-chip debug operation
 - On-chip debug operation is disabled or enabled.
- O Handling of data of flash memory in case of failure in on-chip debug security ID authentication
 - Data of flash memory is erased or not erased in case of failure in on-chip debug security ID authentication.

22.2 Format of User Option Byte

The format of user option byte is shown below.

Figure 22-1. Format of User Option Byte (000C0H)

Address: 000C0H

7	6	5	4	3	2	1	0
WDTINT	WINDOW1	WINDOW0	WDTON	WDCS2	WDCS1	WDCS0	WDSTBYON

WDTINT	Use of interval interrupt of watchdog timer						
0	Interval interrupt is not used.						
1	Interval interrupt is generated when 75% + 1/2f _{IL} of the overflow time is reached.						

WINDOW1	WINDOW0	Watchdog timer window open period ^{Note}
0	0	Setting prohibited
0	1	50%
1	0	75%
1	1	100%

WDTON	Operation control of watchdog timer counter
0	Counter operation disabled (counting stopped after reset)
1	Counter operation enabled (counting started after reset)

WDCS2	WDCS1	WDCS0	Watchdog timer overflow time
			(fil = 17.25 kHz (MAX.))
0	0	0	2 ⁶ /f _{IL} (3.71 ms)
0	0	1	2 ⁷ /f _{IL} (7.42 ms)
0	1	0	2 ⁸ /f _{IL} (14.84 ms)
0	1	1	2 ⁹ /f _I ∟ (29.68 ms)
1	0	0	2 ¹¹ /fiL (118.72 ms)
1	0	1	2 ¹³ /f _{IL} (474.90 ms)
1	1	0	2¹⁴/fi∟ (949.80 ms)
1	1	1	2¹⁶/fi∟ (3799.19 ms)

WDSTBYON	Operation control of watchdog timer counter (HALT/STOP mode)
0	Counter operation stopped in HALT/STOP mode ^{Note}
1	Counter operation enabled in HALT/STOP mode

Note The window open period is 100% when WDSTBYON = 0, regardless the value of the WINDOW1 and WINDOW0 bits.

Caution The watchdog timer continues its operation even during self-programming or data flash rewrite. During processing, the interrupt acknowledge time is delayed. Set the overflow time and window size taking this delay into consideration.

Remark fil: Low-speed on-chip oscillator clock frequency

<R>

Figure 22-2. Format of User Option Byte (000C1H) (1/2)

Address: 000C1H

7	6	5	4	3	2	1	0
VPOC2	VPOC1	VPOC0	1	LVIS1	LVIS0	LVIMDS1	LVIMDS0

• LVD setting (interrupt & reset mode)

Det	ection volt	age	Option byte setting value								
VL	VDH	VLVDL	VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting		
Rising edge	Falling edge	Falling edge						LVIMDS1	LVIMDS0		
1.77 V	1.73 V	1.63 V	0	0	0	1	0	1	0		
1.88 V	1.84 V					0	1				
2.92 V	2.86 V					0	0				
1.98 V	1.94 V	1.84 V		0	1	1	0				
2.09 V	2.04 V					0	1				
3.13 V	3.06 V					0	0				
2.61 V	2.55 V	2.45 V		1	0	1	0				
2.71 V	2.65 V					0	1				
3.75 V	3.67 V					0	0				
2.92 V	2.86 V	2.75 V		1	1	1	0				
3.02 V	2.96 V					0	1				
4.06 V	3.98 V					0	0				
Oth	er than ab	ove	Setting prohib	oited							

• LVD setting (reset mode)

	n voltage			Optio	n byte setting	value		
Vı	V _{LVD}		VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting
Rising edge	Falling edge						LVIMDS1	LVIMDS0
1.67 V	1.63 V	0	0	0	1	1	1	1
1.77 V	1.73 V		0	0	1	0		
1.88 V	1.84 V		0	1	1	1		
1.98 V	1.94 V		0	1	1	0		
2.09 V	2.04 V		0	1	0	1		
2.50 V	2.45 V		1	0	1	1		
2.61 V	2.55 V		1	0	1	0		
2.71 V	2.65 V		1	0	0	1		
2.81 V	2.75 V		1	1	1	1		
2.92 V	2.86 V		1	1	1	0		
3.02 V	2.96 V		1	1	0	1		
3.13 V	3.06 V		0	1	0	0		
3.75 V	3.67 V		1	0	0	0		
4.06 V	3.98 V		1	1	0	0		
Other tha	an above	Setting prohib	oited					

Remarks 1. For details on the LVD circuit, see CHAPTER 19 VOLTAGE DETECTOR.

2. The detection voltage is a typical value. For details, see 27.6.4 LVD circuit characteristics.

(Cautions are listed on the next page.)

<R>

Figure 22-2. Format of User Option Byte (000C1H) (2/2)

Address: 000C1H

7	6	5	4	3	2	1	0
VPOC2	VPOC1	VPOC0	1	LVIS1	LVIS0	LVIMDS1	LVIMDS0

• LVD setting (interrupt mode)

Detection	n voltage	Option byte setting value							
Vı	_VD	VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting	
Rising edge	Falling edge						LVIMDS1	LVIMDS0	
1.67 V	1.63 V	0	0	0	1	1	0	1	
1.77 V	1.73 V		0	0	1	0			
1.88 V	1.84 V		0	1	1	1			
1.98 V	1.94 V		0	1	1	0			
2.09 V	2.04 V		0	1	0	1			
2.50 V	2.45 V		1	0	1	1			
2.61 V	2.55 V		1	0	1	0			
2.71 V	2.65 V		1	0	0	1			
2.81 V	2.75 V		1	1	1	1			
2.92 V	2.86 V		1	1	1	0			
3.02 V	2.96 V		1	1	0	1			
3.13 V	3.06 V		0	1	0	0			
3.75 V	3.67 V		1	0	0	0			
4.06 V	3.98 V		1	1	0	0			
Other tha	an above	Setting prohib	oited						

• LVD off (by controlling the externally input reset signal on the RESET pin)

Detection	n voltage	Option byte setting value						
V _{LVD}		VPOC2	VPOC1	VPOC0	LVIS1	LVIS0	Mode	setting
Rising edge	Falling edge						LVIMDS1	LVIMDS0
_	-	1	×	×	×	×	0/1	1
Other than above		Setting prohib	oited					

Cautions 1. Be sure to set bit 4 to "1".

2. After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 27.4 AC Characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal, before the voltage falls below the operating range.

The range of operating voltage varies with the setting of the user option byte (000C2H).

Remarks 1. x: don't care

<R>

<R>

- 2. For details on the LVD circuit, see CHAPTER 19 VOLTAGE DETECTOR.
- 3. The detection voltage is a typical value. For details, see 27.6.4 LVD circuit characteristics.

<R>

Figure 22-3. Format of Option Byte (000C2H)

Address: 000C2H

7	6	5	4	3	2	1	0
CMODE1	CMODE0	1	0	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0

CMODE1	CMODE0	Setting of flash operation mode					
			Operating voltage				
			frequency range	range			
0	0	LV (low voltage main) mode	1 to 4 MHz	1.6 to 5.5 V			
1	0	LS (low speed main) mode	1 to 8 MHz	1.8 to 5.5 V			
1	1	HS (high speed main) mode	1 to 16 MHz	2.4 to 5.5 V			
			1 to 24 MHz	2.7 to 5.5 V			
Other than above		Setting prohibited					

FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator
0	0	0	0	24 MHz
1	0	0	1	16 MHz
0	0	0	1	12 MHz
1	0	1	0	8 MHz
0	0	1	0	6 MHz
1	0	1	1	4 MHz
0	0	1	1	3 MHz
1	1	0	0	2 MHz
1	1	0	1	1 MHz
	Other tha	an above		Setting prohibited

Cautions 1. Be sure to set 10B to bits 5 and 4.

2. The ranges of operating frequency and operating voltage vary depending on the flash operation mode. For details, see 27.4 AC Characteristics.

22.3 Format of On-chip Debug Option Byte

The format of on-chip debug option byte is shown below.

Figure 22-4. Format of On-chip Debug Option Byte (000C3H)

Address: 000C3H

7	6	5	4	3	2	1	0
OCDENSET	0	0	0	0	1	0	OCDERSD

OCDENSET	OCDERSD	Control of on-chip debug operation
0	0	Disables on-chip debug operation.
0	1	Setting prohibited
1	0	Enables on-chip debugging.
		Erases data of flash memory in case of failures in authenticating on-chip debug
		security ID.
1	1	Enables on-chip debugging.
		Does not erase data of flash memory in case of failures in authenticating on-chip debug security ID.

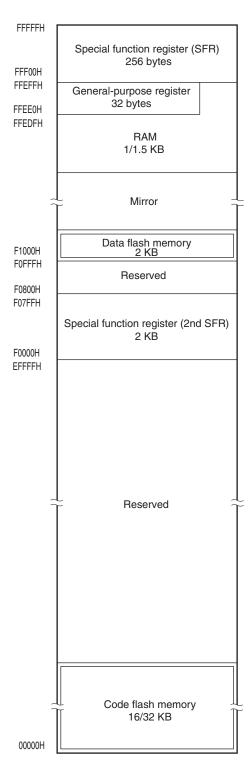
Caution Bits 7 and 0 (OCDENSET and OCDERSD) can only be specified a value. Be sure to set 000010B to bits 6 to 1.

Remark The value on bits 3 to 1 will be written over when the on-chip debug function is in use and thus it will become unstable after the setting.

However, be sure to set the default values (0, 1, and 0) to bits 3 to 1 at setting.

22.4 Setting of Option Byte

The user option byte and on-chip debug option byte can be set using the assembler linker option, in addition to describing to the source. When doing so, the contents set by using the linker option take precedence, even if descriptions exist in the source, as mentioned below.


A software description example of the option byte setting is shown below.

OPT	CSEG	OPT_BYT	Έ	
	DB	36H	;	Does not use interval interrupt of watchdog timer,
			;	Enables watchdog timer operation,
			;	Window open period of watchdog timer is 50%,
			;	Overflow time of watchdog timer is 29/fil.,
			;	Stops watchdog timer operation during HALT/STOP mode
	DB	1AH	;	Select 1.63 V for VLVDL
			;	Select rising edge 1.77 V, falling edge 1.73 V for VLVDH
			;	Select the interrupt & reset mode as the LVD operation mode
	DB	2DH	;	Select the LV (low voltage main) mode as the flash operation mode
				and 1 MHz as the frequency of the high-speed on-chip oscillator clock
	DB	85H	;	Enables on-chip debug operation, does not erase flash memory
				data when security ID authorization fails

Caution To specify the option byte by using assembly language, use OPT_BYTE as the relocation attribute name of the CSEG pseudo instruction.

CHAPTER 23 FLASH MEMORY

The R7F0C001G/L, R7F0C002G/L incorporates the flash memory to which a program can be written, erased, and overwritten. The flash memory includes the "code flash memory", in which programs can be executed, and the "data flash memory", an area for storing data.

<R> The following methods for programming the flash memory are available.

The code flash memory can be rewritten to through serial programming using a flash memory programmer or an external device (UART communication), or through self-programming.

- Serial programming using flash memory programmer (see 23.1)
 Data can be written to the flash memory on-board or off-board by using a dedicated flash memory programmer.
- Serial programming using external device (UART communication) (see 23.2)
 Data can be written to the flash memory on-board through UART communication with an external device (microcontroller or ASIC).
- Self-programming (see 23.6)
 The user application can execute self-programming of the code flash memory by using the flash self-programming library.

The data flash memory can be rewritten to by using the flash data library during user program execution (background operation). For access and writing to the data flash memory, see **23.8 Data Flash**.

23.1 Writing to Flash Memory by Using Flash Memory Programmer

The following dedicated flash memory programmer can be used to write data to the internal flash memory of the R7F0C001G/L, R7F0C002G/L.

- PG-FP5, FL-PR5
- E1 on-chip debugging emulator

Data can be written to the flash memory on-board or off-board, by using a dedicated flash memory programmer.

(1) On-board programming

The contents of the flash memory can be rewritten after the R7F0C001G/L, R7F0C002G/L has been mounted on the target system. The connectors that connect the dedicated flash memory programmer must be mounted on the target system.

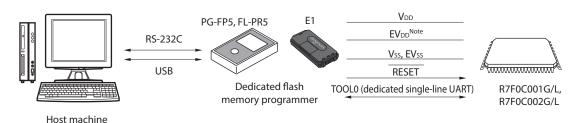
(2) Off-board programming

Data can be written to the flash memory with a dedicated program adapter (FA series) before the R7F0C001G/L, R7F0C002G/L is mounted on the target system.

Remark FL-PR5 and FA series are products of Naito Densei Machida Mfg. Co., Ltd.

Table 23-1. Wiring Between R7F0C001G/L, R7F0C002G/L and Dedicated Flash Memory Programmer

	Pin Configuration of De	dicated Flas	Pin Name	Pin No.			
				48-pin	64-pin		
	Signal Name	I/O	Pin Function		LQFP	LQFP	
PG-FP5,	E1 on-chip				(7x7)	(10x10)	
FL-PR5	debugging emulator						
_	TOOL0	I/O	Transmit/receive signal	TOOL0/	3	5	
SI/RxD –		I/O	Transmit/receive signal	P40			
SCK	-	Output	-	-	_	-	
CLK	-	Output	=	-	=	-	
-	RESET	Output	Reset signal	RESET	4	6	
/RESET	-	Output					
FLMD0	-	Output	Mode signal	-	=	-	
	VDD		V _{DD} voltage generation/ power monitoring	V _{DD}	12	15	
	GND	_	Ground	Vss	11	13	
				EVss	_	14	
				REGC Note	10	12	
	EMV _{DD}	-	Driving power for TOOL pin	V _{DD}	12	-	
				EV _{DD}	=	16	


<R> Note Connect REGC pin to ground via a capacitor (0.47 to 1 μ F).

Remark Pins that are not indicated in the above table can be left open when using the flash memory programmer for flash programming.

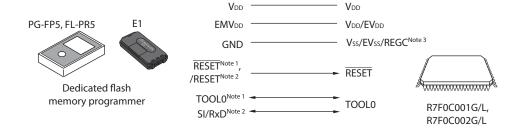
23.1.1 Programming Environment

The environment required for writing a program to the flash memory of the R7F0C001G/L, R7F0C002G/L is illustrated below.

Figure 23-1. Environment for Writing Program to Flash Memory

Note 64-pin products only.

A host machine that controls the dedicated flash memory programmer is necessary.


To interface between the dedicated flash memory programmer and the R7F0C001G/L, R7F0C002G/L, the TOOL0 pin is used for manipulation such as writing and erasing via a dedicated single-line UART.

23.1.2 Communication Mode

Communication between the dedicated flash memory programmer and the R7F0C001G/L, R7F0C002G/L is established by serial communication using the TOOL0 pin via a dedicated single-line UART of the R7F0C001G/L, R7F0C002G/L.

Transfer rate: 1 M, 500 k, 250 k, 115.2 kbps

Figure 23-2. Communication with Dedicated Flash Memory Programmer

- Notes 1. When using E1 on-chip debugging emulator.
 - 2. When using PG-FP5 or FL-PR5.
 - **3.** Connect REGC pin to ground via a capacitor (0.47 to 1 μ F).

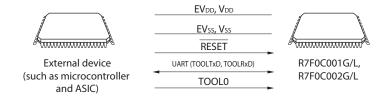
The dedicated flash memory programmer generates the following signals for the R7F0C001G/L, R7F0C002G/L. See the manual of PG-FP5, FL-PR5, or E1 on-chip debugging emulator for details.

Table 23-2. Pin Connection

<r></r>		R7F0C001G/L, R7F0C002G/L				
	Signal	Signal Name		Pin Function	Pin Name	
	PG-FP5, E1 on-chip FL-PR5 debugging emulator					
	V	V _{DD}		V _{DD} V _{DD} voltage generation/power monitoring		V _{DD}
	GI	GND		Ground	Vss, EVss, REGC Note	
	EM	V _{DD}	-	Driving power for TOOL0 pin	VDD, EVDD	
	/RESET	-	Output	Reset signal	RESET	
	- RESET - TOOL0		Output			
			I/O	Transmit/receive signal	TOOL0	
	SI/RxD	_	I/O	Transmit/receive signal		

- <R> **Note** Connect REGC pin to ground via a capacitor (0.47 to 1 μ F).
- <R>> Caution Pins to be connected differ with the product. For details, see Table 23-1.

23.2 Writing to Flash Memory by Using External Device (that Incorporates UART)

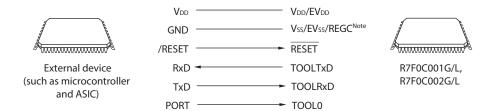

On-board data writing to the internal flash memory is possible by using the R7F0C001G/L, R7F0C002G/L and an external device (a microcontroller or ASIC) connected to a UART.

On the development of flash memory programmer by user, refer to the RL78 microcontroller (RL78 Protocol A) Programmer Edition Application Note (R01AN0815).

23.2.1 Programming Environment

The environment required for writing a program to the flash memory of the R7F0C001G/L, R7F0C002G/L is illustrated below.

Figure 23-3. Environment for Writing Program to Flash Memory


Processing to write data to or delete data from the R7F0C001G/L, R7F0C002G/L by using an external device is performed on-board. Off-board writing is not possible.

23.2.2 Communication Mode

Communication between the external device and the R7F0C001G/L, R7F0C002G/L is established by serial communication using the TOOLTxD and TOOLRxD pins via the dedicated UART of the R7F0C001G/L, R7F0C002G/L.

Transfer rate: 1 M, 500 k, 250 k, 115.2 kbps

Figure 23-4. Communication with External Device

<R> Note Connect REGC pin to ground via a capacitor (0.47 to 1 μ F).

The external device generates the following signals for the R7F0C001G/L, R7F0C002G/L.

Table 23-3. Pin Connection

<r></r>		E	R7F0C001G/L, R7F0C002G/L		
	Signal Name	I/O	Pin Function	Pin Name	
	V _{DD}	I/O	V _{DD} voltage generation/power monitoring	V _{DD} , EV _{DD}	
	GND	-	Ground	Vss, EVss, REGC Note	
	RESETOUT	Output	Reset signal output	RESET	
	RxD	Input	Receive signal	TOOLTxD	
	TxD	Output	Transmit signal	TOOLRxD	
	PORT	Output	Mode signal	TOOL0	

<R> **Note** Connect REGC pin to ground via a capacitor (0.47 to 1 μ F).

23.3 Connection of Pins on Board

To write the flash memory on-board by using the flash memory programmer, connectors that connect the dedicated flash memory programmer must be provided on the target system. First provide a function that selects the normal operation mode or flash memory programming mode on the board.

When the flash memory programming mode is set, all the pins not used for programming the flash memory are in the same status as immediately after reset. Therefore, if the external device does not recognize the state immediately after reset, the pins must be handled as described below.

Remark For flash programming mode, see 23.6 Self-Programming.

23.3.1 P40/TOOL0 pin

In the flash memory programming mode, connect this pin to the dedicated flash memory programmer via an external 1 $k\Omega$ pull-up resistor.

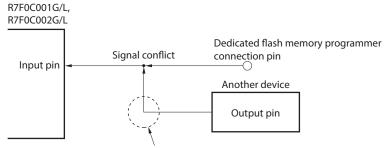
When this pin is used as the port pin, use that by the following method.

When used as an input pin: Input of low-level is prohibited for 1 ms period after external pin reset release.

Furthermore, when this pin is used via pull-down resistors, use the 500 k Ω or more

resistors.

When used as an output pin: When this pin is used via pull-down resistors, use the 500 k Ω or more resistors.


- Remarks 1. thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end for setting of the flash memory programming mode (see 27.11 Timing Specifications for Switching Flash Memory Programming Modes).
 - 2. The SAU and IICA pins are not used for communication between the R7F0C001G/L, R7F0C002G/L and dedicated flash memory programmer, because single-line UART (TOOL0 pin) is used.

23.3.2 RESET pin

Signal conflict will occur if the reset signal of the dedicated flash memory programmer and external device are connected to the RESET pin that is connected to the reset signal generator on the board. To prevent this conflict, isolate the connection with the reset signal generator.

The flash memory will not be correctly programmed if the reset signal is input from the user system while the flash memory programming mode is set. Do not input any signal other than the reset signal of the dedicated flash memory programmer and external device.

Figure 23-5. Signal Conflict (RESET Pin)

In the flash memory programming mode, a signal output by another device will conflict with the signal output by the dedicated flash memory programmer. Therefore, isolate the signal of another device.

23.3.3 Port pins

When the flash memory programming mode is set, all the pins not used for flash memory programming enter the same status as that immediately after reset. If external devices connected to the ports do not recognize the port status immediately after reset, the port pin must be connected to either to V_{DD} or EV_{DD}, or Vss or EVss, via a resistor.

23.3.4 REGC pin

Connect the REGC pin to GND via a capacitor (0.47 to 1 μ F) in the same manner as during normal operation. Also, use a capacitor with good characteristics, since it is used to stabilize internal voltage.

23.3.5 X1 and X2 pins

Connect X1 and X2 in the same status as in the normal operation mode.

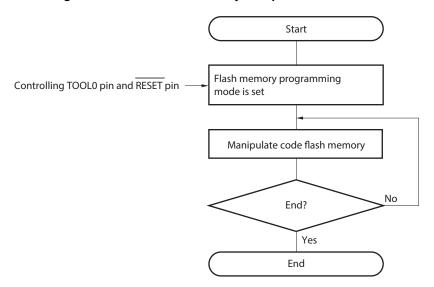
Remark In the flash memory programming mode, the high-speed on-chip oscillator clock (fih) is used.

23.3.6 Power supply

To use the supply voltage output of the flash memory programmer, connect the V_{DD} pin to V_{DD} of the flash memory programmer, and the V_{SS} pin to GND of the flash memory programmer.

To use the on-board supply voltage, connect in compliance with the normal operation mode.

However, when writing to the flash memory by using the flash memory programmer and using the on-board supply voltage, be sure to connect the V_{DD} and V_{SS} pins to V_{DD} and GND of the flash memory programmer to use the power monitor function with the flash memory programmer.


Supply the same other power supplies (EVDD, EVSS) as those VDD and VSS.

<R> 23.4 Serial Programming Method

23.4.1 Serial programming procedure

The following figure illustrates a flow for rewriting the code flash memory through serial programming.

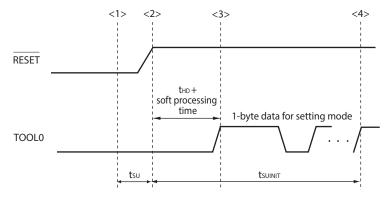
Figure 23-6. Code Flash Memory Manipulation Procedure

23.4.2 Flash memory programming mode

To rewrite the contents of the code flash memory through serial programming, specify the flash memory programming mode. To enter the mode, set as follows.

<Serial programming using the dedicated flash memory programmer>

Connect the R7F0C001G/L, R7F0C002G/L to a dedicated flash memory programmer. Communication from the dedicated flash memory programmer is performed to automatically switch to the flash memory programming mode.


<Serial programming using an external device (UART communication)>

Set the TOOL0 pin to the low level, and then cancel the reset (see **Table 23-4**). After that, enter flash memory programming mode according to the procedures <1> to <4> shown in **Figure 23-7**. For details, refer to the **R7F0C001G/L**, **R7F0C002G/Ls** (**RL78 Protocol A**) **Programmer Edition Application Note** (**R01AN0815**).

Table 23-4. Relationship between TOOL0 Pin and Operation Mode after Reset Release

TOOL0	Operation Mode
EV _{DD}	Normal operation mode
0 V	Flash memory programming mode

Figure 23-7. Setting of Flash Memory Programming Mode

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Baud rate setting by UART reception is completed.

Remark tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until an external reset ends

thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (the flash firmware processing time is excluded)

For details, see 27.11 Timing Specifications for Switching Flash Memory Programming Modes.

There are two flash memory programming modes: wide voltage mode and full speed mode. The supply voltage value applied to the microcontroller during write operations and the setting information of the user option byte for setting of the flash memory programming mode determine which mode is selected.

When a dedicated flash memory programmer is used for serial programming, setting the voltage on GUI selects the mode automatically.

Table 23-5. Programming Modes and Voltages at Which Data Can Be Written, Erased, or Verified

Power Supply Voltage (VDD)	User Option Byte Setting for So Programming	Flash Programming Mode	
	Flash Operation Mode	Operating Frequency	
$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	Blank state		Full speed mode
	HS (high speed main) mode	1 MHz to 32 MHz	Full speed mode
	LS (low speed main) mode	1 MHz to 8 MHz	Wide voltage mode
	LV (low voltage main) mode	1 MHz to 4 MHz	Wide voltage mode
$2.4~V \leq V_{DD} < 2.7~V$	Blank state		Full speed mode
	HS (high speed main) mode	1 MHz to 16 MHz	Full speed mode
	LS (low speed main) mode	1 MHz to 8 MHz	Wide voltage mode
	LV (low voltage main) mode	1 MHz to 4 MHz	Wide voltage mode
$1.8~V \leq V_{DD} < 2.4~V$	Blank state		Wide voltage mode
	LS (low speed main) mode	1 MHz to 8 MHz	Wide voltage mode
	LV (low voltage main) mode	1 MHz to 4 MHz	Wide voltage mode

Remarks 1. Using both the wide voltage mode and full speed mode imposes no restrictions on writing, erasing, or verification.

2. For details about communication commands, see 23.4.4 Communication commands.

23.4.3 Selecting communication mode

Communication modes of the R7F0C001G/L, R7F0C002G/L are as follows.

Table 23-6. Communication Modes

Communication Mode	Standard Setting ^{Note 1}			Pins Used	
	Port	Speed Note 2	Frequency	Multiply Rate	
1-line UART	UART	115200 bps,	_	-	TOOL0
(when flash memory		250000 bps,			
programmer is used,		500000 bps,			
or when external device is used)		1 Mbps			
Dedicated UART	UART	115200 bps,	=	-	TOOLTxD,
(when external device		250000 bps,			TOOLRxD
is used)		500000 bps,			
		1 Mbps			

- Notes 1. Selection items for Standard settings on GUI of the flash memory programmer.
 - 2. Because factors other than the baud rate error, such as the signal waveform slew, also affect UART communication, thoroughly evaluate the slew as well as the baud rate error.

23.4.4 Communication commands

The R7F0C001G/L, R7F0C002G/L executes serial programming through the commands listed in **Table 23-7.**

The signals sent from the dedicated flash memory programmer or external device to the R7F0C001G/L, R7F0C002G/L are called commands, and programming functions corresponding to the commands are executed. For details, refer to the RL78 microcontroller (RL78 Protocol A) Programmer Edition Application Note (R01AN0815).

Table 23-7. Flash Memory Control Commands

Classification	Command Name	Function	
Verify	Verify	Compares the contents of a specified area of the flash memory with data transmitted from the programmer.	
Erase	Block Erase	Erases a specified area in the flash memory.	
Blank check	Block Blank Check	Checks if a specified block in the flash memory has been correctly erased.	
Write	Programming	Writes data to a specified area in the flash memory.	
Getting information Silicon Signature		Gets the R7F0C001G/L, R7F0C002G/L information (such as the part number, flash memory configuration, and programming firmware version).	
	Checksum	Gets the checksum data for a specified area.	
Security	Security Set	Sets security information.	
	Security Get	Gets security information.	
	Security Release	Release setting of prohibition of writing.	
Others	Reset	Used to detect synchronization status of communication.	
	Baud Rate Set	Sets baud rate when UART communication mode is selected.	

Note Confirm that no data has been written to the write area. Because data cannot be erased after block erase is prohibited, do not write data if the data has not been erased.

Product information (such as product name and firmware version) can be obtained by executing the "Silicon Signature" command.

Table 23-8 is a list of signature data and Table 23-9 shows an example of signature data.

Table 23-8. Signature Data List

Field name	Description	Number of transmit data
Device code	The serial number assigned to the device	3 bytes
Device name	Device name (ASCII code)	10 bytes
Code flash memory area last address	Last address of code flash memory area	3 bytes
	(Sent from lower address.	
	Example: 00000H to 07FFFH (32 KB) \rightarrow FFH, 7FH, 00H)	
Data flash memory area last address	Last address of data flash memory area	3 bytes
	(Sent from lower address.	
	Example: F1000H to F17FFH (2 KB) \rightarrow FFH, 17H, 0FH)	
Firmware version	Version information of firmware for programming	3 bytes
	(Sent from upper address.	
	Example: From Ver. 1.23 \rightarrow 01H, 02H, 03H)	

Table 23-9. Example of Signature Data

Field name	Description	Number of transmit data	Data (hexadecimal)
Device code	RL78 protocol A	3 bytes	10
			00
			06
Device name	R7F0C002L	10 bytes	52 = "R"
			37 = "7"
			46 = "F"
			30 = "0"
			43 = "C"
			30 = "0"
			30 = "0"
			32 = "2"
			4C = "L"
			20 = " "
Code flash memory area last address	Code flash memory area	3 bytes	FF
	00000H to 07FFFH (32 KB)		7F
			00
Data flash memory area last address	Data flash memory area	3 bytes	FF
	F1000H to F17FFH (2 KB)		17
			0F
Firmware version	Ver.1.23	3 bytes	01
			02
			03

<R> 23.5 Processing Time for Each Command When PG-FP5 Is in Use (Reference Value)

The following shows the processing time for each command (reference value) when PG-FP5 is used as a dedicated flash memory programmer.

Table 23-10. Processing Time for Each Command When PG-FP5 Is in Use (Reference Value)

PG-FP5 Command		Code Flash		
	16 Kbytes	32 Kbytes		
Erasing	1.5 s	1.5 s		
Writing	1.5 s	2 s		
Verification	1.5 s	1.5 s		
Writing after erasing	2 s	2.5 s		

Remark The command processing times (reference values) shown in the table are typical values under the

following conditions.

Port: TOOL0 (single-line UART)

Speed: 1,000,000 bps

Mode: Full speed mode (flash operation mode: HS (high speed main) mode)

<R> 23.6 Self-Programming

The R7F0C001G/L, R7F0C002G/L supports a self-programming function that can be used to rewrite the code flash memory via a user program. Because this function allows a user application to rewrite the code flash memory by using the flash self-programming library, it can be used to upgrade the program in the field.

Cautions 1. The self-programming function cannot be used when the CPU operates with the subsystem clock.

- 2. To prohibit an interrupt during self-programming, in the same way as in the normal operation mode, execute the flash self-programming library in the state where the IE flag is cleared (0) by the DI instruction. To enable an interrupt, clear (0) the interrupt mask flag to accept in the state where the IE flag is set (1) by the EI instruction, and then execute the flash self-programming library.
- 3. The high-speed on-chip oscillator should be kept operating during self-programming. If it is kept stopping, the high-speed on-chip oscillator clock should be operated (HIOSTOP = 0). The flash self-programming library should be executed after 30 μ s have elapsed.
- Remarks 1. For details of the self-programming function, refer to RL78 microcontroller Flash Self Programming Library Type01 User's Manual (R01AN0350).
 - 2. For details of the time required to execute self-programming, see the notes on use that accompany the flash self-programming library tool.

The self-programming function has two flash memory programming modes; wide voltage mode and full speed mode.

Specify the mode that corresponds to the flash operation mode specified in bits CMODE1 and CMODE0 in option byte 000C2H.

Specify the full speed mode when the HS (high speed main) mode is specified. Specify the wide voltage mode when the LS (low speed main) mode or LV (low voltage main) mode is specified.

If the argument fsl_flash_voltage_u08 is 00H when the FSL_Init function of the flash self-programming library provided by Renesas Electronics is executed, full speed mode is specified. If the argument is other than 00H, the wide voltage mode is specified.

Remark Using both the wide voltage mode and full speed mode imposes no restrictions on writing, erasing, or verification.

23.6.1 Self-programming procedure

The following figure illustrates a flow for rewriting the code flash memory by using a flash self-programming library.

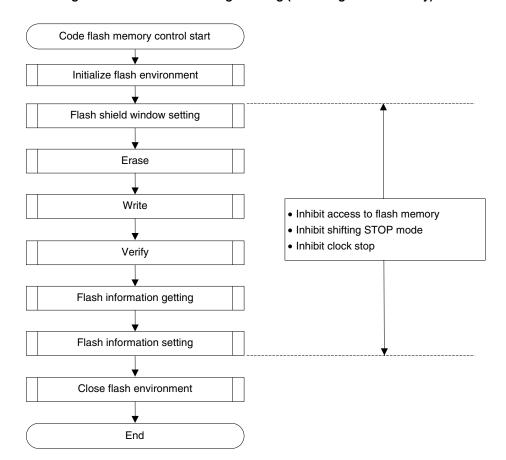


Figure 23-8. Flow of Self Programming (Rewriting Flash Memory)

23.6.2 Flash shield window function

The flash shield window function is provided as one of the security functions for self-programming. It disables writing to and erasing areas outside the range specified as a window only during self-programming.

The window range can be set by specifying the start and end blocks. The window range can be set or changed during both serial programming and self-programming.

Writing to and erasing areas outside the window range are disabled during self-programming. During serial programming, however, areas outside the range specified as a window can be written and erased.

07FFFH Methods by which writing can be performed Block 1FH Flash shield Block 1EH Ö: Serial programming range ': Self-programming 01C00F 01BFFH Block 06H (end block) Ö: Serial programming Window range Block 05H Ö: Self-programming Flash memory Block 04H area 01000H (start block) 00FFFH Block 03H Block 02H Ö: Serial programming Flash shield ': Self-programming range Block 01H Block 00H 00000H

Figure 23-9. Flash Shield Window Setting Example (Target Devices: R7F0C002G, R7F0C002L, Start Block: 04H, End Block: 06H)

- Cautions 1. If the rewrite-prohibited area of the boot cluster 0 overlaps with the flash shield window range, prohibition to rewrite the boot cluster 0 takes priority.
 - The flash shield window can only be used for the code flash memory (and is not supported for the data flash memory).

Table 23-11. Relationship between Flash Shield Window Function Setting/Change Methods and Commands

Programming conditions	Window Range	Execution Commands			
	Setting/Change Methods	Block erase	Write		
Self-programming	Specify the starting and ending blocks by the flash self-programming library.	Block erasing is enabled only within the window range.	Writing is enabled only within the range of window range.		
Serial programming	Specify the starting and ending blocks on GUI of dedicated flash memory programmer, etc.	Block erasing is enabled also outside the window range.	Writing is enabled also outside the window range.		

Remark See 23.7 Security Settings to prohibit writing/erasing during serial programming.

<R> 23.7 Security Settings

The R7F0C001G/L, R7F0C002G/L supports a security function that prohibits rewriting the user program written to the code flash memory, so that the program cannot be changed by an unauthorized person.

The operations shown below can be performed using the Security Set command.

· Disabling block erase

Execution of the block erase command for a specific block in the code flash memory is prohibited during serial programming. However, blocks can be erased by means of self-programming.

· Disabling write

Execution of the write command for entire blocks in the code flash memory is prohibited during serial programming. However, blocks can be written by means of self-programming.

After the setting of prohibition of writing is specified, releasing the setting by the Security Release command is enabled by a reset.

· Disabling rewriting boot cluster 0

Execution of the block erase command and write command on boot cluster 0 (00000H to 00FFFH) in the code flash memory is prohibited by this setting.

The block erase, write commands and rewriting boot cluster 0 are enabled by the default setting when the flash memory is shipped. Security can be set by serial programming and self-programming. Each security setting can be used in combination.

Table 23-12 shows the relationship between the erase and write commands when the R7F0C001G/L, R7F0C002G/L security function is enabled.

Caution The security function of the dedicated flash programmer does not support self-programming.

Remark To prohibit writing and erasing during self-programming, use the flash shield window function (see **23.6.2** for detail).

Table 23-12. Relationship between Enabling Security Function and Command

(1) During serial programming

Valid Security	Executed Command		
	Block Erase Write		
Prohibition of block erase	Blocks cannot be erased.	Can be performed. Note	
Prohibition of writing	Blocks can be erased.	Cannot be performed.	
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.	

Note Confirm that no data has been written to the write area. Because data cannot be erased after block erase is prohibited, do not write data if the data has not been erased.

(2) During self-programming

Valid Security	Executed Command		
	Block Erase	Write	
Prohibition of block erase	Blocks can be erased.	Can be performed.	
Prohibition of writing			
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.	

Remark To prohibit writing and erasing during self-programming, use the flash shield window function (see **23.6.2** for detail).

Table 23-13. Setting Security in Each Programming Mode

(1) During serial programming

Security	Security Setting	How to Disable Security Setting
Prohibition of block erase	Set via GUI of dedicated flash memory	Cannot be disabled after set.
Prohibition of writing	programmer, etc.	Set via GUI of dedicated flash memory programmer, etc.
Prohibition of rewriting boot cluster 0		Cannot be disabled after set.

Caution Releasing the setting of prohibition of writing is enabled only when the security is not set as the block erase prohibition and the boot cluster 0 rewrite prohibition with code flash memory area and data flash memory area being blanks.

(2) During self-programming

Security	Security Setting	How to Disable Security Setting
Prohibition of block erase	Set by using flash self-programming	Cannot be disabled after set.
Prohibition of writing	library.	Cannot be disabled during self- programming (set via GUI of dedicated flash memory programmer, etc. during serial programming).
Prohibition of rewriting boot cluster 0		Cannot be disabled after set.

23.8 Data Flash

<R> 23.8.1 Data flash overview

An overview of the data flash memory is provided below.

- The user program can rewrite the data flash memory by using the flash data library. For details, refer to RL78 Family Flash Data Library User's Manual.
- The data flash memory can also be rewritten to through serial programming using the dedicated flash memory programmer or an external device.
- The data flash can be erased in 1-block (1-Kbyte) units.
- The data flash can be accessed only in 8-bit units.
- The data flash can be directly read by CPU instructions.
- Instructions can be executed from the code flash memory while rewriting the data flash memory (that is, background operation (BGO) is supported).
- Because the data flash memory is an area exclusively used for data, it cannot be used to execute instructions.
- · Accessing the data flash memory is not possible while rewriting the code flash memory (during self-programming).
- Manipulating the DFLCTL register is not possible while rewriting the data flash memory.
- Transition to the STOP mode is not possible while rewriting the data flash memory.
- Cautions 1. The data flash memory is stopped after a reset is canceled. The data flash control register (DFLCTL) must be set up in order to use the data flash memory.
 - 2. The high-speed on-chip oscillator should be kept operating during data flash rewrite. If it is kept stopping, the high-speed on-chip oscillator clock should be operated (HIOSTOP = 0). The flash data library should be executed after 30 μ s have elapsed.

Remark For rewriting the code flash memory via a user program, see 23.6 Self-Programming.

<R> 23.8.2 Register controlling data flash memory

23.8.2.1 Data flash control register (DFLCTL)

This register is used to enable or disable accessing to the data flash.

The DFLCTL register is set by a 1-bit or 8-bit memory manipulation instruction.

Reset input sets this register to 00H.

Figure 23-10. Format of Data Flash Control Register (DFLCTL)

Address: F009	90H After	reset: 00H R	/W					
Symbol	7	6	5	4	3	2	1	<0>
DFLCTL	0	0	0	0	0	0	0	DFLEN

DFLEN	Data flash access control
0	Disables data flash access
1	Enables data flash access

Caution Manipulating the DFLCTL register is not possible while rewriting the data flash memory.

<R> 23.8.3 Procedure for accessing data flash memory

The data flash memory is stopped after a reset ends. To access the data flash, make initial settings according to the following procedure.

- <1> Set bit 0 (DFLEN) of the data flash control register (DFLCTL) to 1.
- <2> Wait for the setup to finish for software timer, etc.

The time setup takes differs for each flash operation mode for the main clock.

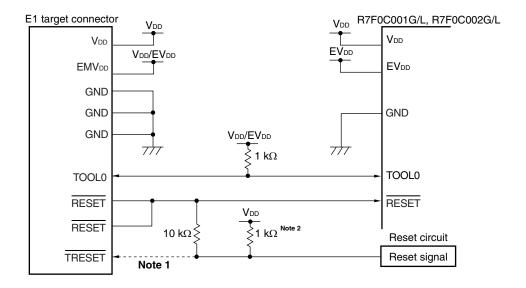
<Setup time for each flash operation mode>

HS (High speed main): 5 μs
LS (Low speed main): 720 ns
LV (Low voltage main): 10 μs

<3> After the wait, the data flash memory can be accessed.

- Cautions 1. Accessing the data flash memory is not possible during the setup time.
 - 2. Transition to the STOP mode is not possible during the setup time. To enter the STOP mode during the setup time, clear DFLEN to 0 and then execute the STOP instruction.
 - 3. The high-speed on-chip oscillator should be kept operating during data flash rewrite. If it is kept stopping, the high-speed on-chip oscillator clock should be operated (HIOSTOP = 0). The flash data library should be executed after 30 μ s have elapsed.

After initial setting, the data flash can be read through CPU instructions and can be read or rewritten to by using the data flash library.


CHAPTER 24 ON-CHIP DEBUG FUNCTION

24.1 Connecting E1 On-chip Debugging Emulator to R7F0C001G/L, R7F0C002G/L

The R7F0C001G/L, R7F0C002G/L use the VDD, RESET, TOOL0, and Vss pins to communicate with the host machine via an E1 on-chip debugging emulator. Serial communication is performed by using a single-line UART that uses the TOOL0 pin.

Caution The R7F0C001G/L, R7F0C002G/L have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

Figure 24-1. Connection Example of E1 On-chip Debugging Emulator and R7F0C001G/L, R7F0C002G/L

- Notes 1. Connecting the dotted line is not necessary during flash programming.
 - 2. If the reset circuit on the target system does not have a buffer and generates a reset signal only with resistors and capacitors, this pull-up resistor is not necessary.

Caution This circuit diagram is assumed that the reset signal outputs from an N-ch O.D. buffer (output resistor: 100Ω or less)

24.2 On-Chip Debug Security ID

The R7F0C001G/L, R7F0C002G/L have an on-chip debug operation control bit in the flash memory at 000C3H (see **CHAPTER 22 OPTION BYTE**) and an on-chip debug security ID setting area at 000C4H to 000CDH, to prevent third parties from reading memory content.

Table 24-1. On-Chip Debug Security ID

Address	On-Chip Debug Security ID		
000C4H to 000CDH	Any ID code of 10 bytes		

24.3 Securing of User Resources

To perform communication between the R7F0C001G/L, R7F0C002G/L and E1 on-chip debugging emulator, as well as each debug function, the securing of memory space must be done beforehand.

If Renesas Electronics assembler or compiler is used, the items can be set by using linker options.

(1) Securement of memory space

The shaded portions in Figure 24-2 are the areas reserved for placing the debug monitor program, so user programs or data cannot be allocated in these spaces. When using the on-chip debug function, these spaces must be secured so as not to be used by the user program. Moreover, this area must not be rewritten by the user program.

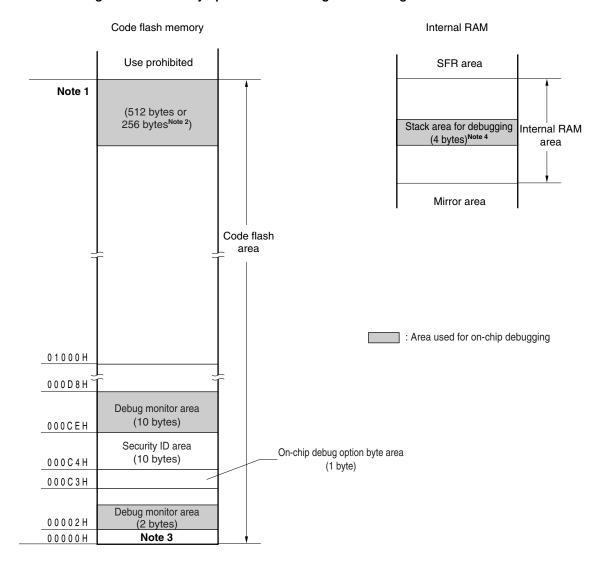


Figure 24-2. Memory Spaces Where Debug Monitor Programs Are Allocated

Notes 1. Address differs depending on products as follows.

Products (Code Flash Memory Capacity)	Address of Note 1
R7F0C001G, R7F0C001L	03FFFH
R7F0C002G, R7F0C002L	07FFFH

- 2. When real-time RAM monitor (RRM) function and dynamic memory modification (DMM) function are not used, it is 256 bytes.
- 3. In debugging, reset vector is rewritten to address allocated to a monitor program.
- **4.** Since this area is allocated immediately before the stack area, the address of this area varies depending on the stack increase and decrease. That is, 4 extra bytes are consumed for the stack area used. When using self-programming, 12 extra bytes are consumed for the stack area used.

CHAPTER 25 BCD CORRECTION CIRCUIT

25.1 BCD Correction Circuit Function

The result of addition/subtraction of the BCD (binary-coded decimal) code and BCD code can be obtained as BCD code with this circuit.

The decimal correction operation result is obtained by performing addition/subtraction having the A register as the operand and then adding/ subtracting the BCD correction result register (BCDADJ).

25.2 Registers Used by BCD Correction Circuit

The BCD correction circuit uses the following registers.

• BCD correction result register (BCDADJ)

25.2.1 BCD correction result register (BCDADJ)

The BCDADJ register stores correction values for obtaining the add/subtract result as BCD code through add/subtract instructions using the A register as the operand.

The value read from the BCDADJ register varies depending on the value of the A register when it is read and those of the CY and AC flags.

The BCDADJ register is read by an 8-bit memory manipulation instruction.

Reset input sets this register to undefined.

Figure 25-1. Format of BCD Correction Result Register (BCDADJ)

Address: FUU	FEH After re	set: unaetinea	н					
Symbol	7	6	5	4	3	2	1	0
BCDADJ								

25.3 BCD Correction Circuit Operation

The basic operation of the BCD correction circuit is as follows.

(1) Addition: Calculating the result of adding a BCD code value and another BCD code value by using a BCD code value

- <1> The BCD code value to which addition is performed is stored in the A register.
- <2> By adding the value of the A register and the second operand (value of one more BCD code to be added) as are in binary, the binary operation result is stored in the A register and the correction value is stored in the BCD correction result register (BCDADJ).
- <3> Decimal correction is performed by adding in binary the value of the A register (addition result in binary) and the BCDADJ register (correction value), and the correction result is stored in the A register and CY flag.

Caution The value read from the BCDADJ register varies depending on the value of the A register when it is read and those of the CY and AC flags. Therefore, execute the instruction <3> after the instruction <2> instead of executing any other instructions. To perform BCD correction in the interrupt enabled state, saving and restoring the A register is required within the interrupt function. PSW (CY flag and AC flag) is restored by the RETI instruction.

An example is shown below.

Examples 1: 99 + 89 = 188

Instruction		A Register	CY Flag	AC Flag	BCDADJ Register
MOV A, #99H ;	<1>	99H	-	-	-
ADD A, #89H ;	<2>	22H	1	1	66H
ADD A, !BCDADJ ;	<3>	88H	1	0	_

Examples 2: 85 + 15 = 100

Instruction		A Register	CY Flag	AC Flag	BCDADJ Register
					negistei
MOV A, #85H	; <1>	85H	-	I	-
ADD A, #15H	; <2>	9AH	0	0	66H
ADD A, !BCDADJ	; <3>	00H	1	1	=

Examples 3:80 + 80 = 160

Instruction		A Register	CY Flag	AC Flag	BCDADJ Register
MOV A, #80H	; <1>	80H	-	-	_
ADD A, #80H	; <2>	00H	1	0	60H
ADD A, !BCDADJ	; <3>	60H	1	0	_

(2) Subtraction: Calculating the result of subtracting a BCD code value from another BCD code value by using a BCD code value

- <1> The BCD code value from which subtraction is performed is stored in the A register.
- <2> By subtracting the value of the second operand (value of BCD code to be subtracted) from the A register as is in binary, the calculation result in binary is stored in the A register, and the correction value is stored in the BCD correction result register (BCDADJ).
- <3> Decimal correction is performed by subtracting the value of the BCDADJ register (correction value) from the A register (subtraction result in binary) in binary, and the correction result is stored in the A register and CY flag.

Caution The value read from the BCDADJ register varies depending on the value of the A register when it is read and those of the CY and AC flags. Therefore, execute the instruction <3> after the instruction <2> instead of executing any other instructions. To perform BCD correction in the interrupt enabled state, saving and restoring the A register is required within the interrupt function. PSW (CY flag and AC flag) is restored by the RETI instruction.

An example is shown below.

Example: 91 - 52 = 39

Instruction		A Register	CY Flag	AC Flag	BCDADJ Register
MOV A, #91H	; <1>	91H	-	-	_
SUB A, #52H	; <2>	3FH	0	1	06H
SUB A, !BCDADJ	; <3>	39H	0	0	_

CHAPTER 26 INSTRUCTION SET

This chapter lists the instructions in the R7F0C001G/L, R7F0C002G/L instruction set. For details of each operation and operation code, refer to the separate document RL78 Family User's Manual: software (R01US0015).

26.1 Conventions Used in Operation List

26.1.1 Operand identifiers and specification methods

Operands are described in the "Operand" column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for details). When there are two or more description methods, select one of them. Alphabetic letters in capitals and the symbols, #, !, !!, \$, \$!, [], and ES: are keywords and are described as they are. Each symbol has the following meaning.

- #: Immediate data specification
- !: 16-bit absolute address specification
- !!: 20-bit absolute address specification
- \$: 8-bit relative address specification
- \$!: 16-bit relative address specification
- []: Indirect address specification
- ES:: Extension address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to describe the #, !, !!, \$, \$!, [], and ES: symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

Table 26-1. Operand Identifiers and Specification Methods

Identifier	Description Method
r	X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)
rp	AX (RP0), BC (RP1), DE (RP2), HL (RP3)
sfr	Special-function register symbol (SFR symbol) FFF00H to FFFFFH
sfrp	Special-function register symbols (16-bit manipulatable SFR symbol. Even addresses only Note) FFF00H to
	FFFFFH
saddr	FFE20H to FFF1FH Immediate data or labels
saddrp	FFE20H to FF1FH Immediate data or labels (even addresses only Note)
addr20	00000H to FFFFFH Immediate data or labels
addr16	0000H to FFFFH Immediate data or labels (only even addresses for 16-bit data transfer instructions ^{Note})
addr5	0080H to 00BFH Immediate data or labels (even addresses only)
word	16-bit immediate data or label
byte	8-bit immediate data or label
bit	3-bit immediate data or label
RBn	RB0 to RB3

Note Bit 0 = 0 when an odd address is specified.

Remark The special function registers can be described to operand sfr as symbols. See Table 3-5 SFR List for the symbols of the special function registers. The extended special function registers can be described to operand !addr16 as symbols. See Table 3-6 Extended SFR (2nd SFR) List for the symbols of the extended special function registers.

26.1.2 Description of operation column

The operation when the instruction is executed is shown in the "Operation" column using the following symbols.

Table 26-2. Symbols in "Operation" Column

Symbol	Function
Α	A register; 8-bit accumulator
Х	X register
В	B register
С	C register
D	D register
E	E register
Н	H register
L	L register
ES	ES register
cs	CS register
AX	AX register pair; 16-bit accumulator
ВС	BC register pair
DE	DE register pair
HL	HL register pair
PC	Program counter
SP	Stack pointer
PSW	Program status word
CY	Carry flag
AC	Auxiliary carry flag
Z	Zero flag
RBS	Register bank select flag
IE	Interrupt request enable flag
()	Memory contents indicated by address or register contents in parentheses
XH, XL	16-bit registers: X _H = higher 8 bits, X _L = lower 8 bits
Xs, XH, XL	20-bit registers: Xs = (bits 19 to 16), XH = (bits 15 to 8), XL = (bits 7 to 0)
۸	Logical product (AND)
V	Logical sum (OR)
∀	Exclusive logical sum (exclusive OR)
	Inverted data
addr5	16-bit immediate data (even addresses only in 0080H to 00BFH)
addr16	16-bit immediate data
addr20	20-bit immediate data
jdisp8	Signed 8-bit data (displacement value)
jdisp16	Signed 16-bit data (displacement value)

26.1.3 Description of flag operation column

The change of the flag value when the instruction is executed is shown in the "Flag" column using the following symbols.

Table 26-3. Symbols in "Flag" Column

Symbol	Change of Flag Value
(Blank)	Unchanged
0	Cleared to 0
1	Set to 1
×	Set/cleared according to the result
R	Previously saved value is restored

26.1.4 PREFIX instruction

Instructions with "ES:" have a PREFIX operation code as a prefix to extend the accessible data area to the 1 MB space (00000H to FFFFFH), by adding the ES register value to the 64 KB space from F0000H to FFFFFH. When a PREFIX operation code is attached as a prefix to the target instruction, only one instruction immediately after the PREFIX operation code is executed as the addresses with the ES register value added.

A interrupt and DMA transfer are not acknowledged between a PREFIX instruction code and the instruction immediately after.

Table 26-4. Use Example of PREFIX Operation Code

Instruction	Opcode					
	1	2	3	4	5	
MOV !addr16, #byte	CFH	!add	dr16	#byte	_	
MOV ES:!addr16, #byte	11H	CFH	!addr16		#byte	
MOV A, [HL]	8BH	_			-	
MOV A, ES:[HL]	11H	8BH	_			

Caution Set the ES register value with MOV ES, A, etc., before executing the PREFIX instruction.

26.2 Operation List

Table 26-5. Operation List (1/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag	
Group				Note 1	Note 2		Z	AC	CY
8-bit data	MOV	r, #byte	2	1	-	$r \leftarrow \text{byte}$			
transfer		PSW, #byte	3	3	-	PSW ← byte	×	×	×
		CS, #byte	3	1	-	CS ← byte			
		ES, #byte	2	1	-	ES ← byte			
		!addr16, #byte	4	1	-	(addr16) ← byte			
		ES:!addr16, #byte	5	2	-	(ES, addr16) ← byte			
		saddr, #byte	3	1	-	(saddr) ← byte			
		sfr, #byte	3	1	-	sfr ← byte			
		[DE+byte], #byte	3	1	-	(DE+byte) ← byte			
		ES:[DE+byte],#byte	4	2	-	$((ES, DE)+byte) \leftarrow byte$			
		[HL+byte], #byte	3	1	=	(HL+byte) ← byte			
		ES:[HL+byte],#byte	4	2	-	((ES, HL)+byte) ← byte			
		[SP+byte], #byte	3	1	-	(SP+byte) ← byte			
		word[B], #byte	4	1	-	$(B+word) \leftarrow byte$			
		ES:word[B], #byte	5	2	-	$((ES, B)+word) \leftarrow byte$			
		word[C], #byte	4	1	-	$(C+word) \leftarrow byte$			
		ES:word[C], #byte	5	2	-	$((ES, C)+word) \leftarrow byte$			
		word[BC], #byte	4	1	-	(BC+word) ← byte			
		ES:word[BC], #byte	5	2	=	$((ES, BC)+word) \leftarrow byte$			
		A, r	1	1	-	$A \leftarrow r$			
		r, A Note 3	1	1	-	$r \leftarrow A$			
		A, PSW	2	1	-	$A \leftarrow PSW$			
		PSW, A	2	3	-	PSW ← A	×	×	×
		A, CS	2	1	=	$A \leftarrow CS$			
		CS, A	2	1	=	CS ← A			
		A, ES	2	1	-	$A \leftarrow ES$			
		ES, A	2	1	=	ES ← A			
		A, !addr16	3	1	4	$A \leftarrow (addr16)$			
		A, ES:!addr16	4	2	5	$A \leftarrow (ES, addr16)$			
		!addr16, A	3	1	=	(addr16) ← A			
		ES:!addr16, A	4	2	=	(ES, addr16) ← A			
		A, saddr	2	1	=	$A \leftarrow (saddr)$			
		saddr, A	2	1		(saddr) ← A		_	

Notes 1. Number of CPU clocks (fclk) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.

- 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
- 3. Except r = A

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

Table 26-5. Operation List (2/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag
Group				Note 1	Note 2		Z	AC CY
8-bit data	MOV	A, sfr	2	1	-	$A \leftarrow sfr$		
transfer		sfr, A	2	1	-	sfr ← A		
		A, [DE]	1	1	4	$A \leftarrow (DE)$		
		[DE], A	1	1	-	$(DE) \leftarrow A$		
		A, ES:[DE]	2	2	5	$A \leftarrow (ES,DE)$		
		ES:[DE], A	2	2	-	$(ES, DE) \leftarrow A$		
		A, [HL]	1	1	4	$A \leftarrow (HL)$		
		[HL], A	1	1	-	(HL) ← A		
		A, ES:[HL]	2	2	5	$A \leftarrow (ES, HL)$		
		ES:[HL], A	2	2	-	$(ES,HL) \leftarrow A$		
		A, [DE+byte]	2	1	4	$A \leftarrow (DE + byte)$		
		[DE+byte], A	2	1	-	(DE + byte) ← A		
		A, ES:[DE+byte]	3	2	5	$A \leftarrow ((ES, DE) + byte)$		
		ES:[DE+byte], A	3	2	-	$((ES, DE) + byte) \leftarrow A$		
		A, [HL+byte]	2	1	4	$A \leftarrow (HL + byte)$		
		[HL+byte], A	2	1	-	(HL + byte) ← A		
		A, ES:[HL+byte]	3	2	5	$A \leftarrow ((ES, HL) + byte)$		
		ES:[HL+byte], A	3	2	-	$((ES,HL) + byte) \leftarrow A$		
		A, [SP+byte]	2	1	-	$A \leftarrow (SP + byte)$		
		[SP+byte], A	2	1	-	(SP + byte) ← A		
		A, word[B]	3	1	4	$A \leftarrow (B + word)$		
		word[B], A	3	1	=	$(B + word) \leftarrow A$		
		A, ES:word[B]	4	2	5	$A \leftarrow ((ES, B) + word)$		
		ES:word[B], A	4	2	-	$((ES, B) + word) \leftarrow A$		
		A, word[C]	3	1	4	$A \leftarrow (C + word)$		
		word[C], A	3	1	_	$(C + word) \leftarrow A$		
		A, ES:word[C]	4	2	5	$A \leftarrow ((ES, C) + word)$		
		ES:word[C], A	4	2	_	$((ES,C)+word)\leftarrowA$		
		A, word[BC]	3	1	4	$A \leftarrow (BC + word)$		
		word[BC], A	3	1	_	$(BC + word) \leftarrow A$		
		A, ES:word[BC]	4	2	5	$A \leftarrow ((ES, BC) + word)$		
		ES:word[BC], A	4	2	-	$((ES,BC)+word) \leftarrow A$		

2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

Table 26-5. Operation List (3/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks	Flag	
Group				Note 1	Note 2		Z AC	CY
8-bit data	MOV	A, [HL+B]	2	1	4	$A \leftarrow (HL + B)$		
transfer		[HL+B], A	2	1	=	(HL + B) ← A		
		A, ES:[HL+B]	3	2	5	$A \leftarrow ((ES, HL) + B)$		
		ES:[HL+B], A	3	2	_	$((ES, HL) + B) \leftarrow A$		
		A, [HL+C]	2	1	4	$A \leftarrow (HL + C)$		
		[HL+C], A	2	1	_	$(HL + C) \leftarrow A$		
		A, ES:[HL+C]	3	2	5	$A \leftarrow ((ES,HL) + C)$		
		ES:[HL+C], A	3	2	_	$((ES,HL)+C) \leftarrow A$		
		X, !addr16	3	1	4	$X \leftarrow (addr16)$		
		X, ES:!addr16	4	2	5	$X \leftarrow (ES, addr16)$		
		X, saddr	2	1	_	$X \leftarrow (saddr)$		
		B, !addr16	3	1	4	$B \leftarrow (addr16)$		
		B, ES:!addr16	4	2	5	$B \leftarrow (ES, addr16)$		
		B, saddr	2	1	_	$B \leftarrow (saddr)$		
		C, !addr16	3	1	4	C ← (addr16)		
		C, ES:!addr16	4	2	5	$C \leftarrow (ES, addr16)$		
		C, saddr	2	1	_	$C \leftarrow (saddr)$		
		ES, saddr	3	1	-	ES ← (saddr)		
	XCH	A, r Note 3	1 (r = X) 2 (other than r = X)	1	_	$A \longleftrightarrow r$		
		A, !addr16	4	2	_	$A \longleftrightarrow (addr16)$		
		A, ES:!addr16	5	3	-	$A \longleftrightarrow (ES, addr16)$		
		A, saddr	3	2	_	$A \longleftrightarrow (saddr)$		
		A, sfr	3	2	_	$A \longleftrightarrow sfr$		
		A, [DE]	2	2	_	$A \longleftrightarrow (DE)$		
		A, ES:[DE]	3	3	_	$A \longleftrightarrow (ES, DE)$		
		A, [HL]	2	2	_	$A \longleftrightarrow (HL)$		
		A, ES:[HL]	3	3	_	$A \longleftrightarrow (ES, HL)$		
		A, [DE+byte]	3	2	-	$A \longleftrightarrow (DE + byte)$		
		A, ES:[DE+byte]	4	3	_	$A \longleftrightarrow ((ES,DE) + byte)$		
		A, [HL+byte]	3	2	_	$A \longleftrightarrow (HL + byte)$		
		A, ES:[HL+byte]	4	3	_	$A \longleftrightarrow ((ES, HL) + byte)$		

- 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
- 3. Except r = A

Table 26-5. Operation List (4/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag
Group				Note 1	Note 2		Z	AC CY
8-bit data	XCH	A, [HL+B]	2	2	=	$A \longleftrightarrow (HL \mathord{+} B)$		
transfer		A, ES:[HL+B]	3	3	-	$A \longleftrightarrow ((ES,HL)\!+\!B)$		
		A, [HL+C]	2	2	-	$A \longleftrightarrow (HL{+}C)$		
		A, ES:[HL+C]	3	3	-	$A \longleftrightarrow ((ES,HL) {+} C)$		
	ONEB	Α	1	1	-	A ← 01H		
		X	1	1	-	X ← 01H		
		В	1	1	-	B ← 01H		
		С	1	1	-	C ← 01H		
		!addr16	3	1	-	(addr16) ← 01H		
		ES:!addr16	4	2	-	(ES, addr16) ← 01H		
		saddr	2	1	=	(saddr) ← 01H		
	CLRB	Α	1	1	-	A ← 00H		
		X	1	1	-	X ← 00H		
		В	1	1	-	B ← 00H		
		С	1	1	=	C ← 00H		
		!addr16	3	1	_	(addr16) ← 00H		
		ES:!addr16	4	2	-	(ES,addr16) ← 00H		
		saddr	2	1	-	(saddr) ← 00H		
	MOVS	[HL+byte], X	3	1	-	(HL+byte) ← X	×	×
		ES:[HL+byte], X	4	2	-	(ES, HL+byte) \leftarrow X	×	×
16-bit	MOVW	rp, #word	3	1	_	$rp \leftarrow word$		
data transfer		saddrp, #word	4	1	-	(saddrp) ← word		
transier		sfrp, #word	4	1	-	$sfrp \leftarrow word$		
		AX, rp Note 3	1	1	=	$AX \leftarrow rp$		
		rp, AX Note 3	1	1	-	$rp \leftarrow AX$		
		AX, !addr16	3	1	4	AX ← (addr16)		
		!addr16, AX	3	1	=	(addr16) ← AX		
		AX, ES:!addr16	4	2	5	AX ← (ES, addr16)		
		ES:!addr16, AX	4	2	-	(ES, addr16) ← AX		
		AX, saddrp	2	1	=	$AX \leftarrow (saddrp)$		
		saddrp, AX	2	1	-	$(saddrp) \leftarrow AX$		
		AX, sfrp	2	1	=	AX ← sfrp		
		sfrp, AX	2	1	_	$sfrp \leftarrow AX$		<u>,</u>

- 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
- 3. Except rp = AX

<R>

Table 26-5. Operation List (5/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag	J
Group				Note 1	Note 2		Z	AC	CY
16-bit	MOVW	AX, [DE]	1	1	4	$AX \leftarrow (DE)$			
data		[DE], AX	1	1	1	$(DE) \leftarrow AX$			
transfer		AX, ES:[DE]	2	2	5	$AX \leftarrow (ES,DE)$			
		ES:[DE], AX	2	2	1	$(ES, DE) \leftarrow AX$			
		AX, [HL]	1	1	4	$AX \leftarrow (HL)$			
		[HL], AX	1	1	1	$(HL) \leftarrow AX$			
		AX, ES:[HL]	2	2	5	$AX \leftarrow (ES, HL)$			
		ES:[HL], AX	2	2	ı	$(ES, HL) \leftarrow AX$			
		AX, [DE+byte]	2	1	4	AX ← (DE+byte)			
		[DE+byte], AX	2	1		(DE+byte) ← AX			
		AX, ES:[DE+byte]	3	2	5	$AX \leftarrow ((ES,DE) + byte)$			
		ES:[DE+byte], AX	3	2		$((ES, DE) + byte) \leftarrow AX$			
		AX, [HL+byte]	2	1	4	$AX \leftarrow (HL + byte)$			
		[HL+byte], AX	2	1	-	(HL + byte) ← AX			
		AX, ES:[HL+byte]	3	2	5	$AX \leftarrow ((ES,HL)+byte)$			
		ES:[HL+byte], AX	3	2	-	$((ES,HL) + byte) \leftarrow AX$			
		AX, [SP+byte]	2	1	-	$AX \leftarrow (SP + byte)$			
		[SP+byte], AX	2	1	=	(SP + byte) ← AX			
		AX, word[B]	3	1	4	$AX \leftarrow (B + word)$			
		word[B], AX	3	1	=	$(B+word) \leftarrow AX$			
		AX, ES:word[B]	4	2	5	$AX \leftarrow ((ES, B) + word)$			
		ES:word[B], AX	4	2	=	$((ES, B) + word) \leftarrow AX$			
		AX, word[C]	3	1	4	$AX \leftarrow (C + word)$			
		word[C], AX	3	1	=	$(C + word) \leftarrow AX$			
		AX, ES:word[C]	4	2	5	$AX \leftarrow ((ES,C) + word)$			
		ES:word[C], AX	4	2	=	$((ES,C)+word) \leftarrow AX$			
		AX, word[BC]	3	1	4	$AX \leftarrow (BC + word)$			
		word[BC], AX	3	1	-	$(BC + word) \leftarrow AX$			
		AX, ES:word[BC]	4	2	5	$AX \leftarrow ((ES, BC) + word)$			
		ES:word[BC], AX	4	2		$((ES, BC) + word) \leftarrow AX$			

2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

Table 26-5. Operation List (6/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flaç]
Group				Note 1	Note 2		Z	AC	CY
16-bit	MOVW	BC, !addr16	3	1	4	BC ← (addr16)			
data		BC, ES:!addr16	4	2	5	BC ← (ES, addr16)			
transfer		DE, !addr16	3	1	4	DE ← (addr16)			
		DE, ES:!addr16	4	2	5	DE ← (ES, addr16)			
		HL, !addr16	3	1	4	HL ← (addr16)			
		HL, ES:!addr16	4	2	5	HL ← (ES, addr16)			
		BC, saddrp	2	1	-	$BC \leftarrow (saddrp)$			
		DE, saddrp	2	1	-	DE ← (saddrp)			
		HL, saddrp	2	1	-	HL ← (saddrp)			
	XCHW	AX, rp Note 3	1	1	-	$AX \longleftrightarrow rp$			
	ONEW	AX	1	1	_	AX ← 0001H			
		ВС	1	1	=	BC ← 0001H			
	CLRW	AX	1	1	-	AX ← 0000H			
		ВС	1	1	=	BC ← 0000H			
8-bit	ADD	A, #byte	2	1	-	A, CY ← A + byte	×	×	×
operation		saddr, #byte	3	2	-	(saddr), CY \leftarrow (saddr)+byte	×	×	×
		A, r	2	1	-	$A, CY \leftarrow A + r$	×	×	×
		r, A	2	1	-	$r,CY\leftarrow r+A$	×	×	×
		A, !addr16	3	1	4	$A, CY \leftarrow A + (addr16)$	×	×	×
		A, ES:!addr16	4	2	5	$A, CY \leftarrow A + (ES, addr16)$	×	×	×
		A, saddr	2	1	-	$A,CY \leftarrow A + (saddr)$	×	×	×
		A, [HL]	1	1	4	A, CY ← A+ (HL)	×	×	×
		A, ES:[HL]	2	2	5	$A,CY \leftarrow A + (ES,HL)$	×	×	×
		A, [HL+byte]	2	1	4	$A, CY \leftarrow A + (HL+byte)$	×	×	×
		A, ES:[HL+byte]	3	2	5	A,CY ← A + ((ES, HL)+byte)	×	×	×
		A, [HL+B]	2	1	4	$A, CY \leftarrow A + (HL+B)$	×	×	×
		A, ES:[HL+B]	3	2	5	A,CY ← A+((ES, HL)+B)	×	×	×
		A, [HL+C]	2	1	4	$A, CY \leftarrow A + (HL+C)$	×	×	×
		A, ES:[HL+C]	3	2	5	A,CY ← A + ((ES, HL) + C)	×	×	×

2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.

- 3. Except rp = AX
- 4. Except r = A

<R>

Table 26-5. Operation List (7/17)

Instruction	Mnemonic	Operands	Bytes	Clocks		Clocks		Flag	j
Group				Note 1	Note 2		Z	AC	CY
8-bit	ADDC	A, #byte	2	1	_	A, CY ← A+byte+CY	×	×	×
operation		saddr, #byte	3	2	-	(saddr), CY ← (saddr) +byte+CY	×	×	×
		A, rv Note 3	2	1	=	$A, CY \leftarrow A + r + CY$	×	×	×
		r, A	2	1	_	$r, CY \leftarrow r + A + CY$	×	×	×
		A, !addr16	3	1	4	A, CY ← A + (addr16)+CY	×	×	×
		A, ES:!addr16	4	2	5	A, CY ← A + (ES, addr16)+CY	×	×	×
		A, saddr	2	1	_	A, CY ← A + (saddr)+CY	×	×	×
		A, [HL]	1	1	4	A, CY ← A+ (HL) + CY	×	×	×
		A, ES:[HL]	2	2	5	$A,CY \leftarrow A+ (ES, HL) + CY$	×	×	×
		A, [HL+byte]	2	1	4	A, CY ← A+ (HL+byte) + CY	×	×	×
		A, ES:[HL+byte]	3	2	5	A,CY ← A+ ((ES, HL)+byte) + CY	×	×	×
		A, [HL+B]	2	1	4	A, CY ← A+ (HL+B) +CY	×	×	×
		A, ES:[HL+B]	3	2	5	$A,CY \leftarrow A+((ES,HL)+B)+CY$	×	×	×
		A, [HL+C]	2	1	4	$A,CY \leftarrow A+\;(HL+C) + CY$	×	×	×
		A, ES:[HL+C]	3	2	5	$A,CY \leftarrow A + ((ES,HL) + C) + CY$	×	×	×
	SUB	A, #byte	2	1	_	A, CY ← A – byte	×	×	×
		saddr, #byte	3	2	-	(saddr), $CY \leftarrow$ (saddr) – byte	×	×	×
		A, r	2	1	_	$A, CY \leftarrow A - r$	×	×	×
		r, A	2	1	-	$r, CY \leftarrow r - A$	×	×	×
		A, !addr16	3	1	4	$A, CY \leftarrow A - (addr16)$	×	×	×
		A, ES:!addr16	4	2	5	A, CY \leftarrow A – (ES, addr16)	×	×	×
		A, saddr	2	1	-	$A,CY \leftarrow A - (saddr)$	×	×	×
		A, [HL]	1	1	4	$A,CY \leftarrow A - (HL)$	×	×	×
		A, ES:[HL]	2	2	5	$A,CY \leftarrow A - (ES,HL)$	×	×	×
		A, [HL+byte]	2	1	4	$A, CY \leftarrow A - (HL+byte)$	×	×	×
		A, ES:[HL+byte]	3	2	5	$A,CY \leftarrow A - ((ES,HL) + byte)$	×	×	×
		A, [HL+B]	2	1	4	$A, CY \leftarrow A - (HL+B)$	×	×	×
		A, ES:[HL+B]	3	2	5	$A,CY \leftarrow A - ((ES, HL) + B)$	×	×	×
		A, [HL+C]	2	1	4	$A, CY \leftarrow A - (HL+C)$	×	×	×
		A, ES:[HL+C]	3	2	5	$A,CY \leftarrow A - ((ES, HL)+C)$	×	×	×

- 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
- 3. Except r = A

<R>

Table 26-5. Operation List (8/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag	J
Group				Note 1	Note 2		Z	AC	CY
8-bit	SUBC	A, #byte	2	1	-	$A, CY \leftarrow A - byte - CY$	×	×	×
operation		saddr, #byte	3	2	_	(saddr), $CY \leftarrow (saddr) - byte - CY$	×	×	×
		A, r	2	1	-	$A, CY \leftarrow A - r - CY$	×	×	×
		r, A	2	1	_	$r, CY \leftarrow r - A - CY$	×	×	×
		A, !addr16	3	1	4	$A, CY \leftarrow A - (addr16) - CY$	×	×	×
		A, ES:!addr16	4	2	5	A, CY \leftarrow A – (ES, addr16) – CY	×	×	×
		A, saddr	2	1	_	$A, CY \leftarrow A - (saddr) - CY$	×	×	×
		A, [HL]	1	1	4	$A, CY \leftarrow A - (HL) - CY$	×	×	×
		A, ES:[HL]	2	2	5	$A,CY \leftarrow A - (ES, HL) - CY$	×	×	×
		A, [HL+byte]	2	1	4	$A, CY \leftarrow A - (HL+byte) - CY$	×	×	×
		A, ES:[HL+byte]	3	2	5	$A,CY \leftarrow A - ((ES, HL)+byte) - CY$	×	×	×
		A, [HL+B]	2	1	4	$A, CY \leftarrow A - (HL+B) - CY$	×	×	×
		A, ES:[HL+B]	3	2	5	$A,CY \leftarrow A - ((ES, HL)+B) - CY$	×	×	×
		A, [HL+C]	2	1	4	$A, CY \leftarrow A - (HL+C) - CY$	×	×	×
		A, ES:[HL+C]	3	2	5	$A,CY \leftarrow A - ((ES:HL) {+} C) - CY$	×	×	×
	AND	A, #byte	2	1	_	$A \leftarrow A \land byte$	×		
		saddr, #byte	3	2	_	$(saddr) \leftarrow (saddr) \land byte$	×		
		A, r	2	1	_	$A \leftarrow A \wedge r$	×		
		r, A	2	1	_	$R \leftarrow r \wedge A$	×		
		A, !addr16	3	1	4	$A \leftarrow A \wedge (addr16)$	×		
		A, ES:!addr16	4	2	5	$A \leftarrow A \land (ES:addr16)$	×		
		A, saddr	2	1	-	$A \leftarrow A \wedge (saddr)$	×		
		A, [HL]	1	1	4	$A \leftarrow A \wedge (HL)$	×		
		A, ES:[HL]	2	2	5	$A \leftarrow A \wedge (ES:HL)$	×		
		A, [HL+byte]	2	1	4	$A \leftarrow A \land (HL+byte)$	×		
		A, ES:[HL+byte]	3	2	5	$A \leftarrow A \land ((ES:HL) + byte)$	×		
		A, [HL+B]	2	1	4	$A \leftarrow A \wedge (HL +B)$	×		
		A, ES:[HL+B]	3	2	5	$A \leftarrow A \wedge ((ES:HL)+B)$	×		
		A, [HL+C]	2	1	4	$A \leftarrow A \wedge (HL+C)$	×		
		A, ES:[HL+C]	3	2	5	$A \leftarrow A \land ((ES:HL)+C)$	×		

- 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
- 3. Except r = A

<R>

Table 26-5. Operation List (9/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks	Flag
Group				Note 1	Note 2		Z AC CY
8-bit	OR	A, #byte	2	1	-	A ← A√byte	×
operation		saddr, #byte	3	2	-	(saddr) ← (saddr)∨byte	×
		A, r	2	1	-	$A \leftarrow A \lor r$	×
		r, A	2	1	_	$r \leftarrow r \lor A$	×
		A, !addr16	3	1	4	$A \leftarrow A \lor (addr16)$	×
		A, ES:!addr16	4	2	5	$A \leftarrow A \lor (ES:addr16)$	×
		A, saddr	2	1	_	$A \leftarrow A {\scriptstyle\vee} (saddr)$	×
		A, [HL]	1	1	4	$A \leftarrow A {\scriptstyle\vee} (H)$	×
		A, ES:[HL]	2	2	5	$A \leftarrow A {\scriptstyle\vee} (ES {:} HL)$	×
		A, [HL+byte]	2	1	4	$A \leftarrow A \lor (HL + byte)$	×
		A, ES:[HL+byte]	3	2	5	$A \leftarrow A {\scriptstyle\vee} ((ES {:} HL) {+} byte)$	×
		A, [HL+B]	2	1	4	$A \leftarrow A {\scriptstyle\vee} (HL {\scriptstyle+} B)$	×
		A, ES:[HL+B]	3	2	5	$A \leftarrow A \lor ((ES:HL) + B)$	×
		A, [HL+C]	2	1	4	$A \leftarrow A {\scriptstyle\vee} (HL {}+ C)$	×
		A, ES:[HL+C]	3	2	5	$A \leftarrow A {\scriptstyle\vee} ((ES{:}HL){+}C)$	×
	XOR	A, #byte	2	1	_	A ← A ∨ byte	×
		saddr, #byte	3	2	_	$(saddr) \leftarrow (saddr) + byte$	×
		A, r	2	1	_	A ← A ∨ r	×
		r, A	2	1	_	$r \leftarrow r + A$	×
		A, !addr16	3	1	4	A ← A⊬(addr16)	×
		A, ES:!addr16	4	2	5	A ← A⊬(ES:addr16)	×
		A, saddr	2	1	-	$A \leftarrow A + (saddr)$	×
		A, [HL]	1	1	4	$A \leftarrow A \mathord{\not\sim} (HL)$	×
		A, ES:[HL]	2	2	5	$A \leftarrow A \mathbf{\varsubsetneq} (ES : HL)$	×
		A, [HL+byte]	2	1	4	$A \leftarrow A \not\sim (HL + byte)$	×
		A, ES:[HL+byte]	3	2	5	$A \leftarrow A \not\sim ((ES:HL) + byte)$	×
		A, [HL+B]	2	1	4	$A \leftarrow A \mathbf{\checkmark} (HL \mathbf{+} B)$	×
		A, ES:[HL+B]	3	2	5	$A \leftarrow A \not\!$	×
		A, [HL+C]	2	1	4	$A \leftarrow A \mathbf{\forall} (HL \mathbf{+} C)$	×
		A, ES:[HL+C]	3	2	5	$A \leftarrow A \!$	×

2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.

3. Except r = A

<R>

Table 26-5. Operation List (10/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag	J
Group				Note 1	Note 2		Z	AC	CY
8-bit	CMP	A, #byte	2	1	=	A – byte	×	×	×
operation		!addr16, #byte	4	1	4	(addr16) – byte	×	×	×
		ES:!addr16, #byte	5	2	5	(ES:addr16) – byte	×	×	×
		saddr, #byte	3	1	-	(saddr) – byte	×	×	×
		A, r	2	1	-	A – r	×	×	×
		r, A	2	1	=	r – A	×	×	×
		A, !addr16	3	1	4	A – (addr16)	×	×	×
		A, ES:!addr16	4	2	5	A – (ES:addr16)	×	×	×
		A, saddr	2	1	-	A – (saddr)	×	×	×
		A, [HL]	1	1	4	A – (HL)	×	×	×
		A, ES:[HL]	2	2	5	A – (ES:HL)	×	×	×
		A, [HL+byte]	2	1	4	A – (HL+byte)	×	×	×
		A, ES:[HL+byte]	3	2	5	A - ((ES:HL)+byte)	×	×	×
		A, [HL+B]	2	1	4	A – (HL+B)	×	×	×
		A, ES:[HL+B]	3	2	5	A – ((ES:HL)+B)	×	×	×
		A, [HL+C]	2	1	4	A – (HL+C)	×	×	×
		A, ES:[HL+C]	3	2	5	A – ((ES:HL)+C)	×	×	×
	CMP0	Α	1	1	=	A – 00H	×	0	0
		X	1	1	-	X – 00H	×	0	0
		В	1	1	-	B – 00H	×	0	0
		С	1	1	=	C – 00H	×	0	0
		!addr16	3	1	4	(addr16) – 00H	×	0	0
		ES:!addr16	4	2	5	(ES:addr16) – 00H	×	0	0
		saddr	2	1	-	(saddr) - 00H	×	0	0
	CMPS	X, [HL+byte]	3	1	4	X – (HL+byte)	×	×	×
		X, ES:[HL+byte]	4	2	5	X – ((ES:HL)+byte)	×	×	×

- 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
- 3. Except r = A

<R>

Table 26-5. Operation List (11/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag	3
Group				Note 1	Note 2		Z	AC	CY
16-bit	ADDW	AX, #word	3	1	-	$AX, CY \leftarrow AX+word$	×	×	×
operation		AX, AX	1	1	=	$AX, CY \leftarrow AX + AX$	×	×	×
		AX, BC	1	1	=	AX, CY ← AX+BC	×	×	×
		AX, DE	1	1	-	$AX, CY \leftarrow AX+DE$	×	×	×
		AX, HL	1	1	-	$AX,CY \leftarrow AX\text{+}HL$	×	×	×
		AX, !addr16	3	1	4	AX, CY ← AX+(addr16)	×	×	×
		AX, ES:!addr16	4	2	5	AX, CY ← AX+(ES:addr16)	×	×	×
		AX, saddrp	2	1	-	$AX, CY \leftarrow AX+(saddrp)$	×	×	×
		AX, [HL+byte]	3	1	4	$AX, CY \leftarrow AX+(HL+byte)$	×	×	×
		AX, ES: [HL+byte]	4	2	5	$AX, CY \leftarrow AX+((ES:HL)+byte)$	×	×	×
	SUBW	AX, #word	3	1	-	$AX, CY \leftarrow AX - word$	×	×	×
		AX, BC	1	1	-	$AX,CY \leftarrow AX - BC$	×	×	×
		AX, DE	1	1	-	$AX,CY \leftarrow AX - DE$	×	×	×
		AX, HL	1	1	-	$AX, CY \leftarrow AX - HL$	×	×	×
		AX, !addr16	3	1	4	$AX,CY\leftarrowAX-(addr16)$	×	×	×
		AX, ES:!addr16	4	2	5	$AX, CY \leftarrow AX - (ES : addr16)$	×	×	×
		AX, saddrp	2	1	-	$AX,CY\leftarrowAX-(saddrp)$	×	×	×
		AX, [HL+byte]	3	1	4	$AX,CY\leftarrowAX-(HL+byte)$	×	×	×
		AX, ES: [HL+byte]	4	2	5	$AX,CY \leftarrow AX - ((ES:HL) \!+\! byte)$	×	×	×
	CMPW	AX, #word	3	1	-	AX – word	×	×	×
		AX, BC	1	1	-	AX – BC	×	×	×
		AX, DE	1	1	-	AX – DE	×	×	×
		AX, HL	1	1	-	AX – HL	×	×	×
		AX, !addr16	3	1	4	AX – (addr16)	×	×	×
		AX, ES:!addr16	4	2	5	AX - (ES:addr16)	×	×	×
		AX, saddrp	2	1	-	AX – (saddrp)	×	×	×
		AX, [HL+byte]	3	1	4	AX – (HL+byte)	×	×	×
		AX, ES: [HL+byte]	4	2	5	AX - ((ES:HL)+byte)	×	×	×
Multiply	MULU	Х	1	1	_	$AX \leftarrow A \times X$			

2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

Table 26-5. Operation List (12/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag
Group				Note 1	Note 2		Z	AC CY
Increment/	INC	r	1	1	=	r ← r+1	×	×
decrement		!addr16	3	2	-	(addr16) ← (addr16)+1	×	×
		ES:!addr16	4	3	-	(ES, addr16) ← (ES, addr16)+1	×	×
		saddr	2	2	-	(saddr) ← (saddr)+1	×	×
		[HL+byte]	3	2	_	(HL+byte) ← (HL+byte)+1	×	×
		ES: [HL+byte]	4	3	-	((ES:HL)+byte) ← ((ES:HL)+byte)+1	×	×
	DEC	r	1	1	-	r ← r − 1	×	×
		!addr16	3	2	-	(addr16) ← (addr16) − 1	×	×
		ES:!addr16	4	3	-	(ES, addr16) ← (ES, addr16) - 1	×	×
		saddr	2	2	-	(saddr) ← (saddr) - 1	×	×
		[HL+byte]	3	2	-	(HL+byte) ← (HL+byte) − 1	×	×
		ES: [HL+byte]	4	3	-	((ES:HL)+byte) ← ((ES:HL)+byte) − 1	×	×
	INCW	rp	1	1	-	rp ← rp+1		
		!addr16	3	2	-	(addr16) ← (addr16)+1		
		ES:!addr16	4	3	=	(ES, addr16) ← (ES, addr16)+1		
		saddrp	2	2	=	(saddrp) ← (saddrp)+1		
		[HL+byte]	3	2	-	(HL+byte) ← (HL+byte)+1		
		ES: [HL+byte]	4	3	-	((ES:HL)+byte) ← ((ES:HL)+byte)+1		
	DECW	rp	1	1	-	rp ← rp − 1		
		!addr16	3	2	-	(addr16) ← (addr16) − 1		
		ES:!addr16	4	3	-	(ES, addr16) ← (ES, addr16) – 1		
		saddrp	2	2	-	(saddrp) ← (saddrp) - 1		
		[HL+byte]	3	2	-	(HL+byte) ← (HL+byte) − 1		
		ES: [HL+byte]	4	3	-	((ES:HL)+byte) ← ((ES:HL)+byte) − 1		
Shift	SHR	A, cnt	2	1	-	$(CY \leftarrow A_0, A_{m-1} \leftarrow A_{m}, A_7 \leftarrow 0) \times cnt$		×
	SHRW	AX, cnt	2	1	-	$(CY \leftarrow AX_0,AX_{m\text{-}1} \leftarrow AX_m,AX_{15} \leftarrow 0) \times cnt$		×
	SHL	A, cnt	2	1	-	$(CY \leftarrow A_7, A_m \leftarrow A_{m\text{-}1}, A_0 \leftarrow 0) \times cnt$		×
		B, cnt	2	1	-	$(CY \leftarrow B_7,B_m \leftarrow B_{m\text{-}1},B_0 \leftarrow 0) \times cnt$		×
		C, cnt	2	1	_	$(CY \leftarrow C_7, C_m \leftarrow C_{m\text{-}1}, C_0 \leftarrow 0) \times cnt$		×
	SHLW	AX, cnt	2	1	-	$(CY \leftarrow AX_{15},AX_m \leftarrow AX_{m\text{-}1},AX_0 \leftarrow 0) \times cnt$		×
		BC, cnt	2	1	-	$(CY \leftarrow BC_{15},BC_m \leftarrow BC_{m1},BC_0 \leftarrow 0) \times cnt$		×
	SAR	A, cnt	2	1	_	$(CY \leftarrow A_0, A_{m\text{-}1} \leftarrow A_m, A_7 \leftarrow A_7) \times cnt$		×
	SARW	AX, cnt	2	1	_	$(CY \leftarrow AX_0, AX_{m-1} \leftarrow AX_m, AX_{15} \leftarrow AX_{15}) \times cnt$		×

- **Notes 1.** Number of CPU clocks (fclk) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.
 - 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
- **Remarks 1.** Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.
 - 2. cnt indicates the bit shift count.

Table 26-5. Operation List (13/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag
Group				Note 1	Note 2		Z	AC CY
Rotate	ROR	A, 1	2	1	-	(CY, $A_7 \leftarrow A_0$, $A_{m-1} \leftarrow A_m$)×1		×
	ROL	A, 1	2	1	-	$(CY,A_0\leftarrow A_7,A_{m+1}\leftarrow A_m)\times 1$		×
	RORC	A, 1	2	1	-	$(CY \leftarrow A_0, A_7 \leftarrow CY, A_{m\cdot 1} \leftarrow A_m) \times 1$		×
	ROLC	A, 1	2	1	_	$(CY \leftarrow A_7, A_0 \leftarrow CY, A_{m+1} \leftarrow A_m) \times 1$		×
	ROLWC	AX,1	2	1	_	$(CY \leftarrow AX_{15}, AX_0 \leftarrow CY, AX_{m+1} \leftarrow AX_m) \times 1$		×
		BC,1	2	1	-	$(CY \leftarrow BC_{15}, BC_0 \leftarrow CY, BC_{m+1} \leftarrow BC_m) \times 1$		×
Bit	MOV1	CY, A.bit	2	1	-	CY ← A.bit		×
manipulate		A.bit, CY	2	1	-	A.bit ← CY		
		CY, PSW.bit	3	1	-	CY ← PSW.bit		×
		PSW.bit, CY	3	4	-	PSW.bit ← CY	×	×
		CY, saddr.bit	3	1	_	CY ← (saddr).bit		×
		saddr.bit, CY	3	2	-	(saddr).bit ← CY		
		CY, sfr.bit	3	1	-	CY ← sfr.bit		×
		sfr.bit, CY	3	2	-	sfr.bit ← CY		
		CY,[HL].bit	2	1	4	CY ← (HL).bit		×
		[HL].bit, CY	2	2	-	(HL).bit ← CY		
		CY, ES:[HL].bit	3	2	5	CY ← (ES, HL).bit		×
		ES:[HL].bit, CY	3	3	-	(ES, HL).bit ← CY		
	AND1	CY, A.bit	2	1	-	$CY \leftarrow CY \wedge A.bit$		×
		CY, PSW.bit	3	1	-	$CY \leftarrow CY \land PSW.bit$		×
		CY, saddr.bit	3	1	=	$CY \leftarrow CY \land (saddr).bit$		×
		CY, sfr.bit	3	1	=	$CY \leftarrow CY \land sfr.bit$		×
		CY,[HL].bit	2	1	4	$CY \leftarrow CY \land (HL).bit$		×
		CY, ES:[HL].bit	3	2	5	$CY \leftarrow CY \land (ES, HL).bit$		×
	OR1	CY, A.bit	2	1	=	$CY \leftarrow CY \lor A.bit$		×
		CY, PSW.bit	3	1	=	$CYX \leftarrow CY \vee \vee PSW.bit$		×
		CY, saddr.bit	3	1	_	$CY \leftarrow CY \lor (saddr).bit$		×
		CY, sfr.bit	3	1	-	$CY \leftarrow CY \lor sfr.bit$		×
		CY, [HL].bit	2	1	4	$CY \leftarrow CY \lor (HL).bit$		×
<u>. </u>		CY, ES:[HL].bit	3	2	5	$CY \leftarrow CY \lor (ES, HL).bit$		×

2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

Table 26-5. Operation List (14/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag	g
Group				Note 1	Note 2		Z	AC	CY
Bit	XOR1	CY, A.bit	2	1	-	$CY \leftarrow CY \neq A.bit$			×
manipulate		CY, PSW.bit	3	1	-	$CY \leftarrow CY \neq PSW.bit$			×
		CY, saddr.bit	3	1	-	$CY \leftarrow CY \neq (saddr).bit$			×
		CY, sfr.bit	3	1	_	$CY \leftarrow CY \neq sfr.bit$			×
		CY, [HL].bit	2	1	4	$CY \leftarrow CY \neq (HL).bit$			×
		CY, ES:[HL].bit	3	2	5	$CY \leftarrow CY \neq (ES, HL).bit$			×
	SET1	A.bit	2	1	-	A.bit ← 1			
		PSW.bit	3	4	-	PSW.bit ← 1	×	×	×
		!addr16.bit	4	2	-	(addr16).bit ← 1			
		ES:!addr16.bit	5	3	_	(ES, addr16).bit \leftarrow 1			
		saddr.bit	3	2	_	(saddr).bit ← 1			
		sfr.bit	3	2	-	sfr.bit ← 1			
		[HL].bit	2	2	-	(HL).bit ← 1			
		ES:[HL].bit	3	3	_	(ES, HL).bit ← 1			
	CLR1	A.bit	2	1	-	A.bit \leftarrow 0			
		PSW.bit	3	4	-	$PSW.bit \leftarrow 0$	×	×	×
		!addr16.bit	4	2	-	(addr16).bit ← 0			
		ES:!addr16.bit	5	3	-	(ES, addr16).bit \leftarrow 0			
		saddr.bit	3	2	-	$(\text{saddr.bit}) \leftarrow 0$			
		sfr.bit	3	2	-	sfr.bit ← 0			
		[HL].bit	2	2	-	(HL).bit \leftarrow 0			
		ES:[HL].bit	3	3	-	(ES, HL).bit \leftarrow 0			
	SET1	CY	2	1	-	CY ← 1			1
	CLR1	CY	2	1	-	CY ← 0			0
	NOT1	CY	2	1	-	$CY \leftarrow CY$			×

Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

Table 26-5. Operation List (15/17)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Clocks		Flag	
Group				Note 1	Note 2		Z	AC	CY
Call/ return	CALL	rp	2	3	-	$(SP-2) \leftarrow (PC+2)s, (SP-3) \leftarrow (PC+2)H, \\ (SP-4) \leftarrow (PC+2)L, PC \leftarrow CS, rp,$			
						$SP \leftarrow SP - 4$			
		\$!addr20	3	3	_	$(SP-2) \leftarrow (PC+3)s$, $(SP-3) \leftarrow (PC+3)H$, $(SP-4) \leftarrow (PC+3)L$, $PC \leftarrow PC+3+jdisp16$,			
						SP ← SP – 4			
		!addr16	3	3	_	$(SP - 2) \leftarrow (PC+3)s$, $(SP - 3) \leftarrow (PC+3)H$, $(SP - 4) \leftarrow (PC+3)L$, $PC \leftarrow 0000$, addr16,			
						SP ← SP – 4			
		!!addr20	4	3	=	$ \begin{split} (SP-2) \leftarrow (PC+4)s, \ (SP-3) \leftarrow (PC+4)H, \\ (SP-4) \leftarrow (PC+4)L, \ PC \leftarrow addr20, \end{split} $			
						$SP \leftarrow SP - 4$			
	CALLT	[addr5]	2	5	=	$(SP-2) \leftarrow (PC+2)s$, $(SP-3) \leftarrow (PC+2)H$,			
						$(SP-4) \leftarrow (PC+2)L$, $PCs \leftarrow 0000$,			
						PC _H ← (0000, addr5+1),			
						PC∟ ← (0000, addr5),			
						SP ← SP – 4			
	BRK	-	2	5	-	$(SP-1) \leftarrow PSW, (SP-2) \leftarrow (PC+2)s,$			
						$(SP-3) \leftarrow (PC+2)_H, (SP-4) \leftarrow (PC+2)_L,$			
						PCs ← 0000,			
						$PC_H \leftarrow (0007FH), PC_L \leftarrow (0007EH),$			
						$SP \leftarrow SP - 4$, $IE \leftarrow 0$			
	RET	-	1	6	_	$PCL \leftarrow (SP), PCH \leftarrow (SP+1),$			
						$PCs \leftarrow (SP+2), SP \leftarrow SP+4$			
	RETI	-	2	6	=	$PC_L \leftarrow (SP), PC_H \leftarrow (SP+1),$	R	R	R
						$PCs \leftarrow (SP+2), PSW \leftarrow (SP+3),$			
						SP ← SP+4			
	RETB	-	2	6	-	$PC_L \leftarrow (SP), PC_H \leftarrow (SP+1),$	R	R	R
						$PCs \leftarrow (SP+2), PSW \leftarrow (SP+3),$			
						SP ← SP+4			

2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

Table 26-5. Operation List (16/17)

Instruction	Mnemon	Operands	Bytes	Clo	cks	Clocks		Flag	
Group	ic			Note 1	Note 2		Z	AC	CY
Stack	PUSH	PSW	2	1	-	$(SP - 1) \leftarrow PSW, (SP - 2) \leftarrow 00H,$			
manipulate						SP ← SP-2			
		rp	1	1	=	$(SP-1) \leftarrow rp_H, (SP-2) \leftarrow rp_L,$			
						SP ← SP - 2			
	POP	PSW	2	3	-	$PSW \leftarrow (SP+1), SP \leftarrow SP + 2$	R	R	R
		rp	1	1	-	$rp L \leftarrow (SP), rp H \leftarrow (SP+1), SP \leftarrow SP + 2$			
	MOVW	SP, #word	4	1	_	$SP \leftarrow word$			
		SP, AX	2	1	_	SP ← AX			
		AX, SP	2	1	-	$AX \leftarrow SP$			
		HL, SP	3	1	=	HL ← SP			
		BC, SP	3	1	-	$BC \leftarrow SP$			
		DE, SP	3	1	-	$DE \leftarrow SP$			
	ADDW	SP, #byte	2	1	-	SP ← SP + byte			
	SUBW	SP, #byte	2	1	-	SP ← SP – byte			
Un-	BR	AX	2	3	_	$PC \leftarrow CS, AX$			
conditional branch		\$addr20	2	3	_	$PC \leftarrow PC + 2 + jdisp8$			
Dianch		\$!addr20	3	3	_	PC ← PC + 3 + jdisp16			
		!addr16	3	3	_	PC ← 0000, addr16			
		!!addr20	4	3	_	PC ← addr20			
Conditional	ВС	\$addr20	2	2/4 Note3	_	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 1$			
branch	BNC	\$addr20	2	2/4 Note3	_	$PC \leftarrow PC + 2 + jdisp8 \text{ if } CY = 0$			
	BZ	\$addr20	2	2/4 Note3	_	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 1$			
	BNZ	\$addr20	2	2/4 Note3	_	$PC \leftarrow PC + 2 + jdisp8 \text{ if } Z = 0$			
	ВН	\$addr20	3	2/4 Note3	_	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (Z \lor CY) = 0$			
	BNH	\$addr20	3	2/4 Note3	-	$PC \leftarrow PC + 3 + jdisp8 \text{ if } (Z \lor CY)=1$			
	ВТ	saddr.bit, \$addr20	4	3/5 Note3	_	$PC \leftarrow PC + 4 + jdisp8 if (saddr).bit = 1$			
		sfr.bit, \$addr20	4	3/5 Note3	_	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 1$			
		A.bit, \$addr20	3	3/5 Note3	_	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 1$			
		PSW.bit, \$addr20	4	3/5 Note3	-	PC ← PC + 4 + jdisp8 if PSW.bit = 1			
		[HL].bit, \$addr20	3	3/5 Note3	6/7	PC ← PC + 3 + jdisp8 if (HL).bit = 1			
		ES:[HL].bit, \$addr20	4	4/6 Note3	7/8	PC ← PC + 4 + jdisp8 if (ES, HL).bit = 1			

- **Notes 1.** Number of CPU clocks (fcLK) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.
 - 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
 - 3. This indicates the number of clocks "when condition is not met/when condition is met".

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

Table 26-5. Operation List (17/17)

Instruction	Mnemonic	Operands	Bytes	Clocks		Clocks		Flag
Group				Note 1	Note 2		Z	AC CY
Conditional	BF	saddr.bit, \$addr20	4	3/5 Note3	-	$PC \leftarrow PC + 4 + jdisp8 if (saddr).bit = 0$		
branch		sfr.bit, \$addr20	4	3/5 Note3	-	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 0$		
		A.bit, \$addr20	3	3/5 Note3	-	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 0$		
		PSW.bit, \$addr20	4	3/5 Note3	-	$PC \leftarrow PC + 4 + jdisp8 \text{ if PSW.bit} = 0$		
		[HL].bit, \$addr20	3	3/5 Note3	6/7	$PC \leftarrow PC + 3 + jdisp8 \text{ if (HL).bit} = 0$		
		ES:[HL].bit, \$addr20	4	4/6 Note3	7/8	$PC \leftarrow PC + 4 + jdisp8 \text{ if (ES, HL).bit} = 0$		
	BTCLR	saddr.bit, \$addr20	4	3/5 Note3	-	PC ← PC + 4 + jdisp8 if (saddr).bit = 1		
						then reset (saddr).bit		
		sfr.bit, \$addr20	4	3/5 Note3	_	$PC \leftarrow PC + 4 + jdisp8 \text{ if sfr.bit} = 1$		
						then reset sfr.bit		
		A.bit, \$addr20	3	3/5 Note3	-	$PC \leftarrow PC + 3 + jdisp8 \text{ if A.bit} = 1$		
						then reset A.bit		
		PSW.bit, \$addr20	4	3/5 Note3	-	$PC \leftarrow PC + 4 + jdisp8 \text{ if PSW.bit} = 1$	×	× ×
						then reset PSW.bit		
		[HL].bit, \$addr20	3	3/5 Note3	=	$PC \leftarrow PC + 3 + jdisp8 \text{ if (HL).bit} = 1$		
						then reset (HL).bit		
		ES:[HL].bit,	4	4/6 Note3	-	$PC \leftarrow PC + 4 + jdisp8 \text{ if (ES, HL).bit} = 1$		
		\$addr20				then reset (ES, HL).bit		
Conditional	SKC	-	2	1	-	Next instruction skip if CY = 1		
skip	SKNC	_	2	1	-	Next instruction skip if CY = 0		
	SKZ	_	2	1	-	Next instruction skip if Z = 1		
	SKNZ	_	2	1	-	Next instruction skip if Z = 0		
	SKH	Ī	2	1	=	Next instruction skip if (Z∨CY)=0		
	SKNH	-	2	1	-	Next instruction skip if (ZvCY)=1		
CPU	SEL Note4	RBn	2	1	-	RBS[1:0] ← n		
control	NOP	_	1	1	-	No Operation		
	El	-	3	4	-	IE \leftarrow 1 (Enable Interrupt)		
	DI	_	3	4	-	IE ← 0 (Disable Interrupt)		
	HALT	-	2	3	-	Set HALT Mode		
	STOP	_	2	3	=	Set STOP Mode		

- 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
- 3. This indicates the number of clocks "when condition is not met/when condition is met".
- **4.** n indicates the number of register banks (n = 0 to 3).

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

CHAPTER 27 ELECTRICAL SPECIFICATIONS

- Cautions 1. The R7F0C001G/L, R7F0C002G/L have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EVDD, or EVss pin, replace EVDD with VDD, or replace EVss with
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Pins for each product (pins other than port pins).

27.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

(1/3)

{>	Parameter	Symbols	Conditions	Ratings	Unit
	Supply voltage	V _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	٧
		EV _{DD}	V _{DD} = EV _{DD}	-0.5 to +6.5	٧
		EVss		-0.5 to +0.3	٧
	REGC pin input voltage	VIREGC	REGC	$-0.3 \text{ to } +2.8$ and $-0.3 \text{ to V}_{DD} + 0.3^{\text{Note 1}}$	٧
	Input voltage	VI1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	-0.3 to EV _{DD} +0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V
	·	V ₁₂	P60, P61 (N-ch open-drain)	-0.3 to EV _{DD} +0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V
		Vıз	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} + 0.3 ^{Note 2}	٧
	Output voltage	Vo ₁	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV _{DD} + 0.3 and -0.3 to V _{DD} + 0.3 ^{Note 2}	V
		V _{O2}	P20, P21	-0.3 to V _{DD} + 0.3 Note 2	٧
	Analog input voltage	VAI1	ANI16 to ANI23	-0.3 to EV _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 Notes 2,3	V
		V _{Al2}	ANIO, ANI1	-0.3 to V _{DD} + 0.3 and -0.3 to AV _{REF} (+) + 0.3 Notes 2,3	V

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - **3.** Do not exceed AV_{REF(+)} + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - 3. Vss: Reference voltage

Absolute Maximum Ratings (T_A = 25°C)

(2/3)

<r></r>	Parameter	Symbols		Conditions	Ratings	Unit
	LCD voltage	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				V
						V
		V L3	V _{L3} voltage ^{Note 1}		-0.3 to $V_{L4} + 0.3^{Note 2}$	V
		V _{L4}	V _{L4} voltage ^{Note 1}		-0.3 to +6.5	V
		V _{LCAP}	CAPL, CAPH voltage ^{Note 1}		-0.3 to $V_{L4} + 0.3^{Note 2}$	V
			COM0 to COM7, SEG0 to SEG38, output voltage	External resistance division method	-0.3 to $V_{DD} + 0.3^{Note 2}$	V
				Capacitor split method	-0.3 to V _{DD} + 0.3 ^{Note 2}	
				Internal voltage boosting method	-0.3 to $V_{L4} + 0.3^{Note 2}$	

Notes 1. This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F \pm 30%) and connect a capacitor (0.47 μ F \pm 30%) between the CAPL and CAPH pins.

<R> Nust be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss: Reference voltage

Absolute Maximum Ratings (TA = 25°C)

(3/3)

		/			(0,0
Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	lo _{L1}	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	lol2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	Та	In normal operation mode		-40 to +85	°C
temperature		In flash memory programming mode			
Storage temperature	T _{stg}			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

27.2 Oscillator Characteristics

<R> 27.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator/ crystal resonator	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
		$2.4~V \leq V_{DD} \leq 2.7~V$	1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	MHz
		1.6 V ≤ V _{DD} <1.8 V	1.0		4.0	MHz
XT1 clock oscillation frequency (fxr) ^{Note}	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to 27.4 AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

27.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

	$(1A = -40 10 +65^{\circ}C, 1.6 \text{ V})$		\mathbf{v} \mathbf{D} \mathbf{D} \mathbf{D} \mathbf{S} \mathbf{V} , \mathbf{V} \mathbf{S}	5 - LV55 - U V)				
<r></r>	Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
	High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
	High-speed on-chip oscillator		–20 to +85°C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1		+1	%
	clock frequency accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5		+5	%
			-40 to −20°C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
				$1.6~V \leq V_{DD} < 1.8~V$	-5.5		+5.5	%
	Low-speed on-chip oscillator clock frequency	fiL				15		kHz
	Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

This indicates the oscillator characteristics only. Refer to 27.4 AC Characteristics for instruction execution time.

27.3 DC Characteristics

27.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

(1/5)

<r></r>	Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
	Output current, high ^{Note 1}	Іон1	·	10 to P17, P30 to P32, P40 to P120, P125 to P127, P130, I				-10.0 Note 2	mA
			Total of P10	to P14, P40 to P43, P120,	$4.0~V \leq EV_{DD} \leq 5.5~V$			-40.0	mA
			P130, P140		$2.7~V \leq EV_{DD} < 4.0~V$			-8.0	mA
			(When duty	= 70% ***)	$1.8~V \leq EV_{DD} < 2.7~V$			-4.0	mA
					1.6 V ≤ EV _{DD} < 1.8 V			-2.0	mA
			Total of P15	to P17, P30 to P32,	$4.0~V \leq EV_{DD} \leq 5.5~V$			-60.0	mA
			*	P70 to P74, P125 to P127	$2.7~V \leq EV_{DD} < 4.0~V$			-15.0	mA
			(When duty	= 70%)	$1.8~V \le EV_{DD} < 2.7~V$			-8.0	mA
					$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 1.8 \text{ V}$			-4.0	mA
			Total of all p					-100.0	mA
		Iон2	P20, P21	Per pin				-0.1	mA
				Total of all pins	$1.6~V \leq V_{DD} \leq 5.5~V$			-0.2	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} and EV_{DD} pins to an output pin.

<R> <R>

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and loh = -40.0 mA

Total output current of pins = $(-40.0 \times 0.7)/(80 \times 0.01) \approx -35.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, and P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

(2/5)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _{L1}	•	P10 to P17, P30 to P32, P 4, P70 to P74, P120, P125 147	•			20.0 Note 2	mA
		Per pin for	P60, P61				15.0 Note 2	mA
		Total of P1	I0 to P14, P40 to P43,	$4.0~V \leq EV_{DD} \leq 5.5~V$			70.0	mA
		1	0, P140 to P147	$2.7~V \leq EV_{DD} < 4.0~V$			15.0	mA
		(when dut	$y = 70\%^{\text{Note 3}})$	$1.8~V \leq EV_{DD} < 2.7~V$			9.0	mA
				$1.6~V \leq EV_{DD} < 1.8~V$			4.5	mA
		Total of P1	15 to P17, P30 to P32,	$4.0~V \leq EV_{DD} \leq 5.5~V$			80.0	mA
		P50 to P54	4, P60, P61, P70 to P74,	$2.7~V \leq EV_{DD} < 4.0~V$			35.0	mA
			$y = 70\%^{\text{Note 3}}$	$1.8~V \leq EV_{DD} < 2.7~V$			20.0	mA
		·	,	$1.6~V \leq EV_{DD} < 1.8~V$			10.0	mA
		Total of all (When dut	pins $y = 70\%^{\text{Note } 3}$)				150.0	mA
	lo _{L2}	P20, P21	Per pin				0.4	mA
			Total of all pins	$1.6~V \le V_{DD} \le 5.5~V$			0.8	mA

- Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVss and Vss pin.
 - 2. Do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and lol = 70.0 mA

Total output current of pins = $(70.0 \times 0.7)/(80 \times 0.01) \approx 61.25$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

<R>

(3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD}		EV _{DD}	٧
	V _{IH2}	P10, P11, P15, P16	TTL input buffer 4.0 V ≤ EV _{DD} ≤ 5.5 V	2.2		EV _{DD}	V
			TTL input buffer 3.3 V ≤ EV _{DD} < 4.0 V	2.0		EV _{DD}	V
			TTL input buffer $1.6 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$	1.50		EV _{DD}	V
	V _{IH3}	P20, P21		0.7V _{DD}		V _{DD}	V
	V _{IH4}	P60, P61		0.7EV _{DD}		EV _{DD}	V
	V _{IH5}	P121 to P124, P137, EXCLK, EXCLKS	S, RESET	0.8V _{DD}		V_{DD}	V
Input voltage, low	V _{IL1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EV _{DD}	V
	V _{IL2}	P10, P11, P15, P16	TTL input buffer 4.0 V ≤ EV _{DD} ≤ 5.5 V	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{DD} < 4.0 \text{ V}$	0		0.5	٧
			TTL input buffer 1.6 V ≤ EV _{DD} < 3.3 V	0		0.32	٧
	V _{IL3}	P20, P21		0		0.3V _{DD}	V
	V _{IL4}	P60, P61		0		0.3EV _{DD}	V
	V _{IL5}	P121 to P124, P137, EXCLK, EXCLKS	S, RESET	0		0.2V _{DD}	V

Caution The maximum value of Vih of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	V _{OH1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -10 \text{ mA}$	EV _{DD} -1.5			V
		P125 to P127, P130, P140 to P147	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	EV _{DD} -0.7			V
			$2.7 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ Iон1 = -2.0 mA	EV _{DD} -0.6			V
			1.8 V \leq EV _{DD} \leq 5.5 V, Іон1 = -1.5 mA	EV _{DD} -0.5			V
			$1.6 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$ loh1 = -1.0 mA	EV _{DD} -0.5			٧
	V _{OH2}	P20, P21	1.6 V \leq V _{DD} \leq 5.5 V, I _{OH2} = -100 μ A	V _{DD} -0.5			V
Output voltage, low	V _{OL1}	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$4.0~V \leq EV_{DD} \leq 5.5~V,$ $I_{OL1} = 20~mA$			1.3	V
		P125 to P127, P130, P140 to P147	$4.0~V \leq EV_{DD} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$			0.7	V
			$2.7~\textrm{V} \leq \textrm{EV}_\textrm{DD} \leq 5.5~\textrm{V},$ $\textrm{IoL1} = 3.0~\textrm{mA}$			0.6	V
			$2.7~V \leq EV_{DD} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	٧
			$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 0.6 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ $I_{\text{OL1}} = 0.3 \text{ mA}$			0.4	V
	V _{OL2}	P20, P21	1.6 V \leq V _{DD} \leq 5.5 V, lol2 = 400 μ A			0.4	V
	Vol3	P60, P61	$4.0~V \leq EV_{DD} \leq 5.5~V,$ $I_{OL3} = 15.0~mA$			2.0	V
			$4.0~\textrm{V} \leq \textrm{EV}_\textrm{DD} \leq 5.5~\textrm{V},$ $\textrm{Iol3} = 5.0~\textrm{mA}$			0.4	V
			$2.7~\textrm{V} \leq \textrm{EV}_\textrm{DD} \leq 5.5~\textrm{V},$ $\textrm{Iol3} = 3.0~\textrm{mA}$			0.4	٧
			$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{Iol3} = 2.0 \text{ mA}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ $\text{Iol3} = 1.0 \text{ mA}$			0.4	V

Caution P10, P12, P15, P17 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(5/5)

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ілн1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVDD				1	μΑ
	ILIH2	P20, P21, P137, RESET	Vı = Vdd				1	μА
	Ішнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μΑ
				In resonator connection			10	μΑ
Input leakage current, low	ILIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	Vı = EVss				-1	μΑ
	ILIL2	P20, P21, P137, RESET	Vı = Vss				-1	μА
	Ішз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	Vı = Vss	In input port or external clock input			-1	μΑ
				In resonator connection			-10	μΑ
On-chip pll-up	Ru ₁	Vı = EVss	SEGxx po	rt				
resistance			2.4 V ≤	$EV_{DD} = V_{DD} \le 5.5 \text{ V}$	10	20	100	kΩ
			1.6 V ≤	$EV_{DD} = V_{DD} < 2.4 \text{ V}$	10	30	100	kΩ
	Ru ₂		Ports other	rthan above	10	20	100	kΩ
			(Except for P130)	P60, P61, and				

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

27.3.2 Supply current characteristics

(Ta = $-40 \text{ to } +85^{\circ}\text{C}$, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/3)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (high-	fin = 24 MHz Note 3	Basic	V _{DD} = 5.0 V		1.5		mA
Current		mode	speed main) mode Note 5		operation	V _{DD} = 3.0 V		1.5		mA
Note 1			mode		Normal	V _{DD} = 5.0 V		3.3	5.0	mA
					operation	V _{DD} = 3.0 V		3.3	5.0	mA
				fin = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		2.5	3.7	mA
					operation	V _{DD} = 3.0 V		2.5	3.7	mA
			LS (low-	fih = 8 MHz Note 3	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
			speed main) mode Note5		operation	V _{DD} = 2.0 V		1.2	1.8	mA
			LV (low-	fin = 4 MHz Note 3	Normal	V _{DD} = 3.0 V		1.2	1.7	mA
			voltage main) mode Note 5		operation	V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
			speed main) mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.0	4.6	mA
			mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.8	4.4	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.0	4.6	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.8	2.6	mA
				$V_{DD} = 5.0 \text{ V}$	operation	Resonator connection		1.8	2.6	mA
				$f_{MX} = 10 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.8	2.6	mA
				$V_{DD} = 3.0 \text{ V}$	operation	Resonator connection		1.8	2.6	mA
			LS (low-	$f_{MX} = 8 MHz^{Note 2}$	Normal	Square wave input		1.1	1.7	mA
			speed main) mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA
			mode	$f_{MX} = 8 MHz^{Note 2}$	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
			Subsystem	fsub = 32.768 kHz Note 4	Normal	Square wave input		3.5	4.9	μΑ
			clock operation	T _A = -40°C	operation	Resonator connection		3.6	5.0	μΑ
			орогалогі	fsub = 32.768 kHz Note 4	Normal	Square wave input		3.6	4.9	μΑ
				T _A = +25°C	operation	Resonator connection		3.7	5.0	μΑ
				fsub = 32.768 kHz Note 4	Normal	Square wave input		3.7	5.5	μΑ
				T _A = +50°C	operation	Resonator connection		3.8	5.6	μΑ
				fsub = 32.768 kHz Note 4	Normal	Square wave input		3.8	6.3	μΑ
				T _A = +70°C	operation	Resonator connection		3.9	6.4	μΑ
				fsub = 32.768 kHz Note 4	Normal	Square wave input		4.1	7.7	μΑ
				T _A = +85°C	operation	Resonator connection		4.2	7.8	μΑ

(Notes and Remarks are listed on the next page.)

- <R> Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
- <R> 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, watchdog timer, and LCD controller/driver.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 24 MHz

 $2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 4 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(2/3)

Parameter	Symbol			Conditions	_	MIN.	TYP.	MAX.	Un
Supply	IDD2 Note 2	HALT	HS (high-	fin = 24 MHz Note 4	$V_{DD} = 5.0 \text{ V}$		0.44	1.28	m.
Current Note 1	Note 2	mode	speed main) mode Note 7		$V_{DD} = 3.0 \text{ V}$		0.44	1.28	m
			mode	fin = 16 MHz Note 4	$V_{DD} = 5.0 \text{ V}$		0.40	1.00	m
					$V_{DD} = 3.0 \text{ V}$		0.40	1.00	m
			LS (low-	fin = 8 MHz Note 4	$V_{DD} = 3.0 \text{ V}$		260	530	μ
			speed main) mode Note 7		V _{DD} = 2.0 V		260	530	μ
			LV (low-	fin = 4 MHz Note 4	$V_{DD} = 3.0 \text{ V}$		420	640	μ
			voltage main) mode		V _{DD} = 2.0 V		420	640	μ
			HS (high-	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	m
			speed main) mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	m
			mode	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	m
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	m
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	m
				$V_{DD} = 5.0 \text{ V}$	Resonator connection		0.26	0.67	n
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		0.19	0.60	n
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	n
			LS (low-	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μ
			speed main) mode Note 7	V _{DD} = 3.0 V	Resonator connection		145	380	μ
			mode	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μ
				$V_{DD} = 2.0 \text{ V}$	Resonator connection		145	380	μ
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.57	μ
			clock operation	T _A = -40°C	Resonator connection		0.50	0.76	μ
			operation	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.37	0.57	μ
				T _A = +25°C	Resonator connection		0.56	0.76	μ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.17	μ
				T _A = +50°C	Resonator connection		0.65	1.36	μ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.57	1.97	μ
				T _A = +70°C	Resonator connection		0.76	2.16	μ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.85	3.37	μ
				T _A = +85°C	Resonator connection		1.04	3.56	μ
	IDD3 ^{Note 6}	STOP Note 8	T _A = -40°C				0.17	0.50	μ
		mode Note 8	T _A = +25°C				0.23	0.50	μ
			T _A = +50°C				0.32	1.10	μ
			T _A = +70°C				0.43	1.90	μ
			T _A = +85°C				0.71	3.30	L

(Notes and Remarks are listed on the next page.)

- <R> Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
- <R> 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.
- <R> 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 24 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 8 MHz

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 4 MHz

- 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

711

(3/3)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FIL Note 1					0.20		μΑ
RTC operating current	RTC Notes 1, 2, 3	fmain is stopped				0.08		μΑ
12-bit interval timer current	IIT Notes 1, 2, 4							μΑ
Watchdog timer operating current	WDT Notes 1, 2, 5	fil = 15 kHz	= 15 kHz					μΑ
A/D converter	IADC	When conversion	Normal mode, A	AVREFP = VDD = 5.0 V		1.3	1.7	mA
operating current	Notes 1, 6	at maximum spee	d Low voltage mo	de, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1					75.0		μА
Temperature sensor operating current	TMPS Note 1					75.0		μΑ
LVD operating current	ILVD Notes 1, 7					0.08		μΑ
Self- programming operating current	FSP Notes 1, 9					2.50	12.20	mA
BGO operating current	BGO Notes 1, 8					2.00	12.20	mA
LCD operating current	ILCD1 Notes 11, 12	External resistance	e division method	$V_{DD} = EV_{DD} = 5.0 \text{ V}$ $V_{L4} = 5.0 \text{ V}$		0.04	0.20	μΑ
	ILCD2 Note 11	Internal voltage bo	posting method	$V_{DD} = EV_{DD} = 5.0 \text{ V}$ $V_{L4} = 5.1 \text{ V (VLCD} = 12\text{H)}$		1.12	3.70	μΑ
				$V_{DD} = EV_{DD} = 3.0 \text{ V}$		0.63	2.20	μΑ
				V _{L4} = 3.0 V (VLCD = 04H)				
	ILCD3 Note 11	Capacitor split me	thod	$V_{DD} = EV_{DD} = 3.0 \text{ V}$		0.12	0.50	μΑ
0110075	Note 1	100 "		VL4 = 3.0 V		0.50	0.00	
SNOOZE operating	ISNOZ Note 1	ADC operation	The mode is performed Note 10 The A/D conversion operations are			0.50	0.60	mA
current				on operations are obtage mode, AVREFP = VDD		1.20	1.44	mA
		CSI/UART operati	on			0.70	0.84	mA

(Notes and Remarks are listed on the next page.)

- <R>> Notes 1. Current flowing to VDD.
 - 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- S. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the R7F0C001G/L, R7F0C002G/L is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- <R> 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the R7F0C001G/L, R7F0C002G/L is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
- <R> 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the R7F0C001G/L, R7F0C002G/L is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- <R> 6. Current flowing only to the A/D converter. The supply current of the R7F0C001G/L, R7F0C002G/L is the sum of I_{DD1} or I_{DD2} and I_{ADC} when the A/D converter operates in an operation mode or the HALT mode.
- <R> 7. Current flowing only to the LVD circuit. The supply current of the R7F0C001G/L, R7F0C002G/L is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- <R> 8. Current flowing only during data flash rewrite.
- <R> 9. Current flowing only during self programming.
- <R> 10. For shift time to the SNOOZE mode, see 16.3.3 SNOOZE mode.
 - 11. Current flowing only to the LCD controller/driver. The supply current value of the R7F0C001G/L, R7F0C002G/L is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1 or IDD2) when the LCD controller/driver operates in an operation mode or HALT mode. Not including the current that flows through the LCD panel.

The TYP. value and MAX. value are following conditions.

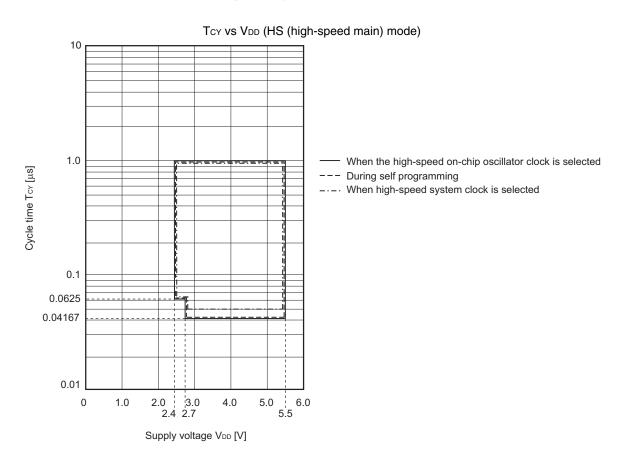
- When fsub is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows through the external divider resistor when the external resistance division method is used.
- Remarks 1. fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - **4.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

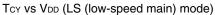
27.4 AC Characteristics

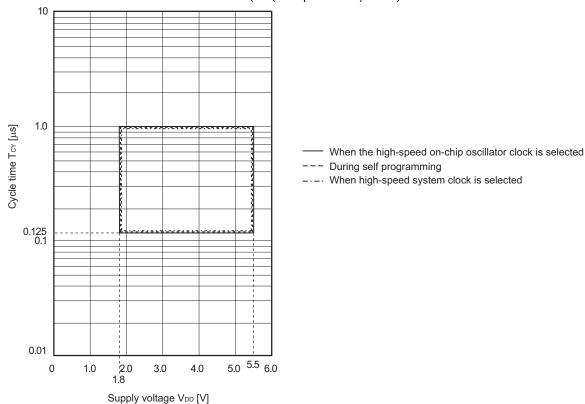
27.4.1 Basic operation

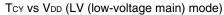
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

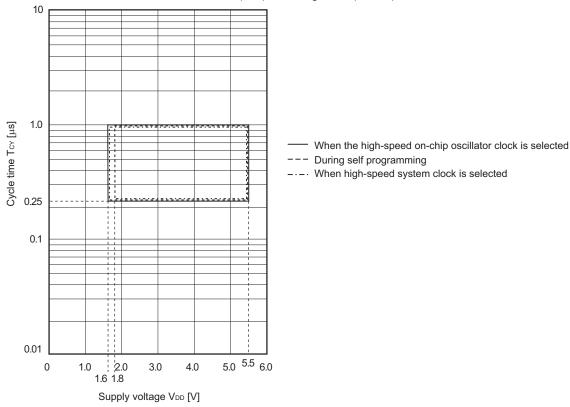
<	F	{>	>

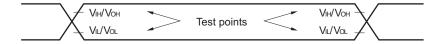

Items	Symbol		Condition	าร		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main		ed 2	$2.7V \le V_{DD} \le 5.5V$	0.04167		1	μS
instruction execution time)		system clock (fmain)	main) mode	2	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		operation	LV (low voltage main) mode	ge ·	$1.6V \le V_{DD} \le 5.5V$	0.25		1	μS
			LS (low-spee main) mode	d ·	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.125		1	μS
		Subsystem operation	clock (fsuв)		$1.8 \text{V} \le \text{V}_{\text{DD}} \le 5.5 \text{V}$	28.5	30.5	31.3	μS
		In the self		ed 2	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	0.04167		1	μS
		programmin g mode	main) mode	2	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μS
		gmode	LV (low voltage main) mode	ge ·	1.8 V ≤ V _{DD} ≤ 5.5 V	0.25		1	μS
			LS (low-spee main) mode	d ·	1.8 V ≤ V _{DD} ≤ 5.5 V	0.125		1	μS
External main system clock	fex	$2.7~V \leq V_{DD}$	≤ 5.5 V			1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD}$	< 2.7 V			1.0		16.0	MH
		$1.8 \text{ V} \leq \text{V}_{\text{DD}}$				1.0		8.0	MH
		$1.6 \text{ V} \leq \text{V}_{DD}$	< 1.8 V			1.0		4.0	MH
	fexs					32		35	kHz
External main system clock input high-level width, low-level width	texh, texl	$2.7 \text{ V} \leq V_{DD}$	≤ 5.5 V			24			ns
iiginevei widii, low-levei widii		$2.4 \text{ V} \leq V_{DD}$	< 2.7 V			30			ns
		1.8 V ≤ V _{DD}	< 2.4 V			60			ns
		1.6 V ≤ V _{DD}	< 1.8 V			120			ns
	texhs, texhs					13.7			μS
TI00 to TI03, TI06, TI07, input high-level width, low-level width	tтін, tтіL					1/fмск+10			ns
TO00 to TO03, TO06, TO07	fто	HS (high-sp		V ≤	$EV_{DD} \le 5.5 V$			16	MH
output frequency		main) mode	2.7	V ≤	EV _{DD} < 4.0 V			8	MH:
			2.4	V ≤	EV _{DD} < 2.7 V			4	MH:
		LV (low volt main) mode		V ≤	EV _{DD} ≤ 5.5 V			2	MH
		LS (low-spe main) mode		V ≤	EV _{DD} ≤ 5.5 V			4	MH
PCLBUZ0, PCLBUZ1 output	fpcL	HS (high-sp		V ≤	EV _{DD} ≤ 5.5 V			16	MH
frequency		main) mode	2.7	V ≤	EV _{DD} < 4.0 V			8	MH:
			2.4	V ≤ l	EV _{DD} < 2.7 V			4	MH
		LV (low-volt	age 1.8	V ≤	$EV_{DD} \le 5.5 V$			4	MH:
		main) mode	1.0		EV _{DD} < 1.8 V			2	MH:
		LS (low-spe main) mode		V ≤ I	EV _{DD} ≤ 5.5 V			4	MH
Interrupt input high-level width,	tinth,	INTP0	1.6	V ≤ '	$V_{DD} \le 5.5 \text{ V}$	1			μS
low-level width	tintl	INTP1 to IN	TP7 1.6 '	V ≤ l	$EV_{DD} \le 5.5 V$	1			μS
Key interrupt input low-level width	t kr	KR0 to KR3	1.8	V ≤	$EV_{DD} \le 5.5 V$	250			ns
			1.6	V ≤	EV _{DD} < 1.8 V	1			μS
RESET low-level width	trsl					10			μS

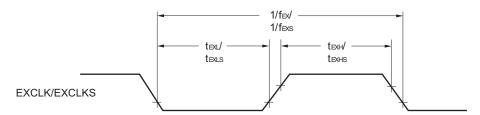

Remark fmck: Timer array unit operation clock frequency

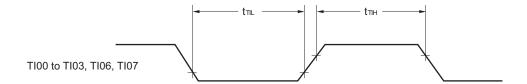

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 3, 6, 7))

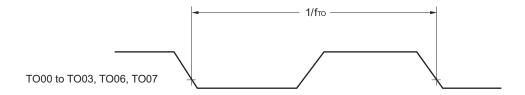

<R>


Minimum Instruction Execution Time during Main System Clock Operation

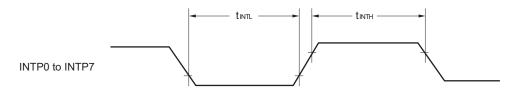




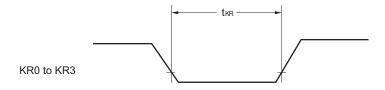

$_{\mbox{\footnotesize <R>}}$ AC Timing Test Points

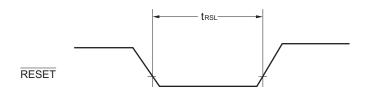


<R> External System Clock Timing

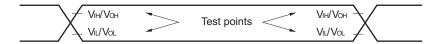


TI/TO Timing




Interrupt Request Input Timing

Key Interrupt Input Timing



RESET Input Timing

27.5 Peripheral Functions Characteristics

<R> AC Timing Test Points

27.5.1 Serial array unit

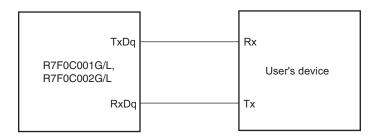
(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}. \ 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}. \text{ Vss} = \text{EV}_{SS} = 0 \text{ V})$

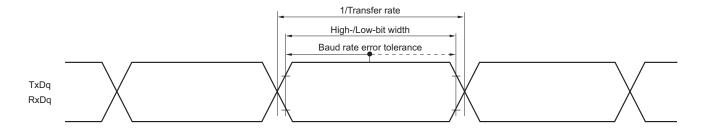
<r></r>	Parameter	Symbol	Conditions		HS (hig	h-speed	LS (low	-speed	LV (low	-voltage	Unit
					main)	Mode	main)	Mode	main)	Mode	
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
	Transfer rate Note 1		2.4 V	$V \leq EVDD = VDD \leq 5.5 V$		fмск/6		fмск/6		fмск/6	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		4.0		1.3		0.6	Mbps
			1.8 V	$V \le EVDD = VDD \le 5.5 V$				fмск/6		fмск/6	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$				1.3		0.6	Mbps
			1.6 V	$V \le EVDD = VDD \le 5.5 V$						fмск/6	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$						0.6	Mbps

<R>> Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

<R> 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)


LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

<R

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	(Conditions	HS (hig main)	h-speed Mode	,	r-speed Mode	,	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	2.7 V ≤ EV	/ _{DD} ≤ 5.5 V	167 Note 1		500 Note 1		1000 Note 1		ns
		2.4 V ≤ EV	⁷ DD ≤ 5.5 V	250 Note 1		500 Note 1		1000 Note 1		ns
		1.8 V ≤ EV	/ _{DD} ≤ 5.5 V			500 Note 1		1000 Note 1		ns
		1.6 V ≤ EV	/ _{DD} ≤ 5.5 V					1000 Note 1		ns
SCKp high-/low-level width	tkh1, tkl1	4.0 V ≤ EV	/ _{DD} ≤ 5.5 V	tксу1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
		2.7 V ≤ EV	$f_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 - 18		tkcy1/2 - 50		tkcy1/2 - 50		ns
		2.4 V ≤ EV	-38 -50 -50			tkcy1/2 - 50		ns		
		1.8 V ≤ EV	$t_{\text{DD}} \leq 5.5 \text{ V}$			tkcy1/2 - 50		tkcy1/2 - 50		ns
		1.6 V ≤ EV	' _{DD} ≤ 5.5 V					tkcy1/2 - 100		ns
SIp setup time (to SCKp↑)	tsıĸ1	2.7 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	44		110		110		ns
Note 2		2.4 V ≤ EV	$t_{DD} \le 5.5 \text{ V}$	75		110		110		ns
		1.8 V ≤ EV	7 _{DD} ≤ 5.5 V			110		110		ns
		1.6 V ≤ EV	7 DD ≤ 5.5 V					220		ns
SIp hold time (from SCKp [↑])	t KSI1	2.4 V ≤ EV	$t_{DD} \le 5.5 \text{ V}$	19		19		19		ns
Note 3		1.8 V ≤ EV	7 DD ≤ 5.5 V			19		19		
		1.6 V ≤ EV	/ _{DD} ≤ 5.5 V					19		
Delay time from SCKp↓ to	tkso1	C = 30 pF	$2.4~V \le EV_{DD} \le 5.5~V$		25		25		25	ns
SOp output Note 4		Hote 5	$1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$				25		25	
			$1.6~V \le EV_{DD} \le 5.5~V$						25	

Notes 1. For CSI00, set a cycle of 2/fmck or longer. For CSI01, set a cycle of 4/fmck or longer.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(Remarks are listed on the next page.)

<R>

Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 1)

2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

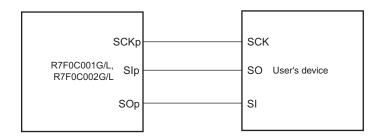
m: Unit number, n: Channel number (mn = 00, 01))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (1/2) (T_A = −40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, Vss = EV_{SS} = 0 V)

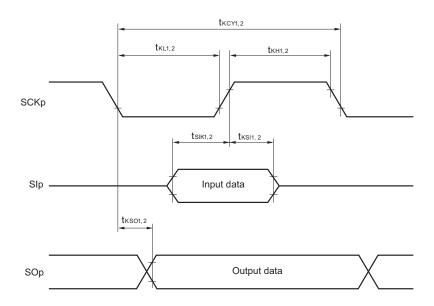
Parameter	Symbol	Conc	ditions	HS (high main)	•	LS (low main)	•		v-voltage Mode	U
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Not	e tkcy2	$4.0~V \leq EV_{DD} \leq 5.5~V$	20 MHz < fмск	8/fмск						ı
5			fмcк ≤ 20 MHz	6/ƒмск		6/fмск		6/fмск		ı
		$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V}$	16 MHz < fмск	8/fмск						ı
			fмcк ≤ 16 MHz	6/ƒмск		6/fмск		6/fмск		r
		$2.4~V \le EV_{DD} \le 5.5~V$		6/fмск and 500		6/ƒмск		6/fмск		1
		1.8 V ≤ EV _{DD} < 2.4 V				6/fмск		6/fмск		ı
		1.6 V ≤ EV _{DD} < 1.8 V						6/fмск		r
SCKp high-/low- level width	tкн2, tкL2	$4.0~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		tксу2/2 - 7		tkcy2/2 -7		tксу2/2 -7		r
		2.7 V ≤ EV _{DD} < 4.0 V		tксу2/2 - 8		tkcy2/2 -8		tkcy2/2		1
		$2.4~\textrm{V} \leq \textrm{EV}_\textrm{DD} < 2.7~\textrm{V}$		tксу2/2 - 18		tксү2/2 - 18		tксу2/2 - 18		1
	1.8 V ≤ EV	1.8 V ≤ EV _{DD} < 2.4 V				tксү2/2 - 18		tkcy2/2 - 18		1
		1.6 V ≤ EV _{DD} < 1.8 V						tkcy2/2 - 66		r
SIp setup time (to SCKp↑) Note 1	tsik2	$2.7~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		r
		2.4 V ≤ EV _{DD} < 2.7 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		
				1/fмск + 30		1/fмск + 30		r		
		1.6 V ≤ EV _{DD} < 1.8 V						1/fмск + 40		r
SIp hold time (from SCKp↑) Note 2	tksi2	$2.4~V \leq EV_{DD} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		r
trom SCKp(1)		1.8 V ≤ EV _{DD} < 2.4 V				1/fмск + 31		1/fмск + 31		ns ns ns ns ns
		1.6 V ≤ EV _{DD} < 1.8 V						1/fмск +		ı
								250		

(Notes, Caution, and Remarks are listed on the next page.)

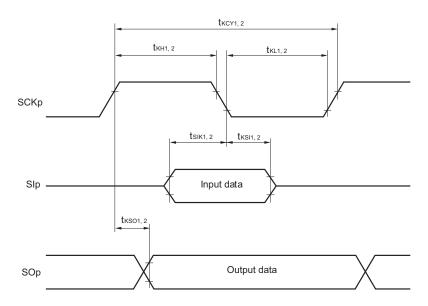
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (2/2) $(T_A = -40 \text{ to } +85^{\circ}\text{C}. \ 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}. \text{ Vss} = \text{EV}_{SS} = 0 \text{ V})$


1	(17 = 40 to 10	JO 0, 1.0	<u> </u>	3 J.J V, V35 - LV35	- 0 1)		1				
<r></r>	Parameter	ameter Symbol		onditions	HS (high-	'	LV (low- voltage	Unit	Para meter	Symbol	Conditions
					` •	speed			meter		
					speed	main)	main)				
					main)	Mode	Mode				
					Mode						
	Delay time from	t KSO2	C = 30 pF Note 4	$4.0~V \leq EV_{DD} \leq 5.5~V$		2/fмск		2/fмcк		2/fмск	ns
	SCKp↓ to SOp					+ 44		+ 110		+ 110	
	output Note 3		2	$2.7 \text{ V} \leq \text{EV}_{DD} < 4.0 \text{ V}$		2/fмск		2/fмск		2/fмск	ns
						+ 44		+ 110		+ 110	
				$2.4 \text{ V} \leq \text{EV}_{DD} < 2.7 \text{ V}$		2/fмск		2/fмск		2/fмск	ns
						+ 75		+ 110		+ 110	
				$1.8 \text{ V} \leq \text{EV}_{DD} < 2.4 \text{ V}$				2/f мск		2/fмск	ns
								+ 110		+ 110	
				1.6 V ≤ EV _{DD} < 1.8 V				•		2/fмск	ns
										+ 220	

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp \downarrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from $SCKp^{\uparrow}$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01)

2. m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(1/2)

(Ta = -40 to +85°C, 1.8 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

	Parameter	Symbol		Cond	itions	HS (high main) N	•	LS (low main)	•	LV (low- main)	•	Unit
						MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
<r></r>	Transfer rate		Reception	4.0 V ≤ EV 2.7 V ≤ V _b	•		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
					Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3		0.6	Mbps
				$2.7 \text{ V} \le \text{EV}$ $2.3 \text{ V} \le \text{V}_b$,		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
					Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3		0.6	Mbps
				2.4 V ≤ EV 1.6 V ≤ V _b	·		fMCK/6 Note 1		fMCK/6 Note 1		fMCK/6 Note 1	bps
					Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		4.0		1.3		0.6	Mbps
				1.8 V ≤ EV 1.6 V ≤ V _b :	·				fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
					Theoretical value of the maximum transfer rate fmck = fclk Note 3				1.3		0.6	Mbps

- <R> Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. Use it with $EV_{DD} \ge V_b$.
- <R> 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (48-pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. V_b[V]: Communication line voltage

2. q: UART number (q = 0), g: PIM and POM number (g = 1)

<R> 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

	Parameter	Symbol		Condi	tions	HS (high main)	•	,	w-speed) Mode	,	-voltage Mode	Unit
						MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
<r></r>	Transfer rate		Transmission	$4.0 \text{ V} \le \text{EV}$ $2.7 \text{ V} \le \text{V}_{b}$			Note 1		Note 1		Note 1	bps
					Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega,$ $V_b = 2.7 \text{ V}$		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
				2.7 V ≤ EV 2.3 V ≤ V _b	,		Note 3		Note 3		Note 3	bps
					Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ $V_b = 2.3 \text{ V}$		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
				2.4 V ≤ EV 1.6 V ≤ V _b	,		Note 6		Note 6		Note 6	bps
					Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \ R_b = 5.5 \text{ k}\Omega$ $V_b = 1.6 \text{ V}$		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps
				1.8 V ≤ EV 1.6 V ≤ V _b					Notes 5, 6		Notes 5, 6	bps
					Theoretical value of the maximum transfer rate $C_b=50 \ pF, \ R_b=5.5 \ k\Omega,$ $V_b=1.6 \ V$				0.43 Note 7		0.43 Note 7	Mbps

Notes 1. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EVDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times ln\ (1-\frac{2.2}{V_b})\} \times 3} \ [bps] \end{aligned}$$

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \text{ln } (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

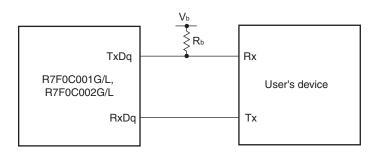
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times ln\ (1-\frac{2.0}{V_b})\} \times 3} \end{aligned} \text{ [bps]}$$

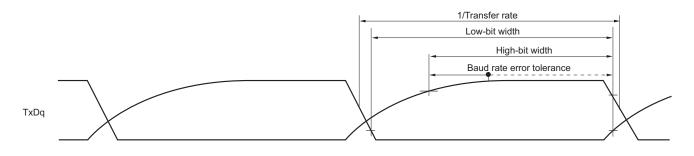
$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \text{ln } (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \ [\%]$$

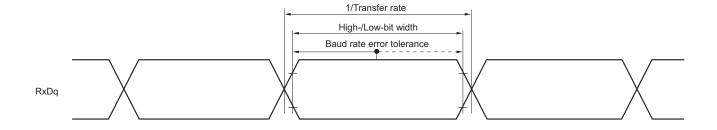
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. Use it with $EV_{DD} \ge V_b$.
- 6. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V


$$\label{eq:maximum transfer rate} \begin{aligned} & \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{1.5}{V_b})\} \times 3} \end{aligned} \text{[bps]}$$

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \text{ln } (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (48-pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** $\mathsf{Rb}[\Omega]$:Communication line (TxDq) pull-up resistance,
 - $C_b[F]: Communication \ line \ (TxDq) \ load \ capacitance, \ V_b[V]: Communication \ line \ voltage$
 - **2.** q: UART number (q = 0, 1), g: PIM and POM number (g = 1)
- <R> 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

	Parameter	Symbol		Conditions	HS (-	,	/-speed Mode		(low- e main)	Unit
					Mo	ode		T	Мс	ode	
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
;	SCKp cycle time	tkcy1	tkcy1 ≥ 2/fclk	$\begin{aligned} 4.0 \ V &\leq EV_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned}$	200 Note 1		1150 Note 1		1150 Note 1		ns
				$\begin{split} 2.7 \ V &\leq EV_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	300 Note 1		1150 Note 1		1150 Note 1		ns
	SCKp high-level width	t _{KH1}	4.0 V ≤ EV _{DD}	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	tkcy1/2		tkcy1/2		tkcy1/2		ns
			C _b = 20 pF, F	$R_b = 1.4 \text{ k}\Omega$	- 50		- 50		- 50		
			2.7 V ≤ EV _{DD}	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$	tkcy1/2		tkcy1/2		tkcy1/2		ns
			C₀ = 20 pF, F	$R_b = 2.7 \text{ k}\Omega$	- 120		- 120		- 120		
	SCKp low-level width	t _{KL1}		\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	t _{KCY1} /2		tkcy1/2		tkcy1/2		ns
	•		C₀ = 20 pF, F	$R_b = 1.4 \text{ k}\Omega$	-7		- 50		- 50		
			•	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$	tkcy1/2		tkcy1/2		tkcy1/2		ns
			C₀ = 20 pF, F		- 10		- 50		- 50		
	SIp setup time	tsik1	•	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	58		479		479		ns
	(to SCKp↑) Note 2		C _b = 20 pF, F								
				$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$	121		479		479		ns
			C₀ = 20 pF, F								
l,	Slp hold time	t _{KSI1}		\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10		10		10		ns
	(from SCKp↑) Note 2		C _b = 20 pF, F								
				$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$	10		10		10		ns
			C _b = 20 pF, F								
h	Delay time from SCKp↓ to	tkso1	•	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,		60		60		60	ns
	SOp output Note 2		C₀ = 20 pF, F	$R_b = 1.4 \text{ k}\Omega$							
				$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$		130		130		130	ns
			C₀ = 20 pF, F								
T,	SIp setup time	tsik1		\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	23		110		110		ns
ŀ	(to SCKp↓) Note 3		C₀ = 20 pF, F	$R_b = 1.4 \text{ k}\Omega$							
			2.7 V ≤ EV _{DD}	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$	33		110		110		ns
			C _b = 20 pF, F	$R_b = 2.7 \text{ k}\Omega$							
T,	SIp hold time	tksi1	4.0 V ≤ EV _{DD}	\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10		10		10		ns
ŀ	(from SCKp↓) Note 3		C _b = 20 pF, F	$R_b = 1.4 \text{ k}\Omega$							
			2.7 V ≤ EV _{DD}	$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$	10		10		10		ns
			C _b = 20 pF, F								
h	Delay time from SCKp↑ to	tkso1		\leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V,		10		10		10	ns
	SOp output Note 3		C₀ = 20 pF, F								
				$< 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$		10		10		10	ns
l			C₀ = 20 pF, F								

(Notes, Caution and Remarks are listed on the next page.)

- <R> Notes 1. Set a cycle of 2/fмск or longer.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 3. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- <R>> Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (48-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - **Remarks 1.** $R_b[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
- <R> 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3) $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V})$

<r></r>	Parameter	Symbol	Conditions		speed	high- main) ode	, , , , , , , , , , , , , , , , , , ,		voltage main) Mode		Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
	SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$\begin{aligned} 4.0 & \ V \le EV_{DD} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b = 30 & \ pF, \ R_b = 1.4 \ k\Omega \end{aligned}$	300		1150		1150		ns
				$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	500		1150		1150		ns
				$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}, \\ 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	1150		1150		1150		ns
				$\begin{split} 1.8 \ V &\leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$			1150		1150		ns
	SCKp high-level width	tкнı		5.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	tксү1/2 - 75		tксү1/2 - 75		tксу1/2 - 75		ns
			$2.7 \text{ V} \le \text{EV}_{DD} < 4$ $C_b = 30 \text{ pF}, R_b = 4$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tксү1/2 - 170		tксү1/2 - 170		tксу1/2 - 170		ns
			$2.4 \text{ V} \le \text{EV}_{DD} < 3$ $C_b = 30 \text{ pF}, R_b = 3$	3.3 V, 1.6 V \leq V _b \leq 2.0 V, = 5.5 k Ω	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
			1.8 V ≤ EV _{DD} < 3 C _b = 30 pF, R _b =	3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note} , = 5.5 kΩ			tксү1/2 - 458		tксү1/2 - 458		ns
	SCKp low-level width	t _{KL1}	$4.0 \text{ V} \le \text{EV}_{DD} \le 8$ $C_b = 30 \text{ pF}, R_b = 8$	5.5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ	tксу1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
			$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7$	4.0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
				3.3 V, 1.6 V \leq V _b \leq 2.0 V, = 5.5 kΩ	tkcy1/2 - 50		tkcy1/2 - 50		tkcy1/2 - 50		ns
			$\begin{array}{c} 1.8 \; V \leq EV_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note}}, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$				tксү1/2 - 50		tксү1/2 - 50		ns

<R> Note Use it with $EV_{DD} \ge V_b$.

> Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (48-pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

,	Parameter	Symbol	Conditions	speed	high- I main) ode	speed	(low- I main) ode	voltage	(low- e main) ode	Uni
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
	SIp setup time (to SCKp↑) Note 1	tsıĸı	$ \begin{aligned} 4.0 \ V &\leq EV_{DD} \leq 5.5 \ V, 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, R_b = 1.4 \ k\Omega \end{aligned} $	81		479		479		ns
			$ 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $	177		479		479		ns
			$ \begin{array}{l} 2.4 \; V \leq EV_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array} $	479		479		479		ns
			$ \begin{aligned} &1.8 \; V \leq EV_{DD} < 3.3 \; V, \\ &1.6 \; V \leq V_b \leq 2.0 \; V^{\text{Note 3}}, \\ &C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{aligned} $			479		479		ns
(SIp hold time (from SCKp \uparrow) Note 1	tksi1	$ \begin{aligned} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	19		19		19		ns
			$ \begin{aligned} 2.7 \ V &\leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b &= 30 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	19		19		19		ns
			$ 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega $	19		19		19		ns
			$\begin{split} 1.8 \ V &\leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$			19		19		ns
	Delay time from SCKp↓ to SOp output Note 1	tkso1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		100		100		100	ns
			$ \begin{cases} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{cases} $		195		195		195	ns
			$ \begin{cases} 2.4 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{cases} $		483		483		483	ns
			$\begin{split} 1.8 \ V &\leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$				483		483	ns
	SIp setup time (to SCKp↓) Note 2	tsıĸ1	$ \begin{aligned} 4.0 \ V & \le EV_{DD} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V, \\ C_b & = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	44		110		110		ns
		$ 2.7 \text{ V} \leq \text{EV}_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega $				110		ns		
			$ \begin{aligned} & 2.4 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	110		110		110		ns
			$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 3}}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $			110		110		ns

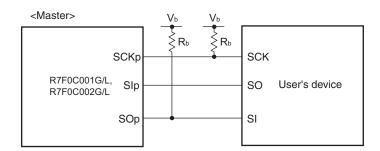
<R> Notes

- 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- <R> 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- <R> 3. Use it with $EV_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (48-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

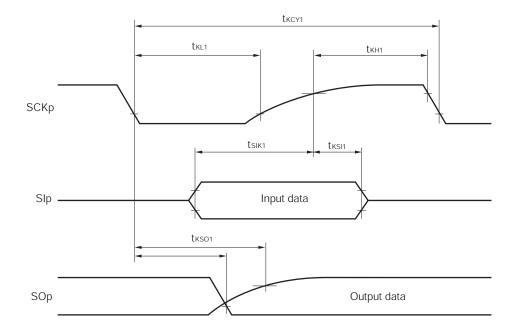
	$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8)$	8 V ≤ EV :	$DD = VDD \le 5.5 \text{ V}, \text{ Vss} = \text{EVss} = 0 \text{ V}$							
<r></r>	Parameter	Symbol	Conditions	,	high- I main)		(low-		(low- e main)	Unit
					ode		ode	_	ode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
	SIp hold time (from SCKp↓) Note 2	tksi1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	19		19		19		ns
			$ \begin{array}{c} 2.7 \; V \leq EV_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array} $	19		19		19		ns
			$ \begin{array}{l} 2.4 \; V \leq EV_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array} $	19		19		19		ns
			$\begin{split} 1.8 \ V &\leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b &= 30 \ \text{pF}, \ R_b = 5.5 \ k\Omega \end{split}$			19		19		ns
	Delay time from SCKp↑ to SOp output Note 2	tkso1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD} \leq 5.5 \ V, 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		25		25		25	ns
			$ \begin{array}{c} 2.7 \; V \leq EV_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array} $		25		25		25	ns
			$ \begin{array}{l} 2.4 \; V \leq EV_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array} $		25		25		25	ns
			$\begin{split} 1.8 \ V &\leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 3}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$				25		25	ns

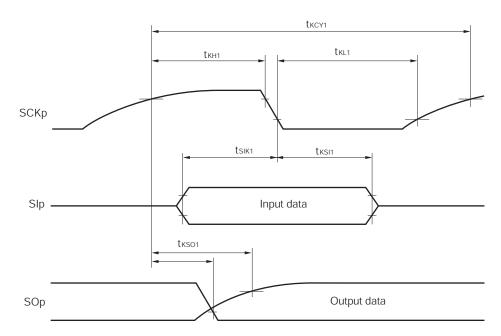

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

<R> 3. Use it with $EV_{DD} \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (48-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


CSI mode connection diagram (during communication at different potential)


- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

<R>

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

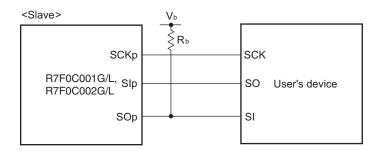
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}. 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (1/2)

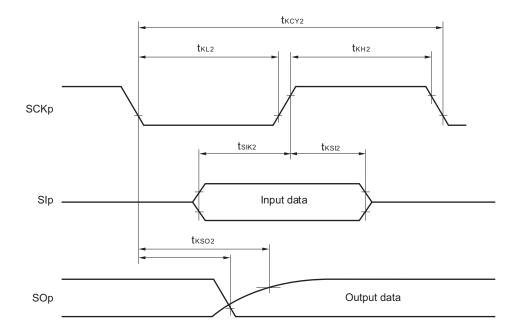
г			. ⊑ v ∪∪ = v∪∪ ≤ 3.3	V, Vss = EVss = 0							(1	
	Parameter	Symbol	Cond	ditions	speed	high- main) ode		r-speed mode	voltage	(low- e main) ode	Ur	
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
F	SCKp cycle time Note 1	tkcy2	$4.0 \text{ V} \le \text{EV}_{DD} \le 5.5 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	12/fмск						n	
			$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмcк ≤ 20 MHz	10/fмск						n	
				4 MHz < fмck ≤ 8 MHz	8/fмск		16/f мск				n	
				fмcк ≤ 4 MHz	6/ƒмск		10/fмск		10/fмск		n	
			$2.7 \text{ V} \le \text{EV}_{DD} < 4.0 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	16/f мск						n	
			$2.3 \ V \leq V_b \leq 2.7 \ V$	16 MHz < fмcк ≤ 20 MHz	14/fмск						n	
				8 MHz < fмcк ≤ 16 MHz	12/fмск						n	
				4 MHz < fMCK ≤ 8 MHz	8/fмск		16/fмск				n	
				$f_{MCK} \le 4 \; MHz$	6/fмск		10/fмск		10/fмск		n	
			$2.4 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	36/fмск						n	
			$1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	16 MHz < fмcк ≤ 20 MHz	32/fмск						n	
				8 MHz < fмcк ≤ 16 MHz	26/fмск						n	
				4 MHz < fMCK ≤ 8 MHz	16/f мск		16/fмск				n	
				f _{MCK} ≤ 4 MHz	10/fмск		10/fмск		10/fмск		n	
			$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$	4 MHz < fMCK ≤ 8 MHz			16/fмск				n	
			$1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}}$	f _{MCK} ≤ 4 MHz			10/fмск		10/fмск		n	
	SCKp high-/low-level tkH2, width tkL2	$4.0~\textrm{V} \leq \textrm{EV}_\textrm{DD} \leq 5.5~\textrm{V},~2.7~\textrm{V} \leq \textrm{V}_\textrm{b} \leq 4.0~\textrm{V}$				tkcy2/2 - 50		tkcy2/2 - 50		n		
			2.7 V ≤ EV _{DD} < 4.0 ¹	$V, 2.3 V \le V_b \le 2.7 V$	tксү2/2 - 18		tkcy2/2 - 50		tkcy2/2 - 50			
			2.4 V ≤ EV _{DD} < 3.3 ¹	tксү2/2 - 50		txcy2/2 - 50		txcy2/2 - 50		n		
			$\begin{array}{c} 1.8 \ V \leq EV_{DD} < 3.3 \ \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{No} \end{array}$				tkcy2/2 - 50		txcy2/2 - 50		n	
	SIp setup time (to SCKp↑) Note 3	tsik2	$4.0 \text{ V} \leq \text{EV}_{DD} < 5.5 ^{1}$	$V, 2.7 V \le V_b \le 4.0 V$	1/fмск + 20		1/fmck + 30		1/fмск + 30		n	
			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 20		1/fmck + 30		1/fмск + 30		n	
			$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 ^{\text{V}}$	$V, 1.6 V \le V_b \le 2.0 V$	1/fмск + 30		1/fmck + 30		1/fмск + 30		n	
			$\begin{array}{c} 1.8 \ V \leq EV_{DD} < 3.3 \ \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{No} \end{array}$				1/fmck + 30		1/fmck + 30		n	
	Slp hold time (from SCKp↑) Note 4	tksi2	$4.0 \text{ V} \le \text{EV}_{DD} < 5.5 ^{1}$	$V, 2.7 V \le V_b \le 4.0 V$	1/fмск + 31		1/fmck + 31		1/fмск+ 31		n	
			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0^{\circ}$	$V, 2.3 V \le V_b \le 2.7 V$	1/fмск + 31		1/fmck + 31		1/fмск + 31		n	
			2.4 V ≤ EV _{DD} < 3.3 ¹	$V, 1.6 V \le V_b \le 2.0 V$	1/f _{MCK} + 31		1/fмск + 31		1/fмcк+ 31		n	
			$1.8 \text{ V} \le \text{EV}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{No}$				1/fмск + 31		1/fмск + 31		n	

(Notes, Caution and Remarks are listed on the next page.)


(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +85^{\circ}\text{C}. 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}. \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (2/2)

	(1A = -40 to +65 t	, 1.0 V S	$EVDD = VDD \le 3.3 V$, $VSS = EVSS = 0$							(2/2)
<r></r>	Parameter	Symbol	Conditions	speed	high- main) ode	LS (low main)	r-speed mode	voltage	low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
	Delay time from SCKp↓ to SOp output Note 5	tkso2	$ \begin{aligned} 4.0 \ V &\leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
			$ 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
			$2.4~V \leq EV_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$ $C_b = 30~pF,~R_b = 5.5~k\Omega$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
			$\begin{split} 1.8 \ V &\leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$				2/fмск + 573		2/fмск + 573	ns

- Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
 - 2. Use it with $EV_{DD} \ge V_b$.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (48-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- Remarks 1. $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - fmcκ: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

27.6 Analog Characteristics

27.6.1 A/D converter characteristics

<R> Classification of A/D converter characteristics

	Reference Voltage							
	Reference voltage (+) = AVREFP	Reference voltage (+) = VDD	Reference voltage (+) = VBGR					
Input channel	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM					
ANIO, ANI1	=	Refer to 27.6.1 (3).	Refer to 27.6.1 (4).					
ANI16 to ANI23	Refer to 27.6.1 (2) .							
Internal reference voltage	Refer to 27.6.1 (1).		-					
Temperature sensor output								
voltage								

<R> (1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±3.5	LSB
		AVREFP = VDD Note 3	$1.6~V \leq V_{DD} \leq 5.5~V$ Note 4		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		reference voltage, and temperature sensor output voltage	2.4 V ≤ VDD ≤ 5.5 V	17		39	μs
		(HS (high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	E _{zs}	10-bit resolution AVREFP = VDD Note 3	$1.8~V \leq AV_{REFP} \leq 5.5$ V			±0.25	%FSR
			$1.6~V \leq AV_{REFP} \leq 5.5$ $V^{Note~4}$			±0.50	%FSR
Full-scale error ^{Notes 1, 2}	E _{FS}	10-bit resolution AV _{REFP} = V _{DD} Note 3	$1.8~V \le AV_{REFP} \le 5.5$ V			±0.25	%FSR
			$1.6~V \leq AV_{REFP} \leq 5.5$ $V^{Note~4}$			±0.50	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
		AVREFP = VDD Note 3	$1.6~V \leq V_{DD} \leq 5.5~V$ Note 4			±5.0	LSB
Differential linearity error	DLE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±1.5	LSB
Note 1		AVREFP = VDD Note 3	$1.6~V \leq V_{DD} \leq 5.5~V$ Note 4			±2.0	LSB
Analog input voltage	Vain	Internal reference voltage $V_{BGR}^{Note 5}$ (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V			
	VBGR	Temperature sensor output $(2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, HS (high$	•	V _{TMPS25} Note 5			V

(Notes are listed on the next page.)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- <R> 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows.
 Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

- <R> 4. Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- <R> 5. Refer to 27.6.2 Temperature sensor/internal reference voltage characteristics.

<R> (2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI16 to ANI23

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Cond	Conditions		TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
		$AV_{REFP} = EV_{DD} = V_{DD}$ Note 3	$1.6~V \leq AV_{REFP} \leq 5.5~V$ Note 4		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		$AV_{REFP} = EV_{DD} = V_{DD}$	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		10-bit resolution AVREFP = EVDD = VDD Note	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
Zero-scale error ^{Notes 1, 2}	E _{zs}		$1.8~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
		3 1.	$1.6~V \le AV_{REFP} \le 5.5~V$ Note 4			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	E _{FS}	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$			±0.35	%FSR
		$\begin{array}{c} AV_{REFP} = EV_{DD} = V_{DD}^{Note} \\ {}_{3} \end{array}$	$1.6~V \le AV_{REFP} \le 5.5~V$ Note 4			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$			±3.5	LSB
		$\begin{array}{l} \text{AV}_{\text{REFP}} = \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \\ \\ \text{Note 3} \end{array}$	$1.6~V \le AV_{REFP} \le 5.5~V$ Note 4			±6.0	LSB
Differential linearity error	DLE	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$			±2.0	LSB
Note 1		$AV_{REFP} = EV_{DD} = V_{DD}$ Note 3	$1.6~V \le AV_{REFP} \le 5.5~V$ Note 4			±2.5	LSB
Analog input voltage	Vain			0		AVREFP and EVDD	V

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

<R> 3. When $AV_{REFP} < EV_{DD} = V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

<R> 4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

<R> (3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin : ANI0, ANI1, ANI16 to ANI23, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±0.85	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±6.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution	1.8 V ≤ VDD ≤ 5.5 V			±2.0	LSB
			$1.6~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$ Note 3			±2.5	LSB
Analog input voltage	Vain	ANIO, ANI1	1	0		V _{DD}	V
		ANI16 to ANI23		0		EV _{DD}	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			>		
		Temperature sensor output (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high			VTMPS25 Note 4		٧

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

<R> 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

<R> 4. Refer to 27.6.2 Temperature sensor/internal reference voltage characteristics.

<R> (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin : ANI0, ANI16 to ANI23

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{BGR}^{Note 3}, \text{Reference voltage (-)} = \text{AV}_{REFM}^{Note 4} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		V _{BGR} Note 3	V

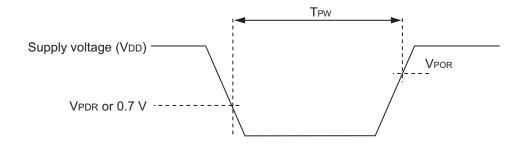
Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- <R> 3. Refer to 27.6.2 Temperature sensor/internal reference voltage characteristics.
- <R> 4. When reference voltage (–) = Vss, the MAX. values are as follows. Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AVREFM.

Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

27.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +85°C, 2.4 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, Vss = EV_{SS} = 0 V) (HS (high-speed main) mode)


<r></r>	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, Ta = +25°C		1.05		V
	Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
	Temperature coefficient	Fvтмps	Temperature sensor that depends on the temperature		-3.6		mV/°C
	Operation stabilization wait time	tamp		5			μS

27.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

<r></r>	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Detection voltage	V _{POR}	Power supply rise time	1.47	1.51	1.55	V
		V _{PDR}	Power supply fall time	1.46	1.50	1.54	V
	Minimum pulse width ^{Note}	T _{PW}		300			μS

<R> Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

27.6.4 LVD circuit characteristics

(Ta = -40 to +85°C, Vpdr \leq EVdd = Vdd \leq 5.5 V, Vss = EVss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	٧
voltage			Power supply fall time	3.90	3.98	4.06	٧
		V _{LVD1}	Power supply rise time	3.68	3.75	3.82	٧
			Power supply fall time	3.60	3.67	3.74	٧
		V _{LVD2}	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	٧
		V LVD3	Power supply rise time	2.96	3.02	3.08	٧
			Power supply fall time	2.90	2.96	3.02	V
		V _{LVD4}	Power supply rise time	2.86	2.92	2.97	٧
			Power supply fall time	2.80	2.86	2.91	٧
		V _{LVD5}	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		V _{LVD6}	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		V _{LVD7}	Power supply rise time	2.56	2.61	2.66	٧
			Power supply fall time	2.50	2.55	2.60	V
		V _{LVD8}	Power supply rise time	2.45	2.50	2.55	٧
			Power supply fall time	2.40	2.45	2.50	٧
		V _{LVD9}	Power supply rise time	2.05	2.09	2.13	٧
			Power supply fall time	2.00	2.04	2.08	٧
		V _{LVD10}	Power supply rise time	1.94	1.98	2.02	٧
			Power supply fall time	1.90	1.94	1.98	٧
		V _{LVD11}	Power supply rise time	1.84	1.88	1.91	٧
			Power supply fall time	1.80	1.84	1.87	٧
		V _{LVD12}	Power supply rise time	1.74	1.77	1.81	٧
			Power supply fall time	1.70	1.73	1.77	٧
		V _{LVD13}	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	٧
Minimum pu	ulse width	t∟w		300			μS
Detection d	elay time	t LD				300	μS

LVD Detection Voltage of Interrupt & Reset Mode

(Ta = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and rese	VLVDA0	V _{POC2}	, VPOC1, VPOC0 = 0, 0, 0	falling reset voltage	1.60	1.63	1.66	٧
mode	V _{LVDA1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	V _{LVDA2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	V LVDA3	VLVDA3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
V	V _{LVDB1}	V _{POC2}	, VPOC1, VPOC0 = 0, 0, 1	falling reset voltage	1.80	1.84	1.87	V
	V _{LVDB2}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	V _{LVDB3}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	V _{LVDB4}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	V _{POC2}	, VPOC1, VPOC0 = 0, 1, 0	falling reset voltage	2.40	2.45	2.50	V
	V _{LVDC1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	V _{LVDC2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	V _{POC2}	, VPOC1, VPOC0 = 0, 1, 1	falling reset voltage	2.70	2.75	2.81	V
	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	٧
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	V _{LVDD3} LV	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	٧	
				Falling interrupt voltage	3.90	3.98	4.06	V

27.6.5 Supply voltage rise time

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
<r></r>	Power supply voltage rising slope	SVDD				54	V/ms

<R> Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 27.4 AC Characteristics.

27.7 LCD Characteristics

27.7.1 Resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.0		V _{DD}	V

(2) 1/2 bias method, 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

(17)	,					
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	V _{L4}		2.7		V _{DD}	V

(3) 1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCE		V_{L4}		2.5		V_{DD}	V

27.7.2 Internal voltage boosting method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1}	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	٧
		$= 0.47 \ \mu F$	VLCD = 05H	0.95	1.05	1.13	٧
			VLCD = 06H	1.00	1.10	1.18	٧
			VLCD = 07H	1.05	1.15	1.23	٧
			VLCD = 08H	1.10	1.20	1.28	٧
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	٧
			VLCD = 0CH	1.30	1.40	1.48	٧
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} - 0.1	2 V _{L1}	2 V _{L1}	V
Tripler output voltage	V _{L4}	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	3 V _{L1} - 0.15	3 VL1	3 V _{L1}	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between V_{L2} and GND
- C4: A capacitor connected between V_{L4} and GND
- $C1 = C2 = C3 = C4 = 0.47 \ \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Coi	nditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	V _{L1} Note 4	C1 to C5 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		$= 0.47 \ \mu F$	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	٧
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	V _{L2}	C1 to C5 ^{Note 1} =	0.47 μF	2 V _{L1} – 0.08	2 V _{L1}	2 V _{L1}	V
Tripler output voltage	V _{L3}	C1 to C5 ^{Note 1} =	0.47 μF	3 V _{L1} – 0.12	3 V _{L1}	3 V _{L1}	V
Quadruply output voltage	V _{L4} Note 4	C1 to C5 ^{Note 1} =	0.47 μF	4 V _{L1} – 0.16	4 V _{L1}	4 V _{L1}	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

- C1: A capacitor connected between CAPH and CAPL
- C2: A capacitor connected between V_{L1} and GND
- C3: A capacitor connected between VL2 and GND
- C4: A capacitor connected between V_{L3} and GND
- C5: A capacitor connected between V_{L4} and GND
- $C1 = C2 = C3 = C4 = C5 = 0.47 \mu F \pm 30\%$
- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
- 4. VL4 must be 5.5 V or lower.

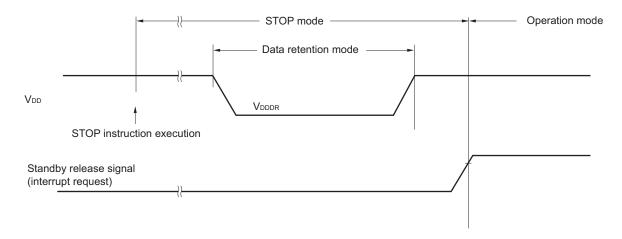
27.7.3 Capacitor split method

1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.2 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{L4} voltage	V _{L4}	C1 to C4 = 0.47 μ F ^{Note 2}		V _{DD}		٧
V∟₂ voltage	V _{L2}	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} - 0.1	2/3 V _{L4}	2/3 V _{L4} + 0.1	٧
V _{L1} voltage	V _{L1}	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} - 0.1	1/3 V _{L4}	1/3 V _{L4} + 0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).


- 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
 - C1: A capacitor connected between CAPH and CAPL
 - C2: A capacitor connected between V_{L1} and GND
 - C3: A capacitor connected between VL2 and GND
 - C4: A capacitor connected between V_{L4} and GND
 - $C1 = C2 = C3 = C4 = 0.47 \ \mu F \pm 30\%$

27.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	٧

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

27.9 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

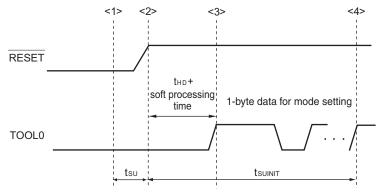
117 - 10 10 100 0, 110 1 2 1 100 2 010 1, 100 - 2 100							
Parameter	Symbol	Cond	Conditions		TYP.	MAX.	Unit
System clock frequency	fclk	$1.8~V \leq V_{DD} \leq 5.5~V$		1		24	MHz
Number of code flash rewrites	Cerwr	Retained for 20 years	T _A = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 year	T _A = 25°C		1,000,000		
		Retained for 5 years	T _A = 85°C	100,000			
		Retained for 20 years	T _A = 85°C	10,000			

- Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

 The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

<R> 27.10 Dedicated Flash Memory Programmer Communication (UART)


(Ta = -40 to +85°C, 1.8 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During flash memory programming	115,200		1,000,000	bps

27.11 Timing Specifications for Switching Flash Memory Programming Modes

(Ta = -40 to +85°C, 1.8 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V)

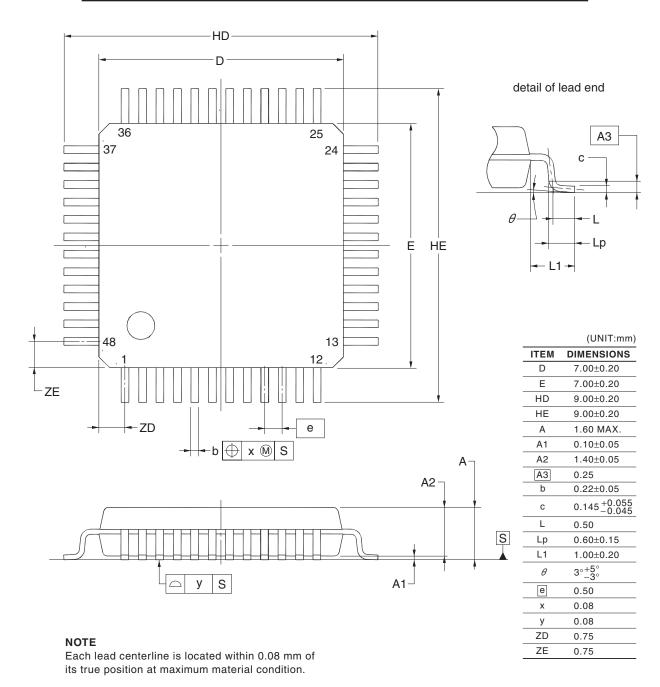
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset must be released before the external reset is released.	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset must be released before the external reset is released.	1			ms

<R>

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after a reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

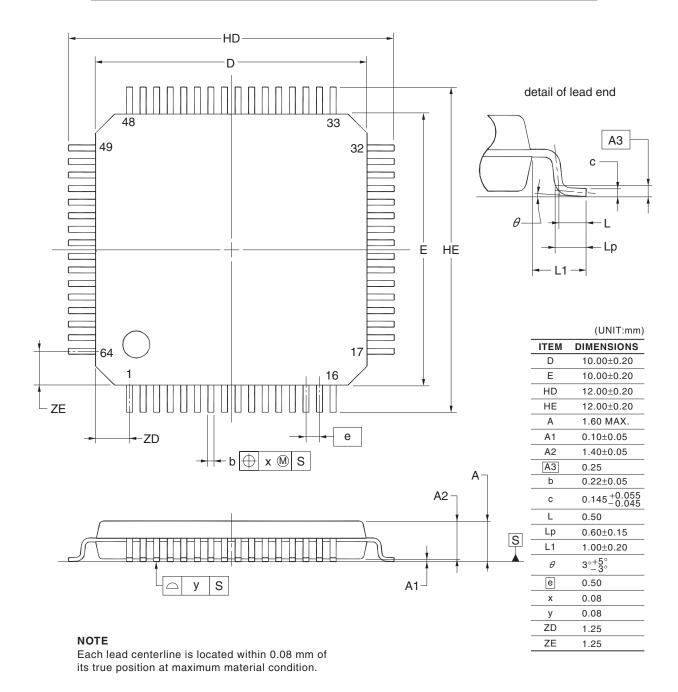

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

CHAPTER 28 PACKAGE DRAWINGS

28.1 48-pin Products

R7F0C001G2DFB, R7F0C002G2DFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16



©2012 Renesas Electronics Corporation. All rights reserved.

28.2 64-pin Products

R7F0C001L2DFB, R7F0C002L2DFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35

©2012 Renesas Electronics Corporation. All rights reserved.

APPENDIX A REVISION HISTORY

A.1 Major Revisions in This Edition

(1/8)

		(1/6)
Page	Description	Classification
Though out	Renamed operation speed mode control register to subsystem clock supply mode control register (OSMC)	(b)
CHAPTER 1 OUTLIN	NE	
p.1, 2	Modification of 1.1 Features	(b)
p.3	Modification of 1.2 List of Part Numbers	(b)
p.6	Modification of description in 1.4 Pin Identification	(c)
CHAPTER 2 PIN FU	NCTIONS	
p.12 to 15	Modification of tables in 2. 1. 1 to 2. 1. 2	(c)
p.21, 22	Addition of 2.2.2 Description of Functions	(c)
p.23 to 25	Modification of Table 2-3. Connection of Unused Pins	(c)
p.26 to 37	Addition of Figures 2-1 to 2-14 in 2.4 Block Diagrams of Pins	(c)
CHAPTER 3 CPU AI	RCHITECTURE	
p.47	Modification of cautions 2 and 3 in 3.1.3 Internal data memory space	(c)
p.48	Figures 3-4 to 3-5 in 3.1.6 Data memory addressing were consolidated into Figure 3-4	(c)
p.56	Modification of description in Table 3-5.	(c)
p.59	Modification of description in Table 3-6	(c)
CHAPTER 4 PORT	FUNCTIONS	
p.83 to 85	Addition of description of port 1 to port 14 in 4.2.1 to 4.2.10	(c)
p.89	Addition of caution to Figure 4-1	(c)
p.90	Addition of caution to Figure 4-2	(c)
p.91	Addition of caution 2 to Figure 4-3	(c)
p.92	Addition of caution 2 to Figure 4-4	(c)
p.92	Addition of caution in 4.3.5	(c)
p.92	Addition of caution to Figure 4-5	(c)
p.93	Modification of caution 1 in Figure 4-6	(c)
p.93	Addition of caution 3 to Figure 4-6	(c)
p.94	Addition of caution 3 to Figure 4-7	(c)
p.100	Modification of description in 4.4.4 Connecting to external device with different potential	(c)
	(1.8 V, 2.5 V, 3 V)	
p.100	Addition of 4.4.5 Handling different potential (1.8 V, 2.5 V, 3 V) by using I/O buffers	(c)
p.102	Addition of 4.5.1 Basic concept when using alternate function	(c)
p.103	Addition of 4.5.2 Register settings for alternate function whose output function is not	(c)
	used	
p.104	Addition of 4.5.3 Register setting examples for used port and alternate functions	(c)
p.112	Modification of description in 4.6.2 Notes on specifying the pin settings	(c)
CHAPTER 5 CLOCK	K GENERATOR	
p.124	Modification of description in 5.3.5 Oscillation stabilization time select register (OSTS)	(c)
p.125	Modification of cautions 2 and 3 in Figure 5-6	(c)

Remark "Classification" in the above table classifies revisions as follows.

⁽a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,

⁽d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

(2/8)

Page	Description	(2/8) Classification
p.128	Modification of description in Figure 5-8	(c)
p.134	Modification of description in 5.4.3 High-speed on-chip oscillator	(c)
p.134	Modification of description in 5.4.4 Low-speed on-chip oscillator	(c)
p.137	Modification of description in 5.6.1 Example of setting high-speed on-chip oscillator	(c)
p.139	Modification of description in 5.6.3 Example of setting XT1 oscillation clock	(c)
p.140	Modification of description in Figure 5-14	(c)
p.142	Modification of caution in Table 5-3 (2/5)	(c)
p.143	Modification of description in Table 5-3 (3/5)	(c)
p.143	Addition of remark 2 to Table 5-3 (3/5)	(c)
p.144	Modification of description in Table 5-3 (4/5)	(c)
p.150 to 152	Addition of 5.7 Resonator and Oscillator Constants	(c)
CHAPTER 6 TIMER		
p.153, 154	Modification of description of the timer array unit	(c)
p.156	Modification of description in 6.1.2 Simultaneous channel operation function (1) One-shot	(c)
	pulse output	
p.160	Modification of description in Figure 6-1	(c)
p.161	Modification of description in Figures 6-2 and 6-3	(c)
p.162	Modification of description in Figures 6-4 and 6-5	(c)
p.167	Modification of caution 1 in 6.3.1 Peripheral enable register 0 (PER0)	(c)
p.181	Modification of description in Figure 6-18	(c)
p.185	Modification of description in 6.3.14 Noise filter enable register 1 (NFEN1)	(c)
p.195	Modification of remark in 6.5.3 Operation of counter (2) Operation of event counter mode	(c)
p.196	Modification of description and remark in Figure 6-28	(c)
p.208	Modification of description in 6.7 Timer Input (TImn) Control	(c)
p.216	Modification of Figure 6-47	(c)
p.225	Modification of description in 6.8.4 Operation as input pulse interval measurement	(c)
p.225	Modification of Figure 6-55	(c)
p.228	Modification of description in Figure 6-58	(c)
p.230	Modification in Figure 6-59	(c)
p.232	Modification of description in Figure 6-62	(c)
p.233	Modification of Figure 6-63	(c)
p.237	Modification of description in Figure 6-66	(c)
p.239	Modification of Figure 6-67	(c)
p.243, 244	Modification of description in Figure 6-71	(c)
CHAPTER 7 REAL-1	FIME CLOCK	
p.263	Modification of description in 7.1 Functions of Real-time Clock	(c)
p.265	Modification of description in 7.3 Registers Controlling Real-time Clock	(c)
p.266, 267	Modification of cautions 1 and 2 in Figure 7-2	(c)

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

(3/8)

Page	Description	(3/8) Classification
p.269	Addition of caution 2 in Figure 7-4	(c)
p.272	Addition of caution 2 in Figure 7-6	(c)
p.280	Addition of description in 7.3.16 Port mode register 3 (PM3)	(c)
p.280	Addition of description in 7.3.17 Port register 3 (P3)	(c)
p.281		
•	Modification of note 1 in Figure 7-19	(c)
p.288, 289	Addition of correction example 1 and Figure 7-25	(c)
	INTERVAL TIMER	(a)
p.293	Modification of cautions 1 and 2 in Figure 8-2	(c)
p.297	Addition of description in 8.4.2 Start of count operation and re-enter to HALT/STOP mode	(c)
CHARTER & CLOCK	after returned from HALT/STOP mode	
	COUTPUT/BUZZER OUTPUT CONTROLLER	()
p.298	Modification of caution in 9.1 Functions of Clock Output/Buzzer Output Controller	(c)
p.303	Modification of cautions 2 and 3 in Figure 9-3	(c)
p.305	Modification of description in 9.4.1 Operation as output pin	(c)
CHAPTER 10 WATO		
p.306	Addition of description in 10.1 Functions of Watchdog Timer	(c)
p.307	Modification of description in Table 10-1	(c)
p.307	Modification of description in Figure 10-1	(c)
p.309	Modification of caution 2 in 10.4.1 Controlling operation of watchdog timer	(c)
CHAPTER 11 A/D C	ONVERTER	
p.313	Modification of description in 11.1 Function of A/D Converter	(c)
p.314	Modification of description in Figure 11-1	(c)
p.316	Modification of description in 11.2 Configuration of A/D Converter	(c)
p.322	Modification of caution 4 in Figure 11-4	(c)
p.323	Addition of note 3 and caution 1 in Table 11-3 (1/4)	(c)
p.324	Addition of note 8 and caution 1 in Table 11-3 (2/4)	(c)
p.325	Addition of note 4 and caution 1 in Table 11-3 (3/4)	(c)
p.326	Addition of note 9 and caution 1 in Table 11-3 (4/4)	(c)
p.327	Modification of Figure 11-5	(c)
p.328	Modification of cautions 2 and 3 in Figure 11-6	(c)
p.329, 330	Modification of description of ADREFP1, ADREFP0, ADRCK, and AWC bits in Figure 11-7	(c)
p.333	Modification of caution 8 in Figure 11-11	(c)
p.334	Addition of cautions 2 and 3 in Figure 11-13	(c)
p.335	Modification of description in 11.3.10 A/D test register (ADTES)	(c)
p.335	Modification of description of ADTES1 and ADTES0 bits in Figure 11-14	(c)
p.335	Modification of description in 11.3.11 Registers controlling port function of analog input	(c)
	pins	` ,
p.337	Modification of Figure 11-15 and description	(c)
p.342	Modification of Figure 11-20	(c)
LE		رح)

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

(4/8)

Page	Description	Classification
p.344	Modification of Figure 11-22	(c)
p.345	Modification of Figure 11-23	(c)
p.346	Modification of Figure 11-24	(c)
p.347	Modification of Figure 11-25	(c)
p.348	Modification of Figure 11-26	(c)
p.349	Modification of Figure 11-27 and caution	(c)
p.350	Modification of description in 11.8 SNOOZE Mode Function	(c)
p.355	Modification of Figures 11-34 and 11-35	(c)
p.357	Modification of description in 11.10 (5) Analog input (ANIn) pins	(c)
p.357	Modification of description in 11.10 (6) Input impedance of analog input (ANIn) pins	(c)
CHAPTER 12 SE	RIAL ARRAY UNIT	
p.360	Modification of description in 12.1.1 3-wire serial I/O (CSI00, CSI01)	(c)
p.363	Modification of Figure 12-1	(c)
p.367	Modification of caution 1 in Figure 12-3	(c)
p.373	Modification of description in 12.3.5 Higher 7 bits of the serial data register mn (SDRmn)	(c)
p.382	Addition of Figure 12-16	(c)
p.383	Modification of caution in 12.3.14 Serial standby control register m (SSCm)	(b)
p.383	Modification of description in Figure 12-17	(c)
p.384	Addition of Figure 12-18	(c)
p.385	Addition of 12.3.16 Registers controlling port functions of serial input/output pins	(c)
p.388	Modification of description in 12.5 Operation of 3-Wire Serial I/O (CSI00, CSI01)	(c)
	Communication	. ,
p.393	Modification of Figure 12-25	(c)
p.395	Modification of Figure 12-27	(c)
p.397	Modification of Figure 12-29	(c)
p.401	Modification of Figure 12-32	(c)
p.402	Modification of Figure 12-33	(c)
p.404	Modification of Figure 12-35	(c)
p.406	Modification of Figure 12-37	(c)
p.414	Modification of Figure 12-43	(c)
p.416	Modification of Figure 12-45	(c)
p.417	Modification of note 1 in 12.5.4 Slave transmission	(c)
p.422	Modification of Figure 12-49	(c)
p.424	Modification of Figure 12-51	(c)
p.426	Modification of Figure 12-53	(c)
p.427	Modification of description and note 1 in 12.5.5 Slave reception	(c)
p.433 p.434	Modification of Pigure 12-59 Modification of Pote 1 in 12.5.6 Slave transmission/reception	(c)
p.434 p.439	Modification of note 1 in 12.5.6 Slave transmission/reception Addition of caution 2 in Figure 12-63	(c)

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,

(d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

(5/8)

Page	Description	(5/8) Classification
p.441	Modification of Figure 12-65	(c)
p.443	Modification of Figure 12-67	(c)
p.444, 445	Modification of description and caution 2 in 12.5.7 SNOOZE mode function	(c)
p.447	Modification of caution 2 in Figure 12-70	(c)
p.457	Modification of Figure 12-75	(c)
p.460	Modification of Figure 12-78	(c)
p.462	Modification of Figure 12-80	(c)
p.469	Modification of Figure 12-86	(c)
p.470	Modification of description in 12.6.3 SNOOZE mode function	(c)
p.471	Addition of Table 12-3	(c)
p.472	Modification of description in (1) SNOOZE mode operation (EOCm1 = 0, SSECm = 0/1) in	(c)
	12.6.3 SNOOZE mode function	
p.473	Modification of description in (2) SNOOZE mode operation (EOCm1 = 1, SSECm = 0: Error	(c)
	interrupt (INTSREq) generation is enabled) in 12.6.3 SNOOZE mode function	
p.474	Modification of Figure 12-89	(c)
p.475	Modification of description in (3) SNOOZE mode operation (EOCm1 = 1, SSECm = 1: Error	(c)
	interrupt (INTSREq) generation is stopped) in 12.6.3 SNOOZE mode function	
p.476	Modification of Figure 12-91	(c)
CHAPTER 13 LCD	CONTROLLER/DRIVER	
p.483	Modification of Tables 13-1	(c)
p.487	Modification of Figure 13-1	(c)
p.489	Modification of caution 1 in Figure 13-2	(c)
p.493	Modification of caution 1 in Figure 13-4 (2/2)	(c)
p.496	Modification of cautions 1 and 3 in Figure 13-6 (2/2)	(c)
p.511	Modification of Figure 13-20 and caution	(c)
CHAPTER 14 INTE	ERRUPT FUNCTION	
p.549	Modification of note 3 in Table 14-2 (2/3)	(c)
p.552	Modification of caution 1 in Figure 14-2	(c)
p.558	Modification of description in 14.3.5 Program status word (PSW)	(c)
p.561	Modification of Figure 14-9	(c)
p.563	Modification of description and remark 3 in Table 14-5	(c)
•	INTERRUPT FUNCTION	(0)
p.567	Modification of description in Table 15-1	(c)
p.568	Modification of description in Table 15-2	(c)
CHAPTER 16 STA	'	(-)
p.576	Addition of caution in 16.3.1 HALT mode	(c)
p.579	Modification of note 2 in Figure 16-1	(c)
p.580	Modification of Figures 16-2 (1) and (2)	(c)
p.583		
•	Modification of Figure 16-3 (1), note 2, and remark 1	(c)
p.584	Modification of Figure 16-3 (2) and note 2	(c)

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,

(d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

(6/8)

	1	(6/8
Page	Description	Classification
p.584	Modification of note 2, caution, and remarks in Figure 16-3 (3)	(c)
p.585	Modification of Figures 16-4 (1) and (2)	(c)
p.586	Modification of description in 16.3.3 SNOOZE mode	(c)
CHAPTER 17 RESI	ET FUNCTION	
p.588	Modification of description, caution 3, and remark	(c)
p.591	Addition of note 3 in Figure 17-3	(c)
p.592, 593	Modification of description in Table 17-1 and addition of note	(c)
p.593	Modification of Table 17-2 and remark	(c)
p.595	Addition of description in Table 17-3	(c)
p.596	Addition of Figure 17-5	(c)
CHAPTER 18 POW	ER-ON-RESET CIRCUIT	
p.597	Modification of description, caution, and remarks 1 and 2 in 18.1 Functions of Power-on-	(c)
	reset Circuit	
p.598	Modification description in 18.3 Operation of Power-on-reset Circuit	(c)
p.599	Modification of description in Figure 18-2 (1/3)	(c)
p.600	Modification of description in Figure 18-2 (2/3)	(c)
p.601	Modification of description in Figure 18-2 (3/3)	(c)
CHAPTER 19 VOL	TAGE DETECTOR	
p.602	Modification of description in 19.1 Functions of Voltage Detector	(c)
p.604	Modification of description in Figure 19-2	(c)
p.605	Modification of note 2 in Figure 19-3	(c)
p.606	Modification of description in Table 19-1 (1/2)	(c)
p.607	Modification of description in Table 19-1 (2/2)	(c)
p.608	Modification of description in 19.4.1 When used as reset mode	(c)
p.609	Modification of Figure 19-4	(c)
p.610	Modification of description in 19.4.2 When used as interrupt mode	(c)
p.611	Modification of Figure 19-5	(c)
p.613	Modification of description in Figure 19-6 (1/2)	(c)
p.615	Modification of description in Figure 19-6 (2/2)	(c)
p.618	Modification of description in 19.5 Cautions for Voltage Detector	(c)
CHAPTER 20 SAFE	ETY FUNCTIONS	
p.620	Modification of (6), (7), and remark in 20.1 Overview of Safety Functions	(c)
p.624	Modification of description in Figure 20-3	(c)
p.627	Modification of caution and remarks in Figure 20-7	(c)
p.628	Addition of Figure 20-8	(c)
p.631	Modification of description and note in Figure 20-11	(c)
p.633	Modification of description in 20.3.7 Frequency detection function	(c)
p.635	Modification of description in 20.3.8 A/D test function	(c)
p.637	Modification of description in 20.3.8.1 A/D test register (ADTES)	(c)
p.638, 639	Modification of description and caution 1 to 9 in 20.3.8.2 Analog input channel specification	(c)
. ,	register (ADS)	ν-/

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,

(d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

(7/8)

		(7/8)
Page	Description	Classification
CHAPTER 22 OPTIO	ON BYTE	
p.641	Modification of description of (2) and (3) in 22.1.1 User option byte (000C0H to 000C2H)	(c)
p.644	Modification of description in Figure 22-2 (1/2)	(c)
p.645	Modification of description, caution 2, and remark 3 in Figure 22-2 (2/2)	(c)
p.646	Modification of caution 2 in Figure 22-3	(c)
CHAPTER 23 FLAS	H MEMORY	
p.650	Modification of description	(c)
p.652	Modification of note in Table 23-1	(c)
p.653	Modification of note 3 in Figure 23-2	(c)
p.654	Modification of description, note, and caution in Table 23-2	(c)
p.655	Modification of note in Figure 23-4	(c)
p.655	Modification of description and note in Table 23-3	(c)
p.656	Modification of remark 1 in 23.3.1 P40/TOOL0 pin	(c)
p.658	Addition of description in 23.4 Serial Programming Method	(c)
p.663	Addition of description in 23.5 Processing Time for Each Command When PG-FP5 Is in	(c)
	Use (Reference Value)	
p.664	Addition of description in 23.6 Self-Programming	(c)
p.667	Modification of description in 23.7 Security Settings	(c)
p.669	Addition of description in 23.8.1 Data flash overview	(c)
p.669	Addition of description in 23.8.2 Register controlling data flash memory	(c)
p.670	Addition of description in 23.8.3 Procedure for accessing data flash memory	(c)
CHAPTER 26 INSTR	RUCTION SET	
p.679	Addition of addr5 in Table 26-2	(b)
p.681 to 697	Modification of note2 in Table 26-5 (1/17) to (17/17)	(c)
CHAPTER 27 ELEC	TRICAL SPECIFICATIONS	
p.699	Modification of description in Absolute Maximum Ratings (TA = 25°C) (1/3)	(c)
p.700	Modification of description and note 2 in Absolute Maximum Ratings (Ta = 25°C) (2/3)	(c)
p.702	Modification of table, note, caution, and remark in 27.2.1 X1, XT1 oscillator characteristics	(c)
p.702	Modification of table, note, caution, and remark in 27.2.2 On-chip oscillator	(c)
	characteristics	
p.703	Modification of table, notes 2 and 3 in 27.3.1 Pin characteristics (1/5)	(c)
p.704	Modification of notes 3 in 27.3.1 Pin characteristics (2/5)	(c)
p.709	Modification of notes 1 and 4 in 27.3.2 Supply current characteristics (1/3)	(c)
p.710, 711	Modification of table, notes 1, 5, and 6 in 27.3.2 Supply current characteristics (2/3)	(c)
p.712, 713	Modification of table, notes 1, 3, 4, 5 and 7 to 10 in 27.3.2 Supply current characteristics	(c)
	(3/3)	. ,
p.714	Modification of table in 27.4 AC Characteristics	(c)
p.715, 716	Addition of Minimum Instruction Execution Time during Main System Clock Operation	(b)
p.716	Modification of AC Timing Test Points and External System Clock Timing	(c)
p.718	Modification of AC Timing Test Points	
0.718	IMODIFICATION OF ACT TIMING TEST POINTS	(c)

Remark "Classification" in the above table classifies revisions as follows.

- (a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,
- (d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

(8/8)

Page	Description	Classification
p.718	Modification of description, notes 1 and 2 in (1) During communication at same potential	(b)
	(UART mode)	
p.720, 721	Modification of description, remark 2 in (2) During communication at same potential (CSI	(b)
	mode)	
p.721, 722	Modification of description in (3) During communication at same potential (CSI mode)	(b)
p.724	Modification of description, notes 1 and 3, and remark 3 in (4) Communication at different	(b)
	potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)	
p725, 726	Modification of description, and remark 3 in (4) Communication at different potential (1.8	(b)
	V, 2.5 V, 3 V) (UART mode) (2/2)	
p.728, 729	Modification of table, and note 1, caution, and remark 3 in (5) Communication at	(b)
	different potential (2.5 V, 3 V) (CSI mode)	
p.730	Modification of table and note in (6) Communication at different potential (1.8 V, 2.5 V, 3	(b)
	V) (1/3)	
p.731	Modification of table and notes 1 to 3 in (6) Communication at different potential (1.8 V,	(b)
	2.5 V, 3 V) (2/3)	
p.732, 733	Modification of table, note 3, and remark 3 in (6) Communication at different potential	(b)
	(1.8 V, 2.5 V, 3 V) (3/3)	
p.735	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI	(b)
	mode) (1/2)	
p.736	Modification of table in (7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI	(b)
	mode) (2/2)	
p.738	Addition of table in 27.6.1 A/D converter characteristics	(c)
p.738, 7389	Modification of description and notes 3 to 5 in 27.6.1 (1)	(c)
p.740	Modification of description, notes 3 and 4 in 27.6.1 (2)	(c)
p.741	Modification of description, notes 3 and 4 in 27.6.1 (3)	(c)
p.742	Modification of description, notes 3 and 4 in 27.6.1 (4)	(c)
p.742	Modification of the table in 27.6.2 Temperature sensor/internal reference voltage	(c)
	characteristics	
p.743	Modification of the table and note in 27.6.3 POR circuit characteristics	(c)
p.745	Modification of the table of LVD Detection Voltage of Interrupt & Reset Mode	(c)
p.745	Modification from VDD rise slope to Power supply voltage rising slope in 27.6.5 Supply voltage	(c)
	rise time	
p.750	Addition of description in 27.10 Dedicated Flash Memory Programmer Communication	(c)
	(UART)	
p.751	Modification of the figure in 27.11 Timing Specifications for Switching Flash Memory	(b)
	Programming Modes	

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note, (d): Addition/change of package, part number, or management division, (e): Addition/change of related

documents

A.2 Revision History of Preceding Editions

Here is the revision history of the preceding editions. Chapter indicates the chapter of each edition.

(1/7)

Edition	Description	(1/7) Chapter
Rev.1.00	Renamed interval timer (unit) to 12-bit interval timer	Though out
	Renamed VLVI, VLVIH, VLVIL to VLVD, VLVDH, VLVDL (LVD detection voltage)	
	Renamed interrupt source of RAM parity error (RAMTOP) to RPE	
	Modification of description of INTP0 to INTP7 in 1.4 Pin Identification	CHAPTER 1
	Modification of 1.5 Block Diagram	OUTLINE
	Addition and Modification of description in 1.6 Outline of Functions	
	Modification of 2.1 Port Function	CHAPTER 2
	Addition of remark to 2.3 Pin I/O Circuits and Recommended Connection of Unused Pins	PIN FUNCTIONS
	Modification of Figures 3-1 and 3-2	CHAPTER 3
	Addition of remark to Table 3-1. Correspondence Between Address Values and Block Numbers in Flash Memory	CPU ARCHITECTURE
	Modification of description in 3.1.1 (4) On-chip debug security ID setting area	
	Modification of description in 3.1.2 Mirror area	
	Modification of description and cautions 1, 2 in 3.1.3 Internal data memory space	
	Modification of 3.2.1 Control registers, 3.2.2 General-purpose registers, and 3.2.3 ES and CS registers	
	Modification of description in 3.2.4 Special function registers (SFRs)	
	Modification of description in 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers)	
	Modification of Figures 3-12 to 3-14, 3-16 to 3-39	
	Modification of [Operand format] in 3.4.1 Implied addressing	
	Modification of [Operand format] in 3.4.3 Direct addressing	
	Modification of [Function] in 3.4.7 Based addressing	
	Modification from [Operand format] to [Description format], modification of [Function] and [Description format], and addition of description in 3.4.9 Stack addressing	
	Modification of description in 4.1 Port Functions	CHAPTER 4
	Addition of caution to 4.3 Registers Controlling Port Function	PORT FUNCTIONS
	Modification of Figure 4-2. Format of Port Register (64-pin products)	
	Modification of description and addition of caution to 4.3.3 Pull-up resistor option registers (PUxx)	
	Addition of description in 4.3.5 Port output mode registers (POM1)	
	Addition of cautions 1 and 2 to Figure 4-6. Format of Port Mode Control Register (64-pin products)	
	Modification of description in 4.3.8 Peripheral I/O redirection register (PIOR)	
	Modification of description in 4.4.1 (2) Input mode and 4.4.3 (2) Input mode	
	Modification of description in 4.4.4 Connecting to external device with different potential (1.8 V, 2.5 V, 3 V)	
	Addition of caution to 4.5 Settings of Port Related Register When Using Alternate Function	
	Addition of 4.6.2 Notes on specifying the pin settings	

(2/7)

Edition	Description	(2/7) Chapter
Rev.1.00	Addition of description to 5.1 (1) <2> High-speed on-chip oscillator	CHAPTER 5
	Modification of cautions 1, 7 and addition of cautions 4 to 6 to Figure 5-2. Format of Clock Operation Mode Control Register (CMC)	CLOCK GENERATOR
	Deletion of cautions 1 to 4 and addition of cautions 1 to 3 to 5.3.8 High-speed on-chip oscillator frequency select register (HOCODIV)	
	Modification of caution in Figure 5-11. Example of External Circuit of XT1 Oscillator	
	Modification of note 3 in Figure 5-13. Clock Generator Operation When Power Supply Voltage Is Turned On	
	Modification of description of [Option byte setting] in 5.6.1 Example of setting high-speed on- chip oscillator	
	Modification of description in 5.6.2 Example of setting X1 oscillation clock	
	Addition of description to Figure 5-14. CPU Clock Status Transition Diagram	
	Addition of description to Table 5-3. CPU Clock Transition and SFR Register Setting Examples	
	Modification and deletion of description in Table 5-4. Changing CPU Clock	
	Modification of remark 2 in 5.6.6 Time required for switchover of CPU clock and system clock	
	Modification of description in 6.1.1 (7) Delay counter	CHAPTER 6
	Modification of caution in 6.1.2 (4) Remote control output function	TIMER ARRAY UNIT
	Modification of Figure 6-2. Internal Block Diagram of Channels 0, 2, 6 of Timer Array Unit 0	
	Addition of Figures 6-3 to 6-5	
	Modification of Table 6-3. Timer Count Register mn (TCRmn) Read Value in Various Operation Modes	
	Modification of description in 6.2.2 Timer data register mn (TDRmn)	
	Modification of note and remark 2 and addition of caution to Figure 6-10 . Format of Timer Clock Select register m (TPSm) (1/2)	
	Addition of note to Figure 6-11. Format of Timer Mode Register mn (TMRmn)	
	Modification of Setting of starting counting and interrupt and note 3 and addition of note 1 to Figure 6-11. Format of Timer Mode Register mn (TMRmn) (4/4)	
	Modification of description in Figure 6-15. Format of Timer Channel Stop register m (TTm)	
	Addition of caution to Figure 6-16. Format of Timer Input Select register 0 (TIS0)	
	Modification of description in Figure 6-18. Format of Timer Output Enable register m (TOE0)	
	Modification of description in Table 6-6. Operations from Count Operation Enabled State to Timer count Register mn (TCRmn) Count Start	
	Addition of title to 6.5.3 Operation of counter	
	Modification of description, remark and addition of note to Figure 6-28. Operation Timing (Capture Mode: Input Pulse Interval Measurement)	
	Modification of Figures 6-33 to 6-35	
	Modification of Figures 6-45 , 6-49 , 6-53 , 6-57 , 6-61 , 6-65 Block Diagram	
	Modification of remark in 6.8.3 Operation as multiple PWM output function	
	Modification of Figure 6-81. Procedure for Setting Remote control Output	

(3/7)

Edition	Description	Chapter
Rev.1.00	Modification of 7.4.2 Shifting to HALT/STOP mode after starting operation	CHAPTER 7
	Modification of figure title in Figure 7-23	REAL-TIME CLOCK
	Modification of Figure 8-5. 12-Bit Interval Timer Operation Timing (ITCMP11 to ITCMP0 = 0FFH,	CHAPTER 8
	count clock: fsub = 32.768 kHz)	INTERVAL TIMER
	Addition of 9.3.3 Port mode registers 5, 14 (PM5, PM14)	CHAPTER 9
	Addition of 9.5 Cautions of clock output/buzzer output controller	СГОСК
		OUTPUT/BUZZER
		OUTPUT
		CONTROLLER
	Modification of description in 10.1 Functions of Watchdog Timer, 10.4.4 Setting watchdog timer	CHAPTER 10
	interval interrupt	WATCHDOG TIMER
	Modification of Figure 11-1. Block Diagram of A/D Converter	CHAPTER 11
	Modification of error in 11.2 (9) AVREFP pin	A/D CONVERTER
	Modification of caution 1 in 11.3.1 Peripheral enable register 0 (PER0)	
	Modification of cautions 1 and 3 and addition of caution 2 in 11.3.2 A/D converter mode register 0 (ADM0)	
	Modification of Table 11-1. Settings of ADCS and ADCE Bits	
	Modification of description and addition of note 2 and caution 4 to Figure 11-4. Timing Chart When A/D Voltage Comparator Is Used	
	Modification of Table 11-3. A/D Conversion Time Selection	
	Modification of cautions 1, 2 and addition of caution 3 in 11.3.3 A/D converter mode register 1 (ADM1)	
	Modification of description and cautions 1 to 3 and addition of note in Figure 11-7. Format of A/D Converter Mode register 2 (ADM2) (1/2)	
	Modification of caution and addition of note and remark in Figure 11-7. Format of A/D Converter Mode register 2 (ADM2) (2/2)	
	Addition of note to 11.3.5 10-bit A/D conversion result register (ADCR), and 11.3.6 8-bit A/D conversion result register (ADCRH)	
	Modification of caution 5 and addition of cautions 9, 10 in 11.3.7 Analog input channel specification register (ADS)	
	Addition of caution to 11.3.10 A/D test register (ADTES)	
	Addition of caution 3 to 11.3.11 A/D port configuration register (ADPC)	
	Addition of caution to 11.3.12 Port mode control registers 1, 4, 12, and 14 (PMC1, PMC4, PMC12, PMC14)	
	Modification of description and addition of caution to 11.3.13 Port mode register 1, 2, 4, 12, and 14 (PM1, PM2, PM4, PM12, PM14)	
	Addition of note 1 to 11.4 A/D Converter Conversion Operations	
	Modification of Figures 11-26 to 11-28, 11-30	
	Modification from 11.7.4 Setup when using temperature sensor (~) to 11.7.4 Setup when temperature sensor output/internal reference voltage output is selected (~) Modification from Figure 11-29. Setup When Using Temperature Sensor to Figure 11-29. Setup when temperature sensor output/internal reference voltage output is selected	

(4/7)

Edition	Description	(4/7) Chapter
Rev.1.00	Modification of description in 11.8 SNOOZE Mode Function	CHAPTER 11
	Addition of caution to 11.10 (2) Input range of ANI0, ANI1 and ANI16 to ANI23 pins	A/D CONVERTER
	Modification of value in Table 11-6. Resistance and Capacitance Values of Equivalent Circuit (Reference Values)	
	Modification of description and addition of note 1 to 12.1.1 3-wire serial I/O (CSI00, CSI01)	CHAPTER 12
	Modification of description in Figure 12-6. Format of Serial Communication Operation Setting Register mn (SCRmn)	SERIAL ARRAY UNIT
	Modification of note to Figure 12-10. Format of Serial Channel Start Register m (SSm)	
	Modification of note to Figure 12-11. Format of Serial Channel Stop Register m (STm)	
	Modification of Figure 12-14. Format of Serial Output Register m (SOm)	
	Modification of description in Figure 12-16. Format of Serial Standby Control Register m (SSCm)	
	Modification of description in 12.3.17 Port output mode register 1 (POM1)	
	Addition of description to 12.3.18 Port mode register 1 (PM1)	
	Modification of note 1 in 12.5 Operation of 3-Wire Serial I/O (CSI00, CSI01) Communication	
	Modification of description in 12.5.1 Master transmission	
	Modification of description in Figures 12-24 to 26, 32 to 34, 40 to 42, 48 to 50, 56 to 58, 62 to 64, 75 to 77, 83 to 85, 87 (operation procedure)	
	Modification of Figures 12-27, 29, 37, 43, 45, 51, 53, 59, 65, 67 (timing chart)	
	Modification of description in 12.5.2 Master reception	
	Modification of description in 12.5.3 Master transmission/reception	
	Modification of note to 12.5.4 Slave transmission , 12.5.5 Slave reception , 12.5.6 Slave transmission/reception	
	Modification of description in 12.5.7 SNOOZE mode function	
	Modification of caution in Figures 12-69 and 12-71	
	Modification of description in 12.6.1 UART transmission and 12.6.2 UART reception	
	Modification of Figure 12-79, 81 (flow chart)	
	Modification of Figure 12-82 (Example of Contents of Registers).	
	Addition of description in 12.6.3 SNOOZE mode function	
	Modification of note and caution in Figure 12-88 . Timing Chart of SNOOZE Mode Operation (Normal operation mode)	
	Modification of caution in Figure 12-89. Timing Chart of SNOOZE Mode Operation (Abnormal Operation <1>)	
	Modification of Figure 12-90. Flowchart of SNOOZE Mode Operation (Normal Operation/Abnormal Operation <1>)	
	Modification of note 1 and caution 1 in Figure 12-91 . Timing Chart of SNOOZE Mode Operation (Abnormal Operation <2>)	
	Modification of Figure 12-92. Flowchart of SNOOZE Mode Operation (Abnormal Operation <2>)	
	Modification of block diagram in Figure 13-1. Block Diagram of LCD Controller/Driver	CHAPTER 13 LCD
	Deletion of note in Figure 13-3. Format of LCD Mode Register 0 (LCDM0) (2/2)	CONTROLLER/DRIVE
	Modification of Table 13-4. Combinations of Display Waveform, Time Slices, and Bias Method	R

(5/7)

Edition	Description	Chapter
Rev.1.00	Addition of note 1 to Figure 13-4. Format of LCD Mode Register 1 (LCDM1) (1/2)	CHAPTER 13 LCD
	Modification of note and caution 1 in Figure 13-4 . Format of LCD Mode Register 1 (LCDM1) (2/2)	CONTROLLER/DRIVE
	Modification of caution in Figure 13-5. Format of Operation Speed Mode Control Register (OSMC)	
	Deletion of note and modification of cautions 2, 3 in Figure 13-6. Format of LCD Clock Control Register 0 (LCDC0)	
	Modification of caution in Figure 13-21. Operation Stop Procedure	
	Modification of caution in Figure 13-22. Examples of LCD Drive Power Connections (External Resistance Division Method)	
	Modification of Figure 13-23. Examples of LCD Drive Power Connections (Internal Voltage Boosting Method)	
	Modification of Figure 13-24. Examples of LCD Drive Power Connections (Capacitor Split Method)	
	Modification of Figure 13-29. Static LCD Drive Waveform Examples for SEG11, SEG12, and COM0	
	Addition of description	CHAPTER 14
	Modification of Table 14-5. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing During Interrupt Servicing	INTERRUPT FUNCTION
	Modification of all	CHAPTER 15 KEY INTERRUPT FUNCTION
	Modification caution 1 in 16.1 Standby Function and Configuration	CHAPTER 16
	Modification of Table 16-1. Operating Statuses in HALT Mode	STANDBY FUNCTION
	Addition of note 1 in Figure 16-3. HALT Mode Release by Interrupt Request Generation	
	Modification of description in Figure 16-4. HALT Mode Release by Reset	
	Modification of caution 1 in 16.3.2 (1) STOP mode setting and operating statuses	
	Modification of Table 16-2. Operating Statuses in STOP Mode	
	Modification of description in Figure 16-5. STOP Mode Release by Interrupt Request Generation	
	Modification of description in Figure 16-6. STOP Mode Release by Reset	
	Modification of description in 16.3.3 (1) SNOOZE mode setting and operating statuses	
	Modification of description in Table 16-3. Operating Statuses in SNOOZE Mode	
	Modification of caution 3 in CHAPTER 17 RESET FUNCTION	CHAPTER 17 RESET
	Modification of description in Figure 17-2	FUNCTION
	Modification and addition of note 2 to Figure 17-3	
	Modification of port (latch) in Table 17-1. Operation Statuses During Reset Period	
	Modification of description of high-speed on-chip oscillator trimming register (HIOTRM) and note 2 in Table 17-2. Hardware Statuses After Reset Acknowledgment	
	Modification of caution 2 in Figure 17-5. Format of Reset Control Flag Register (RESF)	

Edition	Description	Chapter
Rev.1.00	Modification of description in 18.1 Functions of Power-on-reset Circuit	CHAPTER 18
	Modification of description in 18.3 Operation of Power-on-reset Circuit	POWER-ON-RESET
	Modification of description and notes in Figure 18-2. Timing of Generation of Internal Reset Signal by Power-on-reset Circuit and Voltage Detector (1/3) to (3/3)	CIRCUIT
	Modification of Figure 19-1. Block Diagram of Voltage Detector	CHAPTER 19
	Modification of notes 1, 3 in Figure 19-2. Format of Voltage Detection Register (LVIM)	VOLTAGE
	Modification of Table 19-1. LVD Operation Mode and Detection Voltage Settings for User Option Byte (000C1H)	DETECTOR
	Modification of 19.4.1 When used as reset mode	
	Modification of 19.4.2 When used as interrupt mode	
	Modification of description in 19.4.3 When used as interrupt and reset mode	
	Modification of Figure 19-6 (1/2)	
	Modification of Figure 19-6 (2/2)	
	Modification of Figure 20-3. Flowchart of Flash Memory CRC Operation Function (Highspeed CRC)	CHAPTER 20 SAFETY FUNCTIONS
	Addition of description and caution to 20.3.2 CRC operation function (general-purpose CRC)	
	Modification of caution in Figure 20-7. Format of RAM Parity Error Control Register (RPECTL)	
	Modification of Figure 20-10. Invalid Access Detection Area	
	Addition of Figure (move from 2.2 Description to Pin Function (preceding editions))	CHAPTER 21 REGULATOR
	Modification of description and addition of caution to 22.1 Functions of Option Bytes	CHAPTER 22
	Modification of description in Figure 22-1. Format of User Option Byte (000C0H)	OPTION BYTE
	Modification of Figure 22-2. Format of User Option Byte (000C1H)	
	Deletion of description in 23.1.1 Programming environment	CHAPTER 23
	Addition of description to 23.2 Writing to Flash Memory by Using External Device (that Incorporates UART)	FLASH MEMORY
	Addition of remark to 23.3 Connection of Pins on Board	
	Addition of description, caution and remark to 23.4.1 Data flash overview	
	Modification of Figure 23-8. Setting of Flash Memory Programming Mode	
	Modification of error in Table 23-4. Relationship Between TOOL0 Pin and Operation Mode After Reset Release	
	Modification of Table 23-5. Programming Modes and Voltages at Which Data Can Be Written, Erased, or Verified	
	Modification of description in Table 23-10. Example of Signature Data	
	Addition of description and caution to 23.6 Security Settings	1
	Modification of Table 23-11. Relationship Between Enabling Security Function and Command and Table 23-12. Setting Security in Each Programming Mode	
	Modification of cautions 2 to 4 to 23.7 Flash Memory Programming by Self-Programming	
	Modification of Table 23-13. Programming Modes and Voltages at Which Data Can Be Written, Erased, or Verified	
	Modification of Table 23-14. Relationship Between Flash Shield Window Function Setting/Change Methods and Commands	

(7/7)

Edition	Description	(7/7 Chapter
Rev.1.00	Modification of error in Table 26-5. Operation List (10/17)	CHAPTER 26
		INSTRUCTION SET
	Addition of cautions 2, 3 to CHAPTER 27 ELECTRICAL SPECIFICATIONS (deletion of Pins	CHAPTER 27
	Mounted According to Product)	ELECTRICAL
	Addition of description, note 3, and remark 2 to 27.1 Absolute Maximum Ratings	SPECIFICATIONS
	Modification of description and deletion of note to 27.1 Absolute Maximum Ratings	
	Modification of 27.2 Oscillator Characteristics	
	Modification of 27.3.1 Pin characteristics	
	Modification of notes 1 to 5 in 27.3.2 Supply current characteristics (1/3)	
	Modification of notes 1, 3 to 8 to 27.3.2 Supply current characteristics (2/3)	
	Modification of 27.3.2 Supply current characteristics (3/3)	
	Modification and addition of description to 27.4 AC Characteristics	
	Modification of 27.5.1 Serial array unit	
	Modification of 27.6.1 A/D converter characteristics	
	Addition of cautions 2 , 3 to CHAPTER 27 ELECTRICAL SPECIFICATIONS (deletion of Pins Mounted According to Product)	
	Modification of 27.6.2 Temperature sensor/internal reference voltage characteristics	
	Modification of 27.6.3 POR circuit characteristics	
	Addition of note and caution in 27.6.5 Supply voltage rise time	
	Modification of 27.7.2 Internal voltage boosting method	
	Modification of 27.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	
	Modification of conditions in 27.9 Timing Specs for Switching Flash Memory Programming Modes	
	Modification of 27.10 Timing Specifications for Switching Flash Memory Programming Modes	

R7F0C001G/L, R7F0C002G/L User's Manual: Hardware

Publication Date: Rev.2.00 Mar 25, 2014

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Ku, Seoul, 135-920, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2014 Renesas Electronics Corporation. All rights reserved.

R7F0C001G/L, R7F0C002G/L

